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Abstract
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Reeb flows have arbitrarily small topological entropy. In contrast, for many closed
manifolds there is a uniform positive lower bound for the topological entropy of (not
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1 Introduction
1.1 Main results

The main results of this paper are the following two theorems.

Theorem 1.1 Let (M, &) be a closed co-orientable contact manifold. For every ¢ > 0
there exists a contact form o on (M, &) with volume one such that the topological
entropy hiop(at) of its Reeb flow is smaller than ¢.

Given a closed manifold Q let /o (Q) be the infimum of the volume entropies of
Riemannian metrics on Q that have volume one. This number is equal to 2/ (k — 1)
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for a closed orientable surface of genus £k > 2, and it is positive for instance if Q
admits a Riemannian metric of negative curvature. Given a Finsler metric F on Q we
denote by hp(F) the topological entropy of the time-one map of the geodesic flow
of F. Define the dimension constants

1

Cp i = —————
T (o)

where w,, is the volume of the Euclidean unit ball in R”. For instance ¢; = ﬁ, and

asymptotically ¢, ~ %\/Lﬁ

Theorem 1.2 Let Q be a closed connected n-dimensional manifold. Then for every
Finsler metric F on Q of Holmes—Thompson volume one it holds that

htop(F) > ¢y hyvot (Q),
and if F is symmetric that

htop(F) > 2¢n hyoi(Q)-

In the rest of this introduction, we recall the notions appearing in these theorems,
describe in more detail the results proved in this paper, put them into context, and
formulate a few open problems they give rise to. We first tell our story for the special
case of unit circle bundles over closed orientable surfaces of higher genus. Most
ideas are present already for these simple spaces. We keep the presentation informal,
referring to the subsequent sections for the precise definitions and arguments.

1.2 The case of unit circle bundles over higher genus surfaces

Let O be the closed orientable surface of genus k > 2. For every Riemannian metric g
on Qy we consider the geodesic flow qﬁ; on the unit circle bundle

{(g.v) e TOx | gq(v,v) =1}.

A good numerical measure for the complexity of the flow qﬁfg is the topological entropy
hiop(g) == htop(¢>;). A definition can be found in Appendix A. This is an interesting
invariant because it is related to many other complexity measurements of qb;, see [60].

For which Riemannian metrics g is /p(g) minimal? Such a g could then rightly
be considered as a best Riemannian metric from a dynamical point of view. Since the
topological entropy scales like

1
htop(Cg) = ;htop(g)’ (1.1

the problem is meaningful only if one imposes a normalization. We normalize by the
Riemannian area and consider the scale invariant quantity

hiop(g) = \/areag (Qk) hiop(g)- (1.2)

) Birkhauser
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(a) (b) (c) (d)

Fig.1 Spheres S;‘(H) in Tq* Qy defining (a) a Reeb flow, (b) a Finsler geodesic flow, (¢) a reversible Finsler
geodesic flow, (d) a Riemannian geodesic flow

It is a classical theorem of Dinaburg [42] and Manning [69] that the geodesic flow
of any Riemannian metric on Qy has positive topological entropy (cf. Appendix A
below). Their results do not give a uniform positive lower bound on iz\[op(g) nor do
they say anything about the minimizers, however. This was achieved in the following
remarkable result of Katok [64].

Theorem 1.3 (Katok 1983) For every Riemannian metric g on Qy, it holds that

Thiop(g) = 2y/m(k —1).

Moreover, equality holds if and only if g has constant curvature.

Geodesic flows are very special Reeb flows. For our unit circle bundle over Oy,
Reeb flows can be described as follows. We look at the cotangent bundle 7* Qy, instead
of the tangent bundle, endowed with its usual symplectic form @ = dA, where A =
Z?:l pj dgj. Let H: T*Qr — R be a continuous function that is smooth and
positive away from the zero-section and fiberwise positively homogenous of degree
one: H(q,rp) = rH(q, p) for all r > 0. Then S*(H) := H~'(1) is a smooth
hypersurface of 7% Qj with the property that for each point ¢ € Qy the intersection
S;"(H ) = S*(H)N Tq* QO with the cotangent plane at g is the smooth boundary of
a domain which is starshaped with respect to the origin 0,, see the left drawing in
Fig. 1. Denote by ¢}, the restriction of the Hamiltonian flow of H to §*(H). The class
of these flows are the Reeb flows on our unit circle bundle. This flow is a co-geodesic
flow exactly if H restricts on each fiber to the square root of a positive quadratic form.
Special shapes of the fibers SZI“ (H) in Tq* Q. correspond to special Reeb flows:

©) (;5;1 is a Riemannian geodesic flow if and only if each Sj]“ (H) is a centrally
symmetric ellipse.

(m)] ¢>fq is a reversible Finsler geodesic flow if and only if each S;;(H )is a
centrally symmetric closed smooth curve with strictly positive curvature.

(A) ¢§q is a Finsler geodesic flow if and only if each S;; (H) is a closed smooth
curve with strictly positive curvature.

Here we identified co-Finsler geodesic flows with Finsler geodesic flows via the Leg-
endre transform.

Based on [49] it was shown in [68] that the above result of Dinaburg and Manning
about Riemannian geodesic flows extends to all Reeb flows:

W Birkhauser
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Theorem 1.4 Every Reeb flow ¢!, on S*(H) C T*Qy, k = 2, has positive topological
entropy.

Does Katok’s theorem also extend to Reeb flows? To make the question meaningful,
we again need to normalize. We do this by the symplectic volume of the bounded
domain D*(H) in T*Qj with boundary S*(H), and define the Holmes—-Thompson
volume of Qj associated with H by

1
voll (01 = o oA o. (1.3)
T D*(H)

Then the normalized topological entropy

AT () = [volliT(00) huop(dly)

is invariant under scalings of H. In the Riemannian case, this definition agrees
with (1.2), since then volI;I,T(Qk) = areagy(Qy). The following question was asked
in [48, §7.2].

Question 1.5 Is there a positive constant c¢(k) such that ﬁ{g(H ) > c(k) for every
Reeb flow on the co-circle bundle over Qy ?

Let us first try to answer this question in the affirmative for Finsler geodesic flows.
Given a Finsler metric F on Qy, an obvious idea is to find a lower bound for ﬁgg(F )
by choosing a larger Riemannian metric ,/g > F, cf. (1.1). In general, the topological
entropy of geodesic flows is not monotone with respect to the order relation on metrics,
however. We therefore pass to a more geometric version of entropy, which is indeed
monotone: The volume entropy of F is defined as the exponential growth rate of balls
in the universal cover ék (which is the plane),

1
hoi(F) := lim — log Vol (B (R) (1.4)

where g is any fixed point in ék, B (R) is the ball of radius R about g with respect to
the lifted Finsler metric, and Vol is the volume with respect to the lift of any smooth
area form on Qy (see Appendix A for details). It is clear that F; > F; implies

hvol(FZ) = hvol(F1)~ (1-5)

In the case of a Riemmannian metric g, denoting Avo1(,/g) simply by Ay01(g), we have
that

htop(g) > hyol(8) (1.6)

with equality if g has non-positive curvature, as proven by Manning in [69]. His proof
of (1.6) readily generalizes to all Finsler metrics, see Appendix A:

htop(F) > hyol(F). (1.7)

) Birkhauser
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Let g be a Riemannian metric such that ,/g > F. Using (1.7) and (1.5) we can now

estimate
AR =\ [vollT(Q)) hiop(F)
mhvol(g)

-~

hyvol (8).

v

In [64], Katok actually proved Theorem 1.3 for the normalized volume entropy ﬁvol
(which by Manning’s theorem implies Theorem 1.3). Hence we obtain

b (F) =

HT
volg (90 /. (1.8)

voliT(Qx)

To get a uniform lower bound for ﬁgg(F ) we therefore look for a Riemannian metric g
with /g > F that is as close as possible to F' in the sense of the Holmes-Thompson
volume. We best do this directly in the cotangent bundle 7* Q. We thus look at each
q € Qi for a centrally symmetric ellipse in Tq* Ok such that, denoting by E,; the
region bounded by it, we have E; D D;(F ) and E, is as close to DZ;(F ) in volume
as possible.

