Skip to main content
Log in

Efficient Analytical Algorithms to Study Fokas Dynamical Models Involving M-truncated Derivative

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The dynamical behaviour of the (4+1)-dimensional fractional Fokas equation is investigated in this paper. The modified auxiliary equation method and extended \((\frac{{G'}}{{{G^2}}})\)-expansion method, two reliable and useful analytical approaches, are used to construct soliton solutions for the proposed model. We demonstrate some of the extracted solutions used the definition of the truncated M-derivative (TMD) to understand its dynamical behaviour. The hyperbolic, periodic, and trigonometric function solutions are used to derive the analytical solutions for the given model. As a result, dark, bright, and singular solitary wave solitons are obtained. We observe the fractional parameter impact of the above derivative on the physical phenomena. Each set of travelling wave solutions have a symmetrical mathematical form. Last but not least, we employ Mathematica to produce 2D and 3D figures of the analytical soliton solutions to emphasize the influence of TMD on the behaviour and symmetry of the solutions for the proposed problem. The physical importance of the solutions found for particular values of the combination of parameters during the representation of graphs as well as understanding of physical incidents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: A new \((3+ 1)\)-dimensional Sakovich equation in nonlinear wave motion: Painleve integrability, multiple solitons and soliton molecules. Qual. Theory Dyn. Syst. 21(4), 158 (2022)

    MathSciNet  Google Scholar 

  2. Tala-Tebue, E., Rezazadeh, H., Javeed, S., Baleanu, D., Korkmaz, A.: Solitons of the \((1+ 1)\)-and \((2+ 1)\)-dimensional chiral nonlinear Schrodinger equations with the Jacobi elliptical function method. Qual. Theory Dyn. Syst. 22(3), 106 (2023)

    MathSciNet  Google Scholar 

  3. Chen, S.J., Yin, Y.H., Lü, X.: Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations. Commun. Nonlinear Sci. Numer. Simul. 107205 (2023)

  4. HamaRashid, H., Srivastava, H.M., Hama, M., Mohammed, P.O., Almusawa, M.Y., Baleanu, D.: Novel algorithms to approximate the solution of nonlinear integro-differential equations of Volterra–Fredholm integro type. AIMS Math. 8, 114572–14591 (2023)

    MathSciNet  Google Scholar 

  5. HamaRashid, H., Srivastava, H.M., Hama, M., Mohammed, P.O., Al-Sarairah, E., Almusawa, M.Y.: New numerical results on existence of Volterra–Fredholm integral equation of nonlinear boundary integro-differential type. Symmetry 15, 1144 (2023)

    Google Scholar 

  6. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)

    MathSciNet  Google Scholar 

  7. Wu, G.C., Song, T.T., Wang, S.: Caputo-Hadamard fractional differential equations on time scales: numerical scheme, asymptotic stability, and chaos. Chaos: Interdiscip. J. Nonlinear Sci. 32(9), 093143 (2022)

    MathSciNet  Google Scholar 

  8. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)

    MathSciNet  Google Scholar 

  9. Mohammed, P.O., Machado, J.A.T., Guirao, J.L.G., Agarwal, R.P.: Adomian decomposition and fractional power series solution of a class of nonlinear fractional differential equations. Mathematics 9, 1070 (2021)

    Google Scholar 

  10. Abu-Shady, M., Kaabar, M.K.: A generalized definition of the fractional derivative with applications. Math. Probl. Eng. 1–9 (2021)

  11. Martínez, F., Kaabar, M. K.: A novel theoretical investigation of the Abu–Shady–Kaabar fractional derivative as a modeling tool for science and engineering. Comput. Math. Methods Med. (2022)

  12. Luchko, Y., Gorenflo, R.: An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnam 24(2), 207–233 (1999)

    MathSciNet  Google Scholar 

  13. Wang, K.: New perspective to the fractal Konopelchenko–Dubrovsky equations with M-truncated fractional derivative. Int. J. Geom. Methods Mod. Phys. 20(5), 2350072 (2023)

