Skip to main content
Log in

The Well-Posedness Results of Solutions in Besov-Morrey Spaces for Fractional Rayleigh-Stokes Equations

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we prove a long time existence result for fractional Rayleigh-Stokes equations derived from a non-Newtonain fluid for a generalized second grade fluid with memory. More precisely, we discuss the existence, uniqueness, continuous dependence on initial value and asymptotic behavior of global solutions in Besov-Morrey spaces. The proof is based on real interpolation, resolvent operators and fixed point arguments. Our results are formulated that allows for a larger class in initial value than the previous works and the approach is also suitable for fractional diffusion cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

Not applicable.

References

  1. Bazhlekova, E., Jin, B., Lazarov, R., Zhou, Z.: An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid. Numer. Math. 131, 1–31 (2015)

    Article  MathSciNet  Google Scholar 

  2. Bazhlekova, E.: Subordination principle for a class of fractional order differential equations. Mathematics 2, 412–427 (2015)

    Article  Google Scholar 

  3. Carracedo, C.M., Alix, M.S.: The Theory of Fractional Powers of Operators. North-Holland Mathematics Studies, vol. 187, Elsevier (2001)

  4. De Carvalho-Neto, P.M., Planas, G.: Mild solutions to the time fractional Navier-Stokes equations in \(\mathbb{R} ^N\). J. Differential Equations 259(7), 2948–2980 (2015)

    Article  MathSciNet  Google Scholar 

  5. Ferreira, L.C.F., Villamizar-Roa, E.J.: Self-similar solutions, uniqueness and long-time asymptotic behavior for semilinear heat equations. Differential Integral Equations 19(12), 1349–1370 (2006)

    Article  MathSciNet  Google Scholar 

  6. Fetecau, C.: The Rayleigh-Stokes problem for an edge in an Oldroyd-B fluid. C. R. Acad. Sci. Paris 335(11), 979–984 (2002)

    Article  MathSciNet  Google Scholar 

  7. Fetecau, C.: The Rayleigh-Stokes problem for heated second grade fluids. Internat. J. Non-Linear Mech. 37(6), 1011–1015 (2002)

    Article  Google Scholar 

  8. Fetecau, C., Zierep, J.: The Rayleigh-Stokes-problem for a Maxwell fluid. Z. Angew. Math. Phys. 54(6), 1086–1093 (2003)

    Article  MathSciNet  Google Scholar 

  9. Guliyev V.S., Omarova M.N., Ragusa M.A.: Characterizations for the genuine Calderon-Zygmund operators and commutators on generalized Orlicz-Morrey spaces. Adv Nonlinear Anal. 12(1), (2023)

  10. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. in: North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam (2006)

  11. Kozono, H., Yamazaki, M.: The stability of small stationary solutions in Morrey spaces of the Navier-Stokes equation. Indiana Univ. Math. J. 44(4), 1307–1336 (1995)

    Article  MathSciNet  Google Scholar 

  12. Kozono, H., Shimizu, S.: Stability of stationary solutions to the Navier-Stokes equations in the Besov space. Math. Nachr. 1-19, (2023) https://doi.org/10.1002/mana.202100150

  13. He, J.W., Zhou, Y., Peng, L.: On well-posedness of semilinear Rayleigh-Stokes problem with fractional derivative on \(R^N\). Adv. Nonlinear Anal. 11(1), 580–597 (2021)

    Article  Google Scholar 

  14. Lan, D.: Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evol. Equ. Control The. 11(1), 259–282 (2022)

    Article  MathSciNet  Google Scholar 

  15. Mahmood, A., Parveen, S., Ara, A., Khan, N.A.: Exact analytic solutions for the unsteady flow of a non-Newtonian fluid between two cylinders with fractional derivative model. Commun. Nonlinear Sci. Numer. Simul. 14(8), 3309–3319 (2009)

    Article  Google Scholar 

  16. Nadeem, S., Asghar, S., Hayat, T., Hussain, M.: The Rayleigh Stokes problem for rectangular pipe in Maxwell and second grade fluid. Meccanica 43(5), 495–504 (2008)

    Article  MathSciNet  Google Scholar 

  17. Nguyen, H.T., Zhou, Y., Thach, T.N., Can, N.H.: Initial inverse problem for the nonlinear fractional Rayleigh-Stokes equation with random discrete data. Commun. Nonlinear Sci. Numer. Simulat. 78, 104873 (2019)