If D7 (F) is centrally symmetric, the best choice is Loewner’s outer ellipse. This is
the unique centrally symmetric ellipse enclosing D;‘(F ) which minimizes the value
of the area of the region bounded by it, which we denote by E (D;‘(F )). Here the
area | | is taken with respect to any translation invariant measure on the plane Tq* Ok-
Loewner’s ellipse depends continuously on ¢, and the largest area ratio

|E(D;(F))|
1D (F)|

is -, which is attained exactly when Dy (F) is a parallelogram. If we take the Rie-
mannian metric g on Qy that has the sets E (D;‘(F )) as unit co-disks, we therefore
obtain

2
voliT(Qr) = = voly " (Qu).
b4
Together with (1.8) this yields

R = |2 2/mG— D) = 226
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(a) (b)

Fig.2 The symmetrization conv (K U —K)

If D;‘(F ) is not centrally symmetric, we observe that the convex hull
conv (D} (F) U =D} (F))

is centrally symmetric. It is not hard to see that for every convex body K C R? that
contains the origin,

|conv (K U—K)| < 4|K|
with equality attained exactly by the triangles with one vertex at the origin. Therefore,

E KU-K
| (cony ( DI
K] 2

Note that the constant 27 is sharp and is attained exactly by the triangles with one
vertex at the origin, see Fig.2 (b).
Since the two maps
K +— conv(KU—-K) — E(KU-K)
are continuous, we can take as g the Riemannian metric with unit co-disks

E(conv (D} (F) U =Dy (F)))

and obtain

il\gll;(F) > \/%2\/”(](_ 1) = \/2(](— 1).

Summarizing, we obtain Theorem 1.2 for orientable surfaces:

~ ~ 2 o .
higp (F) = hyol(Qr), and Tigy (F) z,/;hvol(Qk) if F is symmetric. (1.9)

1
2

) Birkhauser
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How sharp are these lower bounds? It is still unknown whether the constants \/%7

and \/g can be replaced by 1. In other words, it is unknown whether there exist Finsler

metrics F on Qy such that & vol(F ) < hyol(Qpx). We shall say more on this “minimal
entropy problem" in Sect. 1.7.
Recall that for the closed orientable surfaces Q of genus k one has

hyol(Qr) = 2/m(k — 1).

For the non-orientable surface Py whose orientation cover is Q this implies

hyot(Pr) = /21 (k — 1).

For the other four closed surfaces (the sphere, the torus, the real projective plane and
the Klein bottle) Theorem 1.2 is not useful since /o vanishes, and in fact there exist
geodesic flows on these surfaces with vanishing topological entropy.

We now look at general Reeb flows on the co-circle bundle over Q. As said earlier,
these flows correspond to Hamiltonian flows on S*(H) = H ~1(1) of Hamiltonian
functions H : T* Qk — R that are fiberwise homogeneous of degree one. Looking for
a lower bound for htop (¢ ), we proceed as in the case of Finsler geodesic flows, but
knowing already (1.9) we now compare H with any Finsler metric. Choose a Finsler
Hamiltonian F: T*Q; — R such that D*(H) C D*(F),ie., F < H.

Definition (1.4) can be extended to Reeb flows: Fix a point ¢ € Qy, take a lift
q € Qk of ¢ and the lift H: T*Qk — R of H, and then define hvyo(H, q) as the
exponential growth rate of the volume of the set B (H, T) of those points z € O for
which the fiber S (H ) can be reached in time < T by a flow line of ¢ that starts

at the fiber S *(H ). As we shall show in Appendix A one then still has Manning’s
inequality,

htop(H) > hyo(H, q).

We now wish to show that there is a constant ¢ > 0 depending only on H and F such
that hvo1 (H, q) > ¢ hyol(F). The existence of such a constant for non-convex H does
not follow from geometric considerations, since it is not true in general that F < H
implies the inclusion of balls Bg(ﬁ ,T) C Bé(ﬁ , T). However, using Lagrangian
Floer homology in 7* Q one can avoid passing through /o (H, ¢) and prove directly
that

1 -~
top(H) = o(H: F) —————— hyol(F) (1.10)

where o (H; F) is the smallest real number such that U(H 3 ———D*(F) C D*(H),
cf. Fig.3. This is explained in Sect. 3, using the proof of the above Theorem 1.4
from [68].

W Birkhauser
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Fig.3 The co-disks 5y Dy (F) C D (H) C Dy (F) in T, Ok

The number o (H) := inf{o(H; F) | F < H} is a measure for how far the fibers of
D*(H) are from being convex. Inequalities (1.10) and (1.9) and Katok’s inequality

imply

Proposition 1.6 For every Reeb flow ¢ on the co-circle bundle over Qy,

1
Mot (H) = —— \/2(k— 1). (1.11)

o(H)

The following special case of Theorem 1.1 shows that the lower bound in (1.11)
cannot be made uniform, that the answer to Question 1.5 is ‘no’, and that there is no
way to extend Katok’s rigidity theorem to Reeb flows.

Theorem 1.7 Foreverye > O there exists a Reeb flow qSH onS*(H) with h1l top T(H) <e.

Proposition 1.6 shows that this entropy collapse cannot happen unless at least some
of the co-disks D;(H ) = D*(H)N Tq* Qy are very far from convex. Writing down
explicitely such star fields on T*Q that lead to small ﬁgg seems difficult, however.
In fact, our proof of Theorem 1.7 does not use the special fibration structure of S*(H),
but uses the existence of open book decompositions valid for all closed 3-manifolds,

see the beginning of Sect. 4.2 for an outline and Sect. 4 for the proof.

1.3 Entropy rigidity for Finsler geodesic flows

Proceeding as in the previous section, one readily arrives at Theorem 1.2 for Finsler
geodesic flows on closed manifolds Q of arbitrary dimension #,

MT(F) = enhyoi(Q). and RRT(F) > 2¢, hyo1(Q) if F is symmetric, (1.12)

Here the normalization tOp(F ) = (VOI?T(Q))I/ " hwop(F) is done in terms of the
Holmes—Thompson volume

1
volET(Q):z' / o", (1.13)
n:wy Jpx(F)

) Birkhauser
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which extends definition (1.3). The proof of (1.12) uses Loewner’s outer ellipsoids
and the Roger—Shephard volume bounds for symmetrized convex bodies. Similar
arguments appear in [6], where they are used to derive systolic inequalities for Finsler
metrics from the analogous inequalities for Riemannian metrics.

For Finsler metrics there is another natural volume, the Busemann—Hausdorff vol-
ume. For reversible Finsler metrics, this volume is at least the Holmes—Thompson
volume, see Sect. 2. The second inequality in (1.12) thus also holds true if we normal-
ize by the Busemann—Hausdorff volume. For irreversible Finsler metrics, however,
we do not know whether the first inequality in (1.12) holds true for the Busemann—
Hausdorff volume.

For manifolds of dimension n > 3, it is more difficult to understand the volume
entropy /ol (Q) than for surfaces. The only sharp result is the following extension of
Katok’s theorem.

Theorem 1.8 (Besson—Courtois—Gallot [20, 21]) If Q is a closed manifold of dimen-
sion at least 3 that admits a locally symmetric Riemannian metric gy of negative
curvature, then

Tvol(8) = Trvol (g0)

for every Riemannian metric g on Q, and equality holds if and only if g is also locally
symmetric. In particular, hyo1(Q) = hyol(go) > 0.

Note that the space of minimizers up to isometry in Katok’s theorem is the 6k — 6
dimensional Teichmiiller space, while the minimizers in Theorem 1.8 are all isometric
up to scaling, by Mostow’s theorem.

In the context of Theorem 1.2 we wish to know when /o (Q) > 0. The main tool
for proving hyo1 (Q) > 0 is the simplicial volume || Q||. If Q is orientable, it is defined
as inf Z |r;] where the infimum is taken over those sums Z rio; that represent the
fundamental class [Q] € H,(Q; R) with real coefﬁments If Q is not orientable, pass
to the orientation double covering Q and put Q| = 5 || Q|| Gromov proved in [59]
that

ho(Q) = Q)"

for an explicit dimension constant C,,.

There are many more manifolds Q with positive simplicial volume || Q|| than those
in Theorem 1.8. Indeed, || Q|| > O for all manifolds that admit a Riemannian metric of
negative curvature, and positivity of the simplicial volume is preserved under taking
the product with any other closed manifold of positive simplicial volume and under
taking the connected sum with any other closed manifold of the same dimension. We
refer to [59] and [66] for more examples and information on simplicial volume.

1.4 Entropy collapse for Reeb flows

Reeb flows are flows naturally associated to contact manifolds. A contact structure &
on a (2n — 1)-dimensional manifold M is a maximally non-integrable hyperplane

W Birkhauser
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field of the tangent bundle 7M. We assume throughout that £ is co-orientable, i.e.,
& = ker« for a 1-form o on M. In terms of such a form «, called a contact form for &,
the maximal non-integrability means that @ A (d)*~! is a volume form on M. For
any non-vanishing function f on M the I-form f« is also a contact form on (M, &).
Each contact form « gives rise to the Reeb flow ¢, which is generated by the Reeb
vector field R, implicitly defined by the two conditions

da(Ry,) =0, a(Ry) = 1.

For every closed manifold Q the so-called spherization (S*Q, &can) is a con-
tact manifold whose Reeb flows are exactly the flows d)fq on S*(H) described in
Sect. 1.2 in the case of closed surfaces Qy, see Appendix B.1. Every closed 3-manifold
admits infinitely many non-isotopic contact structures, and an odd-dimensional closed
manifold M admits a contact structure if and only if its stabilized tangent bundle
T M & R admits a complex structure [22].