  14. Abdeljawad, T.: On conformable fractional calculus. Comput. Appl. Math. 279, 57–66 (2015)

    MathSciNet  Google Scholar 

  15. Owolabi, K.M., Atangana, A.: On the formulation of Adams–Bashforth scheme with Atangana–Baleanu–Caputo fractional derivative to model chaotic problems. Chaos: Interdiscip. J. Nonlinear Sci. 29(2), 023111 (2019)

    MathSciNet  Google Scholar 

  16. Hilfer, R.: Fractional diffusion based on Riemann–Liouville fractional derivatives. J. Phys. Chem. B 104(16), 3914–3917 (2000)

    Google Scholar 

  17. Singh, R., Mishra, J., Gupta, V.K.: The dynamical analysis of a Tumor Growth model under the effect of fractal fractional Caputo–Fabrizio derivative. IJMCE (2023)

  18. Jafari, H., Goswami, P., Dubey, R.S., Sharma, S., Chaudhary, A.: Fractional SIZR model of Zombie infection. IJMCE. 1(1), 91–104 (2023)

    Google Scholar 

  19. Tariq, H., Akram, G.: New traveling wave exact and approximate solutions for the nonlinear Cahn–Allen equation: evolution of a nonconserved quantity. Nonlinear Dyn. 88, 581–594 (2017)

    MathSciNet  Google Scholar 

  20. Khalil, T.A., Badra, N., Ahmed, H.M., Rabie, W.B.: Optical solitons and other solutions for coupled system of nonlinear Biswas–Milovic equation with Kudryashov’s law of refractive index by Jacobi elliptic function expansion method. Optik 253, 168540 (2022)

    Google Scholar 

  21. Noureen, R., Naeem, M.N., Baleanu, D., Mohammed, P.O., Almusawa, M.Y.: Application of trigonometric B-spline functions for solving Caputo time fractional gas dynamics equation. AIMS Math. 8, 25343–25370 (2023)

    MathSciNet  Google Scholar 

  22. Liu, J.G., Yang, X.J.: Symmetry group analysis of several coupled fractional partial differential equations. Chaos Solitons Fractals 173, 113603 (2023)

    MathSciNet  Google Scholar 

  23. Huang, C., Jiang, Z., Huang, X., Zhou, X.: Bifurcation analysis of an SIS epidemic model with a generalized non-monotonic and saturated incidence rate. Int. J. Biomath., 2350033 (2023)

  24. Gao, D., Lü, X., Peng, M.S.: Study on the (2+ 1)-dimensional extension of Hietarinta equation: soliton solutions and Bäcklund transformation. Phys. Scr. 98(9), 095225 (2023)

    Google Scholar 

  25. Yin, Y.H., Lü, X., Ma, W.X.: Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+ 1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 108(4), 4181–4194 (2022)

    Google Scholar 

  26. Biswas, A., Mirzazadeh, M., Triki, H., Zhou, Q., Ullah, M.Z., Moshokoa, S.P., Belic, M.: Perturbed resonant 1-soliton solution with anti-cubic nonlinearity by Riccati–Bernoulli sub-ODE method. Optik 156, 346–350 (2018)

    Google Scholar 

  27. Jiang, Z., Zhang, Z.G., Li, J.J., Yang, H.W.: Analysis of Lie symmetries with conservation laws and solutions of generalized \((4+ 1)\)-dimensional time-fractional Fokas equation. Fractal Fract. 6(2), 108 (2022)

    Google Scholar 

  28. Fokas, A.S.: Integrable nonlinear evolution partial differential equations in \(4+ 2\) and \(3+ 1\) dimensions. Phys. Rev. Lett. 96(19), 190201 (2006)

    MathSciNet  Google Scholar 

  29. Chen, S.J., Lü, X., Yin, Y.H.: Dynamic behaviors of the lump solutions and mixed solutions to a \((2+ 1)\)-dimensional nonlinear model. Commun. Theor. Phys. 75(5), 055005 (2023)

    MathSciNet  Google Scholar 

  30. Yin, Y.H., Lü, X.: Dynamic analysis on optical pulses via modified PINNs: soliton solutions, rogue waves and parameter discovery of the CQ-NLSE. CNSNS 126, 107441 (2023)