    Article  MathSciNet  Google Scholar 

  18. Oka, Y., Zhanpeisov, E.: Existence of solutions to fractional semilinear parabolic equations in Besov-Morrey spaces. (2023) arXiv:2301.04263

  19. Pandey, V., Holm, S.: Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity. Phys. Rev. E 94(3), 032606 (2016)

    Article  Google Scholar 

  20. Peng, L., Zhou, Y.: Characterization of solutions in Besov spaces for fractional Rayleigh-Stokes equations. (2023)

  21. Peng, L., Zhou, Y., Ahmad, B., Alsaedi, A.: The Cauchy problem for fractional Navier-Stokes equations in Sobolev spaces. Chaos Solitons Fractals 102, 218–228 (2017)

    Article  MathSciNet  Google Scholar 

  22. Salah, F., Aziz, Z.A., Ching, D.L.C.: New exact solution for Rayleigh-Stokes problem of Maxwell fluid in a porous medium and rotating frame. Results Phys. 1(1), 9–12 (2011)

    Article  Google Scholar 

  23. Shen, F., Tan, W., Zhao, Y., Masuoka, T.: The Rayleigh-Stokes problem for a heated genralized second grade fluid with fractional derivative model. Nonlinear Anal. Real World Appl. 7(5), 1072–1080 (2006)

    Article  MathSciNet  Google Scholar 

  24. Shi Y.L., Li L., Shen Z.H.: Boundedness of \(p\)-adic Singular integrals and multilinear commutator on Morrey-Herz spaces, Journal of Function Spaces, 2023, Art: 9965919 (2023)

  25. Taylor, M.E.: Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations. Comm. Partial Differential Equations 17(9–10), 1407–1456 (1992)

    Article  MathSciNet  Google Scholar 

  26. Tuan, P.T., Ke, T.D., Thang, N.N.: Final value problem for Rayleigh-Stokes type equations involving weak-valued nonlinearities. Fract. Calc. Appl. Anal. 26(2), 694–717 (2023)

    Article  MathSciNet  Google Scholar 

  27. Tuan, N.H., Phuong, N.D., Thach, T.N.: New well-posedness results for stochastic delay Rayleigh-Stokes equations. Discrete Contin. Dyn. Syst. Ser. B 28(1), 347–358 (2022)

    Article  MathSciNet  Google Scholar 

  28. Tuan, N.H., Au, V.V., Nguyen, A.T.: Mild solutions to a time-fractional Cauchy problem with nonlocal nonlinearity in Besov spaces. Arch. Math. 118(3), 305–314 (2022)

    Article  MathSciNet  Google Scholar 

  29. Wang, B.X., Huo, Z.H., Hao, C.C.: Harmonic Analysis Method for Nonlinear Evolution Equations. World Scientific, Singapore (2011)

    Book  Google Scholar 

  30. Warma, M.: Approximate controllability from the exterior of space-time fractional diffusive equations. SIAM J. Control Optim. 57(3), 2037–2063 (2019)

    Article  MathSciNet  Google Scholar 

  31. Xue, C., Nie, J.: Exact solutions of the Rayleigh-Stokes problem for a heated generalized second grade fluid in a porous half-space. Appl. Math. Model. 33, 524–531 (2009)

    Article  MathSciNet  Google Scholar 

  32. Zhang, Q.G., Sun, H.R.: The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation. Topol. Methods Nonlinear Anal. 46(1), 69–92 (2015)

    Article  MathSciNet  Google Scholar 

  33. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  Google Scholar 

  34. Zhou, Y., Wang, J.N.: The nonlinear Rayleigh-Stokes problem with Riemann-Liouville fractional derivative. Math. Meth. Appl. Sci. 44, 2431–2438 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (12001462,12071396).

Author information

Authors and Affiliations

Authors

Contributions

L. Peng wrote the main manuscript text after discussing main technique with Y. Zhou. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yong Zhou.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Zhou, Y. The Well-Posedness Results of Solutions in Besov-Morrey Spaces for Fractional Rayleigh-Stokes Equations. Qual. Theory Dyn. Syst. 23, 43 (2024). https://doi.org/10.1007/s12346-023-00897-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00897-7

Keywords

Mathematics Subject Classification

Navigation