Theorem 1.4 has been extended to many contact manifolds: First, for many closed
manifolds Q every Reeb flow on (S*Q, &.an ) has positive topological entropy, [68].
Second, there are many closed 3-dimensional manifolds M such that for every contact
structure £ on M every Reeb flow has positive topological entropy, [7-10, 74]. For a
recent result for non-degenerate Reeb flows see [33].

While in these results the underlying manifolds have rich loop space topology, there
are also examples where the positivity of topological entropy of all Reeb flows does
not come from the topological complexity of the loop space. For instance, it is shown
in [11] that the standard smooth sphere of dimension 2n — 1 > 5 admits a contact
structure for which every Reeb flow has positive topological entropy.

Nevertheless, for none of these contact manifolds there can be a uniform bound
for the normalized topological entropy: The contact volume of the co-oriented contact
manifold (M, «) of dimension 2n — 1 is defined as

1
/ a A (da)™ L.
nlw, Jy

Now define the normalized topological entropy of the Reeb flow ¢/, by

voly (M) :=

Triop(@) := (Volg (M) hiop(@)). (1.14)

This normalization extends the normalizations (1.3) and (1.13) to all contact manifolds,
see Appendix B.1. The following result implies Theorem 1.1.

Theorem 1.9 Let (M, &) be a closed co-orientable contact manifold of dimension at
least three. Then for every real number ¢ > 0 there exists a contact form o for & such

that ’ﬁmp (@) =c.

We shall in fact prove the flexibility expressed in Theorem 1.9 for a larger growth
rate: Given a C! -diffeomorphism ¢ of a compact manifold M, we define the two real

) Birkhauser
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numbers
. 1 n
(@)= lim —log|ld¢" |l ,
n——+oon
r@) =max {r(@), 6™}
Here || - ||co denotes the supremum norm induced by a Riemannian metric on M,

but the above limit, whose existence follows from the subadditivity of the sequence
log ||d¢" || 00, is clearly independent of the choice of the metric.

The quantity I'+ was used by Yomdin [96] to measure the difference between topo-
logical entropy and volume growth, and the study of the growth type of the sequence
ld@" |0 for various classes of diffeomorphisms was proposed in [39, §7.10]. The
more symmetric invariant I" and its polynomial version were investigated, for instance,
in [82, 83]. For Hamiltonian flows and Reeb flows, where uniform measurements (like
the Hofer metric) turned out to capture symplectic rigidity, it is particularly natural to
look at these two growth rates.

The norm growths I' . and I" are related to the topological entropy by

hop(¢) < (dim M) 'y (¢) = (dim M) I'(¢), (1.15)

see [60, Corollary 3.2.10] for the first inequality. The numbers I'; (¢) and I'(¢) are
upper bounds for several other invariants of ¢, and hence the collapsibility of I" for
Reeb flows also implies the collapsibility of these other invariants. For instance, I" (¢)
is not less than the largest Lyapunov exponent ymax (p) at every point p € M. With

S(p= ) Kpxtp

X (p)=0

the sum of the positive Lyapunov exponents xi+ (p) at p counted with their mul-
tiplicities ki‘|r (p), we then also have X(p) < (dim M) TI'y(¢). Together with the
Margulis—Ruelle inequality (see [60, Theorem S.2.13]) we obtain that the metric
entropy h,(¢) with respect to any invariant Borel probability measure 1 has the
upper bound

h (@) < /M S(p)du(p) < (dim M) T4 (¢).

Applying the variational principle for the topological entropy, we obtain again (1.15).

From now on we focus on I'. For a flow ¢’ we set I'(¢) = I'(¢), and for a Reeb flow
¢!, weset T'() = I' (). For ¢ > 0 we have ¢, = ¢f)/c and hence I'(ca) = %F(oz).
Like for the topological entropy, the invariant

T(a) = voly(M)/" T(a),

where dim M = 2n — 1, is therefore invariant under scaling. In view of (1.15), the
following result improves Theorem 1.1.

W Birkhauser
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Theorem 1.10 Let (M, &) be a closed co-orientable contact manifold of dimension at
least three. Then for every real number ¢ > 0 there exists a contact form « for § such
that T'(a) = c.

We shall prove Theorems 1.9 and 1.10 along the following lines. The main step is
to show that for every ¢ > 0 there exists a contact form «, for £ such that f‘\(aa) <e.
We do this with the help of an open book decomposition of M and an inductive
construction, in which the induction step dim2n — 1 ~» dim2n + 1 is carried out
by applying the induction hypothesis to the binding of the open book decomposition
of M. We can start the induction in dimension 1 at the circle, for which f(d 0) =0.We
nevertheless present the 3-dimensional case separately in Sect. 4 because we believe
that after understanding the geometric ideas in this particular situation it is easier to
follow the general argument. The induction step is done in Sect. 6. It uses results of
Giroux on the correspondence between contact structures and supporting open books,
that we recollect in Sect. 5.

Given contact forms o, as above, Theorems 1.9 and 1.10 follow from (1.15) and
from a simple modification of «, that increases ﬁtop and f‘\ see Sect. 7.

1.5 Collapsing the growth rate of symplectic invariants

Inthe works [9, 11, 74] itis shown that the exponential growth rate of certain symplectic
topological invariants provides a lower bound for the topological entropy of Reeb
flows. These invariants are linearised Legendrian contact homology [9], wrapped Floer
homology [11], and Rabinowitz—Floer homology [74]. Combining these results with
Theorem 1.1 we obtain that the growth rate of these invariants can be made arbitrarily
small. Details are given in Sect. 8.

1.6 Relations to systolic inequalities

Consider a closed co-orientable contact manifold (M, &) of dimension 2n — 1. Given
a contact form « for £ that has at least one periodic Reeb orbit, take the smallest period
Tin (o). The so-called systolic ratio

Psys(a) = voly (M)_l/n Tinin (@)

is then invariant under scalings of .

While for spherizations $* Q of many closed manifolds Q there are famous uniform
upper bounds on the systolic ratios of Riemannian Reeb flows, in the full class of Reeb
flows one has the following flexibility result.

Theorem 1.11 For any closed co-orientable contact manifold (M, &) and every posi-
tive number c there exists a contact form o such that psys(at) > c.

This result was shown for the tight 3-sphere in [1] and for all contact 3-manifolds
in [2] by a plug construction in open book decompositions. The idea in this paper to
use open book decompositions for proving entropy collapse came from these works.
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Theorem 1.11 in dimension > 5 was proved in [88]. That proof was later on much
simplified [89] by using our inductive construction in Sect. 6. Interestingly, our con-
struction in dimension 3 does not yield a proof of Theorem 1.11. This suggests that
at least in the smallest interesting dimension, one has more flexibility to collapse the
topological entropy of Reeb flows than to increase their systolic ratio.

1.7 Minimal entropy problems for Finsler and Reeb flows

Given aclass C of maps on a compact manifold M, it is interesting to understand which
maps in class C minimize the (normalized) topological entropy. Since topological
entropy is a measure for the complexity, these maps can then be considered as the
simplest, or the best, maps on M in class C.

For the class of Riemannian geodesic flows on the spherization SQ of a compact
manifold Q, the minimal entropy problem consists of three parts.

(P1) Compute the minimal entropy
hiop(Q, G) := inf {Eop@g) | ¢ a Riemannian metric on Q} .

(P2) Decide whether the infimum is attained or not.
(P3) If the infimum is attained, describe the minimizers g.

For manifolds admitting a locally symmetric Riemannian metric of negative cur-
vature, Theorems 1.3 and 1.8 completely solve the minimal entropy problem. Among
the many further interesting works on the minimal entropy problem are [65, 81].

The minimal entropy problem can also be formulated for the larger classes of Finsler
and Reeb flows. Define three more numbers

higp (Q.R) < high(Q. F) < high(Q. Frev) < hiop(Q.G)

by taking the infimum in the definition of hp(Q, G) over all contact forms on
(S*Q, &can ) for hgg(Q, R), over all Finsler metrics for hgg(Q, F), and over all
reversible Finsler metrics for hgg( Q, Frev), respectively, where asin (1.13) and (1.14)
we normalize by the Holmes—Thompson volume.

Theorem 1.1 shows that hf(g(Q, R) = 0 for all compact manifolds Q. This set-
tles (P1) for the class R. Furthermore, for many manifolds, like those with fundamental
group of exponential growth, the answer to (P2) is ‘no’ by the general version of The-
orem 1.4 from [68].

We now turn to the invariants hHT(Q, F) and hHT(Q, Frev). By Theorems 1.2

top top
and A.2 we have

Cn hyol(Q) < hgg(Q, F) = htop(Qa 9),
2¢p hyot (Q) < hgg(Q, Frev) < htop(Qa 9).