    MathSciNet  Google Scholar 

  31. Liu, B., Zhang, X.E., Wang, B., Lü, X.: Rogue waves based on the coupled nonlinear Schrödinger option pricing model with external potential. Mod. Phys. Lett. B 36(15), 2250057 (2022)

    Google Scholar 

  32. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C., Li, L.Q.: Lie group analysis for a \((2+ 1)\)-dimensional generalized modified dispersive water-wave system for the shallow water waves. Qual. Theory Dyn. Syst. 22(4), 129 (2023)

    MathSciNet  Google Scholar 

  33. Rehman, H.U., Saleem, M.S., Zubair, M., Jafar, S., Latif, I.: Optical solitons with Biswas–Arshed model using mapping method. Optik 194, 163091 (2019)

    Google Scholar 

  34. Rehman, H.U., Younis, M., Jafar, S., Tahir, M., Saleem, M.S.: Optical solitons of biswas-arshed model in birefrigent fiber without four wave mixing. Optik 213, 164669 (2020)

    Google Scholar 

  35. Kim, H., Sakthivel, R.: New exact traveling wave solutions of some nonlinear higher-dimensional physical models. Rep. Math. Phys. 70(1), 39–50 (2012)

    MathSciNet  Google Scholar 

  36. Wazwaz, A.M.: A variety of multiple-soliton solutions for the integrable \((4+ 1)\)-dimensional Fokas equation. Waves Random Complex Media. 31(1), 46–56 (2021)

    MathSciNet  Google Scholar 

  37. Wang, M., Li, X.: Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations. Phys. Lett. A 343(1–3), 48–54 (2005)

    MathSciNet  Google Scholar 

  38. Sarwar, S.: New soliton wave structures of nonlinear \((4+ 1)\)-dimensional Fokas dynamical model by using different methods. Alex. Eng. J. 60(1), 795–803 (2021)

    Google Scholar 

  39. Rehman, H.U., Jafar, S., Javed, A., Hussain, S., Tahir, M: New optical solitons of Biswas–Arshed equation using different techniques. Optik 206, 163670 (2020)

  40. Arnous, A.H., Mirzazadeh, M., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M.: Soliton solutions to resonant nonlinear Schrodinger’s equation with time-dependent coefficients by modified simple equation method. Optik 127(23), 11450–11459 (2016)

    Google Scholar 

  41. Abdulazeez, S.T., Modanli, M.: Analytic solution of fractional order pseudo-hyperbolic telegraph equation using modified double Laplace transform method. IJMCE 1(1), 105–114 (2023)

    Google Scholar 

  42. Nadeem, M., He, J.H., Sedighi, H.M.: Numerical analysis of multi-dimensional time-fractional diffusion problems under the Atangana–Baleanu Caputo derivative. Math. Biosci. Eng. 20(5), 8190–8207 (2023)

    MathSciNet  Google Scholar 

  43. Luo, X., Nadeem, M.: Laplace residual power series method for the numerical solution of time-fractional Newell–Whitehead–Segel model. Int. J. Numer. Methods Heat Fluid Flow 33(7), 2377–2391 (2023)

    Google Scholar 

  44. Luo, X., Nadeem, M.: Mohand homotopy transform scheme for the numerical solution of fractional Kundu–Eckhaus and coupled fractional Massive Thirring equations. Sci. Rep. 13(1), 3995 (2023)

    Google Scholar 

  45. Ansar, R., Abbas, M., Mohammed, P.O., Al-Sarairah, E., Gepreel, K.A., Soliman, M.S.: Dynamical study of coupled Riemann wave equation involving conformable, beta, and M-truncated derivatives via two efficient analytical methods. Symmetry 15, 1293 (2023)

    Google Scholar 

  46. Bekir, A.: Application of the \((\frac{{G^{\prime }}}{G})\)-expansion method for nonlinear evolution equations. Phys. Lett. A 372(19), 3400–3406 (2008)