For manifolds admitting a locally symmetric Riemannian metric of negative curvature
(for which hp(Q, G) = hyo1(Q)) nothing more seems to be known about the values
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of hgg(Q, F)and hgg(Q, Frev), so already (P1) in the entropy problem is wide open
for the classes F and Fiey.

Addressing (P3) we note that in the Finsler setting one cannot expect metrics of
minimal normalized topological entropy to be unique, or even to be characterised in
terms of curvature-like invariants. Indeed, any exact symplectomorphism of 7* Q that
is C2-close to the identity maps the unit cotangent sphere bundle S*(F) of the Finsler
metric F to the unit cotangent sphere bundle S*(F”) of some Finsler metric F’ whose
geodesic flow is conjugated to the one of F by a smooth time-preserving conjugacy.
In particular, the new Finsler metric F’ has the same normalized topological entropy
as F, but need not be isometric to it. See Appendix D for a discussion of this.

Higher rank. More can be said in higher rank. The following result is proved in
Sect. 2.6 using Verovic’s work [93].

Proposition 1.12 Let (Q, g) be a compact locally symmetric space of non-compact
type and of rank > 2. Then there exists a constant ¢ < 1 such that

hgg(Q, Frev) < Cﬁvol(g)~ (1.16)

The constant ¢ only depends on the globally symmetric space (0, 2), and it can be
computed from its Weyl data. See Proposition 2.7 below for a more precise statement.

Let hxrln(Q) be the minimum of 71\\,0] (g) taken over all locally symmetric Rieman-
nian metrics g on Q. This number is easy to compute, see [35, §2]. Unfortunately
it is still not known whether Theorem 1.8 also holds in higher rank, that is, whether
hyot(Q) = hiirln (Q). However, this is known if (Q, g) is locally isometric to a product
of negatively curved symmetric spaces of dimension > 3, [35], and for quotients of
the k-fold product (H2)* = H, x - - - x H, of the real hyperbolic plane, [75]. For these
spaces, (1.16) can thus be written as

hign(Q. Frev) < ¢ hyol(Q).

We shall compute the constant ¢ for quotients of (H?)* in Sect. 2.6. For instance,

c(H? x H?) = /2 ~ 0.841. This should be compared with the constant 2c4 = \/g ~
0.61 for the lower bound in Theorem 1.1.

The minimal entropy problem can also be studied for the volume entropies /]
instead of Aiop, and by normalizing either entropy by the Busemann—Hausdorff volume.
Much of the above discussion applies also to these minimal entropies.

1.8 Topological pressure

In view of Theorem 1.1, there is no minimal entropy program for Reeb flows. Fur-
thermore, the situation cannot be salvaged by looking at subexponential growth
rates, since replacing lim,— «o % log ... in the definition of topological entropy by
lim,, oo ,,—lc log ... for some ¢ € (0, 1) yields +oo for all Reeb flows on many contact
manifolds by Theorem 1.4.
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However, increasing topological entropy in terms of topological pressure leads to
a meaningful problem. Given a closed contact manifold (M, &) associate with every
continuous function f € C%(M,R) and every contact form o for & the topological
pressure P(«, f) = P(¢q, [), see [95, Chapter 9] for the definition and basic results
on topological pressure. We recall that P(a, 0) = hop(e) and that the variational
principle for topological pressure says

P(a, f) = sup {hu(¢a)+/ fdu} (1.17)
neM(a) M

where M («) denotes the set of qbé(—invariant Borel probability measures on M and
h,, > 0 is the entropy of the measure p. Define

P(M, f):= inf {P(a, f) | « anormalized contact form on (M, &)} .

Since P(a, f +c¢) = P(a, f) + ¢ for all ¢ € R, we can assume that min f = 0.
Together with Theorem 1.1 we then obtain

0<PWM,[f) < max f.

It would be interesting to see if these bounds can be sharpened for functions f that
do not identically vanish. Our proof of Theorem 1.1 does not help with this problem,
since the maximal measures in (1.17) (the so-called equilibrium states) may not be
related in any way to the open book decomposition in our proof.

2 Volume entropy for Finsler geodesic flows
2.1 Finsler metrics and their volumes
By a Finsler metric on an n-dimensional manifold QO we mean in this paper a con-
tinuous function F: T Q — [0, +00) which is fiberwise convex, fiberwise positively
homogeneous of degree 1, and positive outside of the zero section. The Finsler metric F
is said to be reversible if F(v) = F(—v) forallv e T Q.

For g € Q the unit disk in 7;; O determined by the Finsler metric F is the set

Dy(F):={veT,0| Fv) <1}.

This is a convex compact neighborhood of the origin in 7; Q. The function F|7, ¢ is

precisely the Minkowski gauge of D (F). The unit co-disk in 7,7 Q is the polar set
of Dy(F):

D;(F) = {p e T 0| (p.v) = 1Vve D),

where (-, -) denotes the duality pairing between tangent vectors and co-vectors. This
is a compact convex neighborhood of the origin in Tq* 0.
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On compact Finsler manifolds there are two different notions of volume that are
used in the literature. From the point of view of this paper, the most natural one is the
Holmes—Thompson volume, which can be defined as

1
voll'T(Q) := / ",
D*(F)

n! wy,

where

D*(F) := U D}(F) C T*Q
qeQ

is the unit co-disk bundle of Q, where " denotes the standard volume form on 7*Q
induced by integrating the n-fold exterior power of the canonical symplectic form w =
» i dqjAdpj,and where wy, is the volume of the Euclidean unitballin R", n = dim Q.

The normalization factor n! w,, makes VOIIIL-IT (Q) coincide with the Riemannian volume
of Q when F(v) = 4/g(v, v) is a Riemannian metric on Q.

Alternatively, the Holmes—Thompson volume can be defined as the integral over Q
of a suitable volume density pj.. Here by volume density we mean a norm on the line
bundle A" (T Q), whose fiber at ¢ € Q is the top degree component of the exterior
algebra of T, Q, that is, the 1-dimensional space spanned by vy A --- A v,, where
V1, ...,V is a basis of T, Q. When Q is orientable, a volume density is just the
absolute value of a nowhere vanishing differential n-form. A volume density can be
integrated over any non-empty open subset of Q, producing a positive number. The
volume density p}, is defined as follows: Given any volume density p on Q set

D (P

rr(q) == r(q),

n

where |~|;‘) denotes the Lebesgue measure on Tq*Q that is normalized to 1 on the
n-dimensional parallelogram spanned by the covectors that are dual to basis vectors
V1, ..., Vv, in T, O such that p(q)[vy A - -+ A v,] = 1. We then have

vl (Q) = / PF
0

Another common choice is to consider the Busemann—Hausdorff volume, which is
defined as

volp'(Q) := / PF.
Q
where the volume density pr is given by
PF(@) = p(g)
CDg(F)l, '
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Here p is again an arbitrary volume density on Q and ||, is the Lebesgue measure
on T, O normalized to 1 on the parallelogram spanned by vectors vy, ..., v, in T, Q
with p(q)[vi A-- - Av,] = 1. When F is reversible, the Busemann—Hausdorff volume
of Q coincides with the n-dimensional Hausdorff measure of Q with respect to the
distance induced by F'.

Both volumes reduce to the standard Riemannian volume when the Finsler
metric F is Riemannian. If F is reversible, then

voll'T(0) < volBH (), .1

with equality holding if and only if F' is Riemannian. This follows from the Blaschke—
Santal6 inequality, see e.g. [43]. In the non-reversible case, the Holmes—Thompson
volume can be much larger than the Busemann—Hausdorff volume. Note that both the
Holmes—Thompson and the Busemann—Hausdorff volume depend monotonically on
the Finsler metric, meaning that

Fi<F =  voli[(Q) < volg (Q). volpl'(Q) < voll'(Q). (22)
and rescale as
volllT(0) = ¢"volllT(0),  voIBH(0) = " volBH(Q), (23)
when the Finsler metric F is multiplied by a positive constant c.

2.2 Volume entropy

Let F be a Finsler metric on a compact n-dimensional manifold Q. This Finsler metric
lifts to a Finsler metric on the universal cover Q of Q, and we denote the lifted metric
by the same symbol F. The R-ball centered at g € O that is induced by F is the
following compact subset of 0:

By(F,R) :={y(R) | y: [0, Rl — O Lipschitzcurve, y(0) =g and Foy < lae}. (2.4)
When F is reversible, B, (F, R) is the ball of the distance on é that is induced by F;

in general, it is the forward ball of an asymmetric distance.
The volume entropy of F is the non-negative number

1
hvat(F) = Jim_— log Vol (B (F. R)). 2.5)

Here Vol denotes the volume of Borel subsets of é with respect to the lift to é of
an arbitrary Riemannian metric on Q. A minor modification of Manning’s argument
from [69] shows that the above limit exists and is independent of the choice of the
point ¢ € Q and of the Riemannian metric on Q, see Proposition A.1. In the case of
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the Finsler metric G = /g(-, -) that is induced by a Riemannian metric g, we use
interchangeably the notations

hyol (8) = hvol (G).

The volume entropy is monotonically decreasing in F', meaning that

Fi=F = holF1) = hw(F). (2.6)
Indeed, if F1 < F; on Q then the same inequality holds on é and hence (2.4) implies

B,(F1,R) D By(F2»,R) Vgqe 0, VR>0,
from which (2.6) follows. Let ¢ be a positive number. From the identity
B,(cF,R) = By(F,c"'R)
we deduce that the volume entropy rescales as
hyol(€F) = ¢! hyol(F). @7

Together with (2.3), this suggests to consider the normalized volume entropies

W) := vollT ()" hyoi(F),  WBE(F) := volBR ()" hyoi (F).

vol vol

These quantities are now invariant under scaling:

RN (eF) = W (F),  hbal(cF) = B (F).
Since the Holmes—Thompson and the Busemann—Hausdorff volumes coincide when
F = G = /g is Riemannian, there is just one normalized volume entropy in the
Riemannian case, and we denote it by

hyvot (8) = hyol (G).
In the next two subsections, we study how the two different normalized volume
entropies of an arbitrary Finsler metric can be bounded from below and from above
in terms of the normalized volume entropy of suitable Riemannian metrics. Our argu-

ments follow [6], where similar techniques are used in order to derive bounds for the
systolic ratio.

2.3 From reversible Finsler to Riemannian

Let F be areversible Finsler metric on the compact n-dimensional manifold Q. Denote
by E, the inner Loewner ellipsoid of the symmetric convex body D, (F), i.e. the
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ellipsoid centered at the origin which is contained in D, (F) and has maximal volume
among all ellipsoids with this property. Here by volume we mean any translation
invariant measure on 7 Q (which is unique up to multiplication by a positive constant).
It is well known that the inner Loewner ellipsoid is unique, and John proved that it
satisfies

E, C Dy(F) C V/nE,. (2.8)
See [62], or [12] for a modern proof of these results. Denote by G: TQ — [0, +00)
the function which in each tangent space T Q is the Minkowski gauge of E,. The
function G is the square root of a Riemannian metric: G(v) = +/g(v, v) for some
continuous Riemannian metric g on Q. Indeed, the continuity of G easily follows
from the uniqueness of the inner Loewner ellipsoid. From the inclusions (2.8) we
deduce the inequalities

n12G <F <G, (2.9)

which thanks to (2.6) and (2.7) imply the bounds
hyol(G) < hyol(F) < v/nhyol(G). (2.10)

By (2.2) and the second inequality in (2.9) the Busemann—Hausdorff volume of (Q, F)
has the upper bound

volBH(0) < volg(Q). 2.11)

In order to get a lower bound for the Holmes—Thompson volume of (Q, F) we can
use (2.2), (2.3) and the first inequality in (2.9) and obtain

volg (Q) < n"?vollT(Q). (2.12)

However, we get a better bound by the following argument. The polar set E ; = D(’; (G)
of £, = D;(G) satisfies

D} (F) C D}(G)

and is the outer Loewner ellipsoid of D;‘ (F), i.e. the centrally symmetric ellipsoid of
minimal volume among those containing Dy (F). Then we have

n!wy,
Zn

IDIG)I < DI

This follows from the fact that the ratio between the volume of the outer Loewner
ellipsoid of a symmetric convex body K and the volume of K is maximal for the
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cross-polytope, a result that Ball deduced from the inverse Brascamp-Lieb inequality
of Barthe in [13, Theorem 5]. Therefore, we obtain

n'w,

o voll'T(Q), (2.13)

volg(Q) <

which is a better bound than (2.12) for every n > 2, and also asymptotically because

nlo, \'" T
Iim (| —— = |—
n—oo \ 21 nn/2 e

by the Stirling formula. By putting together (2.1), (2.10), (2.11) and (2.13) we obtain
the following result.

Proposition 2.1 Let F be a reversible Finsler metric on the compact n-dimensional
manifold Q and let G = ,/g be the Riemannian metric on Q whose unit disks are the
inner Loewner ellipsoids of the unit disks of F. Then

T e (©) = B < AGHE) < Vinae).

2.4 From irreversible to reversible Finsler

Let F be an arbitrary Finsler metric on the compact n-dimensional manifold Q. We
symmetrize the metric F by the following procedure: We define S: 7 Q — [0, 4-00)
to be the reversible Finsler metric on Q whose unit co-disk at each g € Q is the
reflection body of D (F), i.e. the centrally symmetric convex body

D;(S) = conv(D(’;(F) U (—DZ;(F))).
Note that
D;(F) C D;‘(S) co D;;(F), (2.14)
where 0 is the irreversibility ratio of F, i.e. the number

0 := max F(—v), (2.15)
veT Q
F(v)=1

which is at least 1, and equal to 1 if and only if F is reversible. Indeed, the second
inclusion in (2.14) follows from the fact that 6 is an upper bound for the norm of
minus the identity on T, Q with the asymmetric norm F, and hence also for the norm
of minus the identity on Tq* 0 with the asymmetric norm that is dual to F'. Moreover,
the volume of D;“ (S) has the upper bound

IDZ (DI, =< 2" |Dy(F)ly, (2.16)
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as proven by Rogers and Shephard in [86, Theorem 3]. From (2.14) we deduce
07 'S<F<S, (2.17)
and hence (2.6) and (2.7) imply
hyol (S) = hyol (F) < 6 hyol (). (2.18)

On the other hand, from (2.16) and the second inequality in (2.17) we obtain the
following inequalities for the Holmes—Thompson volume

27" vollT(Q) < volfT(0) < volfT(0). (2.19)

The bounds (2.18) and (2.19) imply the following result.

Proposition 2.2 Let F be a Finsler metric on the compact n-dimensional manifold Q
with irreversibility ratio 6 and let S be the reversible Finsler metric whose dual disks
are the reflection bodies of the dual disks of F:

D;(S) = conv(D:;(F) U (—D;(F))) Vg e Q.

Then

vol(S) = vol(F) = 0 vo](S)

The lower bounds of Propositions 2.1 and 2.2, together with Stirling’s formula,
have the following consequence:

Corollary 2.3 Let Q be a compact n-dimensional manifold and denote by hyo (Q) the
infimum of hyo1(g) over all Riemannian metrics g on Q. Then the Holmes—Thompson
normalized volume entropy of an arbitrary Finsler metric F on Q has the lower bound

VOl (F) > Cn hVO](Q)
where

_ 1 e 1
(o)l 2 /n’

Moreover, if the Finsler metric F' is reversible, we have
Vo1(F) > VO1(F) > 2¢p hvoi (Q).

Remark 2.4 1f we symmetrize D;‘(F ) by considering the difference body D;(F ) —
D;‘(F ) instead of the reflection body, then we get a worse bound, because in this

case the factor 2" in (2.16) must be replaced by the middle binomial coefficient (Zn"),
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in view of the Rogers—Shephard inequality for the volume of the difference body,
see [85]. By using the reflection body instead of the difference body, the systolic upper
bounds of Theorem 4.13 and Corollary 4.14 in [6] can be improved by replacing the
dimension dependent quantity +/(2n)!/(n!)2 by the constant factor 2.

If the volume entropy is normalized by the Busemann—Hausdorff volume, we do
not get a lower bound that is independent of the irreversibility ratio. From (2.2), (2.3),
(2.17) and (2.18) we obtain

vol (S) = vo] (F) = 9 vol (S)

We do not have a lower bound that is independent of 6 because, unlike the volume
ratio |D;(S)|;/|D;’;(F)|;, the ratio | Dy (F)|, /1Dy (S)|, can be arbitrarily large.

On the other hand, the upper bound can be made independent of the irreversibility
ratio 6 by symmetrizing, this time, directly in 7' Q: We consider the reversible Finsler
metric 7 whose unit ball at g is the set

Dy(T) := conv(Dy(F) U (=D (F))).

For this metric, we have

from which we obtain
1
5 hyot(T) < hyol (F) < hyot(T).
Moreover, the Rogers—Shephard inequality for the reflection body gives
vol?(Q) < vol(Q) = 2" volz™(Q),

and we deduce the following result.

Proposition 2.5 Let F' be a Finsler metric on the compact n-dimensional manifold Q
with irreversibility ratio 0 and let T be the reversible Finsler metric whose unit disk
at each q is the reflection body

Dy(T) = conv(Dy(F) U (—Dy(F)))

of the disk of F at q. Then
vol(T) = VOl(F) =2h vol(T)
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2.5 Lower bounds on the normalized topological entropy

We now assume that the (possibly irreversible) Finsler metric ' on Q has better
regularity and convexity properties: Outside of the zero section, F': TQ — R is of
class C? and the fiberwise second differential of F? is positive definite. We will refer
to such an F as to a regular Finsler metric. Under these assumptions, the geodesic
flow of F is well defined. We denote by /o, (F') the topological entropy of this flow,
and by
It (F) = voli ()" hip(F), R (F) = vol (@)™ higp(F)

the Holmes—Thompson and Busemann—-Hausdorff normalizations of this entropy.
Manning’s inequality

htop(F) > hyol(F)

from [69] holds also in the Finsler setting, as shown in Theorem A.2. Then Corollary 2.3
has the following immediate consequence.