    MathSciNet  Google Scholar 

  47. Kudryashov, N.A.: A note on the \((\frac{{G^{\prime }}}{G})\)-expansion method. Comput. Appl. Math. 217(4), 1755–1758 (2010)

    MathSciNet  Google Scholar 

  48. Mahak, N., Akram, G.: The modified auxiliary equation method to investigate solutions of the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity. Optik 207, 164467 (2020)

    Google Scholar 

  49. Akram, G., Sadaf, M., Zainab, I.: The dynamical study of Biswas–Arshed equation via modified auxiliary equation method. Optik 255, 168614 (2022)

    Google Scholar 

  50. Aljahdaly, N.H.: Some applications of the modified \((\frac{{G^{\prime }}}{{{G^2}}})\)-expansion method in mathematical physics. Results Phys. 13, 102272 (2019)

    Google Scholar 

  51. Zhao, Y.W., Xia, J.W., Lü, X.: The variable separation solution, fractal and chaos in an extended coupled \((2+ 1)\)-dimensional Burgers system. Nonlinear Dyn. 108(4), 4195–4205 (2022)

    Google Scholar 

  52. Sousa, J.V.D.C., de Oliveira, E.C.: A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 16, 83–96 (2018)

    Google Scholar 

  53. Ozdemir, N., Esen, H., Secer, A., Bayram, M., Yusuf, A., Sulaiman, T.A.: Optical solitons and other solutions to the Hirota–Maccari system with conformable, M-truncated and beta derivatives. Mod. Phys. Lett. B 36(11), 2150625 (2022)

    MathSciNet  Google Scholar 

  54. Hussain, A., Jhangeer, A., Abbas, N., Khan, I., Sherif, E.S.M.: Optical solitons of fractional complex Ginzburg–Landau equation with conformable, beta, and M-truncated derivatives: A comparative study. Adv. Differ. Equ. 612, 1–19 (2020)

    MathSciNet  Google Scholar 

  55. Mohammed, W.W., Cesarano, C., Al-Askar, F.M.: Solutions to the \((4+ 1)\)-dimensional time-fractional Fokas equation with M-truncated derivative. Mathematics. 11(1), 194 (2022)

    Google Scholar 

  56. Akram, G., Sadaf, M., Abbas, M., Zainab, I., Gillani, S.R.: Efficient techniques for traveling wave solutions of time-fractional Zakharov–Kuznetsov equation. Math. Comput. Simul. 193, 607–622 (2022)

    MathSciNet  Google Scholar 

  57. Akram, G., Gillani, S.R.: Sub pico-second soliton with Triki–Biswas equation by the extended \((\frac{{G^{\prime }}}{{{G^2}}})\)-expansion method and the modified auxiliary equation method. Optik 229, 166227 (2021)

    Google Scholar 

  58. Mohammed, W.W., Cesarano, C., Al-Askar, F.M.: Solutions to the \((4+ 1)\)-dimensional time-fractional Fokas equation with M-truncated derivative. Mathematics 11(1), 194 (2022)

    Google Scholar 

Download references

Acknowledgements

Researchers Supporting Project number (RSP2023R153), King Saud University, Riyadh, Saudi Arabia.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H.E., T.N. and N.C.; Data curation, H.E.; Funding acquisition, N.C. and D.B.; Investigation, H.E., M.A., T.N., P.O.M., N.C. and D.B.; Methodology, M.A., T.N. and D.B.; Project administration, P.O.M.; Resources, M.A.; Software, H.E. and P.O.M.; Supervision, M.A. and D.B.; Validation, N.C. and D.B.; Writing - original draft, H.E., T.N. and P.O.M.; Writing - review & editing, M.A. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Pshtiwan Othman Mohammed.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehsan, H., Abbas, M., Nazir, T. et al. Efficient Analytical Algorithms to Study Fokas Dynamical Models Involving M-truncated Derivative. Qual. Theory Dyn. Syst. 23, 49 (2024). https://doi.org/10.1007/s12346-023-00890-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00890-0

Keywords

Mathematics Subject Classification

Navigation