Corollary 2.6 Let Q be a compact n-dimensional manifold and denote by hyo1(Q) the
infimum of hyo1(g) over all Riemannian metrics g on Q. Then the Holmes—Thompson

normalized topological entropy of any regular Finsler metric F on Q has the lower
bound

WY F) > ¢n hvol(Q),

top

1 e 1
= ———~ | ——.
T wy) 27 J/n

Moreover, if the Finsler metric F is reversible, we have

where

REN(F) = R (F) = 2¢0 hyol(Q).

2.6 Finsler metrics with small topological entropy

The following result is more precise than Proposition 1.12.

Proposition 2.7 Let (é , ) be a Riemannian globally symmetric space of non-compact
type and of rank > 2. Let G be the connected component of the identity of the isometry
group of (é, ). Then there exist computable constants N < ¢BH < 1 that depend
only on (@, 2) with the following property: For every discrete co-compact subgroup T’
of G that acts without fixed points on @ and for every ¢ > 0 there exists a smooth
reversible G-invariant Finsler metric F on Q = Q/T' such that

gy (F) = i (F) < (1+8) M hva (D), (2.20)

top vol
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mp(F) RS(F) < (148 P ha(®). (2.21)

In particular, i1 (Q, Frey) < M1 hyoi(8) and RE(Q. Fre) < B o (3).

Proof Fix a point xg € G, let K C G be the stabilizer of xq, let g and £ be the Lie
algebras of G and K, and let g = £@®p be the Cartan decomposition associated with xo.
(Then p = T,,0.) Choose a maximal abelian subalgebra a C p, and let W, be its
Weyl group.

The set of G-invariant Finsler metrics on Q is in bijection with the set

C = {C C a| C centrally symmetric W,-invariant convex body} .

In general, the Finsler metric assoiated with C € C is only continuous, and it is
smooth if and only if the boundary of C is smooth. Let Cy be “the least convex" body
in C of g-volume one. (For details we refer to [93], but it should become clear from
Examples 2.8 below how to construct Cyp.) Since dima = rank (G/K) > 2, Cy is
not just a segment, and hence not an ellipsoid, i.e., the Finsler metric F{y associated
with Cy is not Rlemanman In fact, Fy is not smooth. Verovic shows that Fj is the
unique minimizer of hvol(F ) among all G-invariant continuous Finsler metrics on Q
In particular, the constant cBH defined by

vol(F) = C hvol(g;) (2.22)

is strictly less than 1. There is a simple formula computing this constant in terms of
the Weyl data of a.
Fix ¢ > 0, choose a smooth body C from C such that

CoC C C (1+4¢)Cy,
and let F' be the associated Finsler metric. Then
MBH(F) < (1+ &) B (Fo), (2.23)

cf. Sect. 2.2. Since O is of non-compact type, G is semi-simple, see for instance [99,
Proposition 6.38 (d)]. It thus follows from [40, Theorem 6.3 (2)] that F has negative
flag curvature. Therefore, the extension of Manning’s equality to reversible Finsler
metrics in [44, Theorem 6.1] implies that

top

The line (2.21) follows from (2.24), (2.23), and (2.22).
Define the constant cHT by

Vol(FO) =cC HT 7, hyo1 (%).

By (2.1) and the Santal6 inequality, cHT < ¢BH. Repeating the above arguments we
obtain (2.20). O
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Example 2.8 1. Let Q be a compact quotient of the symmetric space (H?)* of rank k.
The maximal abelian subalgebra a is R¥, with Weyl chamber a™ = R’;O. The set of
positive roots is given by the dual basis €1, ..., & of the standard basis e, ..., e
of Rk,

The standard Riemannian metric g on Q corresponds, up to to scaling, to the closed
unit ball B in a = R¥, and we take Fj to be the non-smooth Finsler metric correspond-
ing to the cross-polytope Cy in a with vertices +ey, ..., £ex. Now Proposition 2.2
in [93] shows that

/(2k) 1/(2k)
) = (@) " ma (100 4+ aw) = (voili0)
veCoNat
1/(2k) 1/(2k)
@) = (vol(@) T max (e1w) - +aw) = (volf@) T VE
veBNat

Let Dy, (Fp) resp. Dy, (g) be the unit ball of Fy resp. g in T, é ~ p. By G-invariance
of Fy and g, and in view of the definition of the Busemann—Hausforff volume in
Sect. 2.1,

VOl (Q) VOlg(on(g))
volgBH(Q) = Volg(Dyy (F))

(2.25)

(2k)!

Lemma 2.9 The quotient on the right of (2.25) is equal to T

Proof We have D,,(Fy) = Ad(K)(Co) and Dy,(g) = Ad(K)(B). For k = 1, when
G = SL(2;R) and K = SO(2; R), a computation in the orthogonal basis (| ),
(94) of p shows that the orbit Ad(K)p of a point p € p is the circle through p. For
general k > 1, the Ad(K)-orbitof p = (p1, ..., px) € pis the k-torus made of circles
of radius |p;|. Since the restrictions of Fj and g to p are Ad(K)-invariant, it follows
that the quotient on the right of (2.25) is equal to the quotient of the two integrals

f  (x1x2 - xp)dxidxy - - - dxy, f  (x1xp - xp)dxidxy - - - dxg.
BNat CoNa™t

The first integral equals 2k .7 and the second equals ﬁ as one finds using Fubini’s
theorem and induction. O

Together with the lemma we conclude that

H(F) (@YY
BH — BH H2 k — vol — < ) )
Ck (( ) ) 7B (o) 0 o

We next compute the Holmes—Thompson volumes volI}OT (Q)and vol?T (Q).Denote
by C; and B* the polar sets of Co and B in p*, respectively, and by g* the dual
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Riemannian metric on p*. By G-invariance of Fj and g, and in view of the definition
of the Holmes—Thompson volume in Sect. 2.1,

voliy (Q)_ volg (D}, (Fy)
volllT(Q) — volg=(D},(8))

(2.26)

Using that D} (Fo) = Ad*(K)(Cy) and D7 (g) = Ad*(K)(B*), that the polar set
C; of the cross-polytope Cy is the unit cube, and the computations

1 1
(xp -+ xg) dxy---dxp = ——, / (_xl..._xk)dxl...d_xk = —,
/B*QRSO 2K k! anRléO 2k

we find that the right quotient in (2.26) is k!. Therefore,

THT

hi (Fp) 1
HT .__ _HT 2\k _ vol _ 1/(2k)
= (HDY) = X—— = (k) —.
g ( ) AT (o) NG

It is shown in [75] that
ool (@) = hyai(Q).

Together with Theorem 1.2 and Proposition 1.12 we obtain

A

2e2 hvot(Q) < AN (Q. Frew) = ¢} hya(Q),
22 hvot(Q) < hER(Q, Frr) < M hvai(Q).

The sequence c,I?H, k > 2, is monotone decreasing to \/g ~ 0.858, starting with

U~ 0931 and 8P ~0.907.

The sequence c,IjT is monotone decreasing to \/g ~ 0.616, starting with

AT~ 0841 and AT ~0.778.

_ . . . e 1
In contrast, the sequence 2 ¢y = 7@ 1S monotone decreasing like 27 o

(k) ox)
starting with

2¢4 2 0.606 and 2cg ~ 0.508.

The constant Ay (Q) can be computed as follows. On (H?)* the minimum of
the volume entropies among symmetric metrics is attained exactly by multiples of
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g =g x - x g, where g is the metric on H of constant curvature —1, see [35, §2].

Since hyoi(g) = 1, we have hyoi(g5) = /Y- (hyol(8))? = vk. Hence

hai(Q) = h27(Q) = (vol ()" Vk.

For instance, if Q is the product of orientable surfaces of genus &, then

k k
Vol (Q) = [ [ areag(@u) = 2 [T/ (ks — .
j=1 j=1

2. Take the 5-dimensional symmetric space SL(3; R)/SO(3; R) of rank 2. The
“least convex” body Cy from C is a regular hexagon. We scale this hexagon such that
it is the hexagon Hj, inscribed the unit disc B of R? = a. Verovic computed in [93,

p. 1644] that for the Finsler metric corresponding to \/g Hji,, the volume growth is 2.

Hence the volume growth of the Finsler metric corresponding to Hj, is \/g 2. Further,

the volume growth of the Riemannian metric corresponding to B is 2+/2.

To compute the volumes, since SO(3; R) is 3-dimensional we now have to take
r3dxdy as density on a. The integral of 7> over B and over Hy, are, respectively, 2?"
and

33
L = 22 (271n3 + 68).
in = zq (27In3+068)

With this we find along the lines of the previous examples that

27\ /3
”) ¥3 . 0s.
Shin

BH(SL(3; R)/SO(3; R)) = ( 5

The polar set of Hj, is a regular hexagon H,y, circumscribed the unit co-disc. After
identifying a with a* by the inner product, we have that Hy, is obtained from Hj, by
dilation by % and rotation by %. Hence the integral of r3 over Hyy is

2 5
Lowt = <ﬁ) L.

Therefore,

Ml/s‘/_g_ V3 ~ 0912
27 2 o

HT(SL(3; R)/SO(3; R)) = < 2 ¢BH

These two constants should be compared with the constant 2c5 & 0.551 for the
lower bound in Corollary 2.6.
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S

Fig.4 The co-disks éD;(F) C D;;(H) Co_ D’q“(F) in Tq"‘Q

Question 2.10 Recall that the non-smooth Finsler metric Fy is the unique minimizer
of ﬁgg(F ) among G-invariant continuous Finsler metrics on Q. This Finsler metric
has a high degree of symmetry: Its restriction to a is invariant under the Weyl group,
and it is G-invariant. Since in Theorems 1.3 and 1.8 the Riemannian minimizers are
the locally symmetric metrics, one may expect that Fy minimizes /EVB(SI (F)and ﬁleTl (F)
among all continuous Finsler metrics on Q. Would this imply that there are no smooth

minimizers?

3 A lower entropy bound for Reeb flows on spherizations

Recall from Theorem 1.1 that there cannot be a uniform lower bound for the normal-
ized topological entropy of Reeb flows. In this section we show that for many base
manifolds Q, one nevertheless has a control on the entropy collapse of Reeb flows on
the spherization $*Q in terms of the geometry of their defining star fields: Entropy
collapse can only happen if some fibers are far from convex. The proof relies on Floer
homology.

We consider a closed manifold Q and two Reeb flows on S*(Q, one arbitrary and
one Finsler. As in the previous section and as in Appendix B.1 we work in 7*Q. We
then have two Hamiltonian functions H, F: T*Q — R that are fiberwise positively
homogeneous of degree one and smooth and positive away from the zero section.
Again we denote by ¢>§1 the flow of H on S*(H) = H~'(1), and similarly for F. Let
o_ and o be the smallest positive numbers such that

1
—F <H<o0o,F onT*Q.
o_

For the co-disk bundles we then have

LD*(F) C D*(H) C o_ D*(F),
o+

see Fig. 4.
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The number
o(H; F):= o_oy4.

does not change under rescalings of H or F'. We have o (H; F) > 1 with equality if
and only if H = cF for some positive number c. Moreover, o (H; F) < /n if H is
a reversible Finsler Hamiltonian and F' is chosen to be the Riemannian Hamiltonian
associated with the outer Loewner ellipsoids of D*(H), see (2.8).

Proposition 3.1 Let F be a (possibly irreversible) C*°-regular Finsler metric on the
closed manifold Q. Then for every C*°-smooth Reeb flow ¢}, on §*Q we have

Wi (ou) > Trvol (F).

1
top o(H: F)
Proof After scaling F we can assume that o = 1. We abbreviate 0 (H; F)=04 =:0.
Lemma 3.2 hwp(dp) = hyot(F).

Proof The lemma can be extracted from [68]. We briefly review the proof. Instead of
working with ¢ and ¢, we work with the Hamiltonian flows @z and ® 7 on 7*Q of
the functions H? and F?. Then ®y = ¢ on S*(H). Using the variational principle
for topological entropy and the homogeneity of H? one finds

hop(@r) = hop(Pals ) = hiop(Pu|D*H))-

Fixing a point g € Q we can further estimate, using Yomdin’s theorem from [96] and
the C°°-smoothness of ®p,

1
hiop( @l () = lim_ —log jug= (@ (DG (H))).

Here 1o+ (S) denotes the Riemannian volume of the submanifold S C 7*Q with
respect to the restriction to S of the Riemannian metric on 7*Q induced by a
Riemannian metric g on Q. In Theorem 4.6 and Section 5.1 of [68] it is shown by
Lagrangian Floer homology that for every & > 0 there exists N (¢) such that

tg (@ (DE(H))) = volg(Q) e =" forn > N(e)
where y (F) is the exponential growth rate of the number of elements in the funda-
mental group of Q that can be represented by a loop of F-length < R. It is easy to

see that y (F) = hyol(F). (The proof in [60, Prop. 9.6.6] given for a Riemannian F
applies without changes to a general Finsler metric.) The lemma follows. O

In view of the inclusion éD*(F ) C D*(H) we infer from Lemma 3.2 that

1/n
i@ = (vlff(0) " hop(@n)
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v

1 1/n
— (vol"(@) " hva(F)

1 ~
- hvol(F)
o

as claimed. O
We now define the module of starshapedness of H by

o(H) := inf {o(H; F) | F is a Finsler metric} .

While an individual o (H; F) can be large even for a Riemannian Hamiltonian H,
the number o (H) is a measure for the maximal starshapedness, or non-convexity,
of the fibers of D*(H). For instance, 0 (H) = 1 if and only if H is Finsler. From
Proposition 3.1 and Corollary 2.3 we obtain the following result.

Corollary 3.3 Let Q be a closed manifold. For every C*°-smooth Reeb flow d)}{ onS*Q
we have

top(¢H) = mhvol(Q)

Remark 3.4 (1) In the special case that H = F is a C°°-regular reversible Finsler
Hamiltonian, Proposition 3.1 applied to Riemannian metrics and the Loewner
bound (2.8) yield the uniform lower bound

toP(F) vol(Q)

Even in this special case, this lower bound for ﬁfg (F) coming from Floer homol-
ogy and from the Loewner bound is only slightly weaker than the lower bound

top(F) > 2c¢y vol(Q)

from Corollary 2.6 that comes from Manning’s inequality and the Loewner bound.
Indeed, recalling that ¢, = Tloni the function f(n) = 2c,/n: N — [1, 00)
is strictly monotone increasmg, w1th

f@=-2~113 and lim f(n) =,/% ~ 1315.
n——+o0

(2) In the case that H is a Finsler Hamiltonian and F is a Riemannian Hamiltonian,
we have obtained the inequality in Lemma 3.2 in Sect. 2.5 by estimating

htop(¢H) = hvol(¢H) > hyol(F).
The first inequality, which is Manning’s inequality, also holds for C°°-smooth

Reeb flows, see Theorem A.8. The second inequality holds in the Finsler case in
view of the inclusion of balls (2.6), which follows from the triangle inequality.
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But in the Reeb case there is no triangle inequality. Floer homology (or, more
precisely: properties of Floer continuation maps that stem from the Floer—Gromov
compactness theorem for J-holomorphic strips) makes up for this.

(3) Proposition 3.1 and Corollary 3.3 are interesting only if iz\vol(F ) and hyo1 (Q) are
positive, which is possible only if the fundamental group of Q has exponential
growth. The results in [68] imply meaningful variations of Proposition 3.1 and
Corollary 3.3 for many other manifolds. For instance, assume that Q is a simply
connected manifold such that the exponential growth rate y (2 Q) of the dimension
of the Zp-homology of degree < k of the based loop space 20 is positive. Then

1
it (pn) = s (P @O

with a positive constant C (F') that does not change under rescalings of F'.
(4) Werefer to [38] for a thorough study of continuity properties of topological entropy
implied by Floer homological techniques.

4 Entropy collapse for Reeb flows in dimension 3

In this section we prove Theorem 1.1 in dimension 3.

4.1 Recollections on open books

In this paragraph we collect results on open books needed in our proof. For more
information and details we refer to [46] and [52, §4.4].

Let M be a closed connected orientable 3-manifold. An open book for M is a triple
(2, ¢, V), where X is a compact oriented surface with non-empty boundary 93 and
Y is a diffeomorphism of X that is the identity near the boundary such that there is a
diffeomorphism ¥ from

M) = 2@) Ug (D x 9%)
to M. Here X (/) denotes the mapping torus
() = ([0,27] x £) / ~

where (27, p) ~ (0, ¥ (p)) for each p € X, and D is the closed unit disk. Viewing
S! as the interval [0, 27] with endpoints identified, we write (X (y)) as S! x 9X.
The manifold M is thus presented as the union of the mapping torus X () and finitely
many full tori, one for each boundary component of X, glued along their boundaries
by the identity map

IEW) = ' x 0% L aD x ox).
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We remark that the diffeomorphism
v: M) > M

is part of the definition of the open book. If v/’ is another diffeomorphism of ¥ that is
the identity near the boundary and is isotopic to ¥ via an isotopy that fixes each point
of 8%, then M (y') is diffeomorphic to M (). We also remark that what we call an
open book is usually called an abstract open book decomposition in the literature.

For each § € S' denote by %7 the image under the diffeomorphism W of the union
of {6} x X with the union of half-open annuli

Ag = {(0,r) €D\ {0} x 0%.

The closure Xy of %7, called a page, is diffeomorphic to X, and the common boundary
of the pages Xy, called the binding of the open book, is the image under ¥ of {0} x9d X C
D x dX. The orientation of ¥ induces orientations on the pages and the binding.

There are several different beautiful constructions proving the existence of an open
book for every 3-manifold M as above. The first of these constructions was given by
J. W. Alexander [5] as early as 1920, who used his findings that every such M is a
branched covering of the 3-sphere branching along a link and that every link in R? can
be obtained as the closure of a braid, see also [87, p. 340]. Alexander’s construction
in fact provides an open book such that X has just one boundary component.

Contact structures. Let M be a closed connected oriented 3-manifold and (X, ¥, W)
be an open book for M.

Definition 4.1 A contact form & on M is said to be adapted to the open book (X, ¥, W)
if

e « is positive on the binding,
e do is a positive area form on the interior of every page.

It is not hard to see that a contact form « is adapted to an open book if and only if

e the Reeb vector field R, is positively transverse to the interior of the pages,
o the Reeb vector field is tangent to the binding and induces the positive orientation
on the binding.

Definition 4.2 A contact 3-manifold (M, &) is said to be supported by an open book
(X, ¢, ) if there exists a contact form « on (M, §) adapted to this open book.

Remark 4.3 If a contact 3-manifold (M, &) is supported by an open book (X, ¥, V)
and if ¥’ is another diffeomorphism of X that is the identity near % and that is
isotopic to i via an isotopy that fixes d X pointwise, then (M, &) is also supported by
an open book (Z, ', ¥'). This follows easily from the fact that for such a ¥’ there
exists a diffeomorphism from M (y) to M (v) that takes pages to pages.

The following result of Giroux shows the central role played by open books in
3-dimensional contact topology.
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Theorem 4.4 (Giroux) Given a closed connected oriented contact 3-manifold (M, £),
there exists an open book for M supporting (M, &). Moreover, the open book can be
chosen to have connected binding. Two contact structures supported by the same open
book are diffeomorphic.

For the proof of the first and the third assertion we refer to [53, Theorem 3 and
Proposition 2] and to [46, Theorem 4.6 and Proposition 3.18]. That the binding can
be assumed to be connected is shown in [46, Corollary 4.25] and in [34].

4.2 Proof of entropy collapse in dimension 3
We now proceed with the proof of the main result of this section.

Theorem 4.5 Let (M, &) be a closed co-orientable contact manifold of dimension 3.
Then for every € > 0 there exists a contact form o on (M, &) such that voly, (M) = 1
and hyp(ar) < &.

While our proof works verbatim when 9% is not connected, the geometry in our
argument is easier to visualize for connected 9%, so we assume this property.
The structure of the proof is as follows.

e Given (M, &) asin Theorem 4.5 we use the first statement in Theorem 4.4 to obtain
an open book (X, ¥, W) for M that supports (M, &).

e We then apply a classical recipe due to Thurston—Winkelnkemper to construct
for each ¢ > 0 a contact form &, adapted to (£, ¥, V) with volg, (M) = 1 and
htop (o) <e.

e By the second statement of Theorem 4.4, ker W, is diffeomorphic to & by a
diffeomorphism p.. Hence (p. o W), (d,) is a contact form on (M, &) with the
properties asserted in Theorem 4.5.

For the construction of @, we first construct on the mapping torus X (v) for all
small s > 0 contact forms ay with voly, (2(¥)) = O(s) and hp(ay) = O(1).
Crucially, near the boundary of (i) these contact forms are such that they extend to
contact forms (also denoted ) on the full torus D x 9T insucha way that the Reeb
flows are linear on each torus S'(r) x 9. Therefore, even though the Reeb vector
fields “explode” in the interior of the full torus as s — 0 (see Fig.7), the topological
entropy on the full torus vanishes for all s. Since also voly DMxIXT) = O(s), we find
that voly, (M) = O(s) and hyop(ag) = O(1) for all small s > 0. The form o is now
obtained by taking s small and rescaling «.

Proof of Theorem 4.5

Step 1: A family of contact forms «; on X (/). By Theorem 4.4 there exists an open
book (X, v, W) for M that supports (M, ). We first choose a collar neighbourhood
N C X of 9Z on which v is the identity. Thus N is diffeomorphic to [1, 1 4+ 5] x 0%,
and we have polar coordinates (7, x) for N, where x is the angular coordinate for 9%,
such that the boundary of 9% corresponds to r = 1.
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Fig.5 The neighbourhood N of 9%

Choose an area form @ on X such that @ = dx A dr on N. By Remark 4.3 and
by Moser’s isotopy theorem we can assume that the diffeomorphism i is a symplec-
tomorphism of (¥, w). Since H 2(2, d%; R) vanishes, there exists a primitive A of @
that equals (2 —r)dx on N.

We now construct for each sufficiently small s > 0 a contact form «; on the mapping
torus X (y). For this, let x: [0, 27] — [0, 1] be a smooth monotone function such
that x (0) = 0, x(27) = 1, and x’ has support in (0, 277). On [0, 27r] x X define the
1-form

ag = dO +s((1— x(O) A+ x©O)¥*1). 4.1)

By the properties of y, each 1-form « descends to a 1-form on X (), that we still
denote by «y. Using that ¢ is a symplectomorphism of (¥, w) we compute that

oy Adag = sdO A w+ O(s?). (4.2)

Hence there exists so > 0 such that o is a contact form for all s € (0, sg].
We now compute the Reeb vector field Ry, . With 19 := (1 — x(0)) X + x (B) ¥*A
one checks that

d+Y

1+srg(Y) (4.3)

oy =

where Y is the vector field that is tangent to {#} x X forall8 € S I and satisfies
o = x' @)Y A —21).

The formula (4.3) shows that R, is positively transverse to each surface {8} x .

The next lemma gives an upper bound for /p(de,) When s is sufficiently small.
Notice that it makes sense to talk about hop (¢, ), since X (v) is compact and Ry, is
tangent to 9 X ().

Lemma 4.6 There exists s; € (0,s0) and a constant E > 0 such that for every
s € (0,511,

htop((p%) f E. (4-4)
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Proof Choose s; > 0 such that % < m < 2on X(y) for every s € (0, s1]. For
each such s define the function f; = m on X (). Then for every s € (0, s1]

we have Ry, = f5 (09 + Y) with % < fs < 2. By Ohno’s result from [79], for a
non-vanishing vector field X and a positive function f on a compact manifold,

htop((pr) < max f - htop(¢X)~
It follows that Aop (¢a,) < 2hiop(¢s,+v) =: E. o

Step 2: A family of contact forms o, on D x 9X. We have constructed a family of
contact forms oz on the mapping torus X (). We now wish to extend these forms to
contact forms on M (). For this let V be the collar neighbourhood of d X (1) defined
by

V:.=1[0,2nr] x N/ ~
where (2, p) ~ (0, p) for each p € . On V the contact form «; reads
ay = do+s2—r)dx 4.5)

where (r, x) are the coordinates on N introduced above and 6 € S!.

We proceed to construct for each s € (0, s1) a contact form o on Dxa Y., where
Dis again the closed unit disk in R?. Consider polar coordinates (8, r) € S' x (0, 1]
on D \ {0} and the coordinate x on 3. We can then consider coordinates (0, r, X) on
D\{0} x 9%. We pick a smooth function f: (0, 1] — R such that

o /<0,
e f(r) =2 — ron aneighbourhood of 1,
e f(r) =2 —r”* on aneighbourhood of 0,

and we pick another smooth function g: (0, 1] — R satisfying

e g >00n(0,1),
e g(1) = 1 and all derivatives of g vanish at 1,
e g(r)= % on a neighbourhood of 0 see Fig. 6.

Define the 1-form
05(0,r,x) = g(r)dO + sf(r)dx 4.6)
onD \ {0} x 9. Then
os ANdog = sh(r)dr AdO Adx 4.7
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Fig.6 The functions f and g

where h(r) = (fg’ — f'g)(r). It follows that oy is a contact form on ﬁ\{O} x 0X. For
I near 0 we have i(r) = r(2 + r*), whence oy extends to a smooth contact form on
D x 9%, that we also denote by oy. The Reeb vector field of oy is given by

1 1
Ry (0,1,x) = e (—f/(r)ae + ;g/(r) 3x) . 4.8)

It follows that Ry, is tangent to the tori Ty := {r = const} and that for each
r € (0, 1] the flow of Ry, is linear:

4.9)

oL (0.1.%) = <e _S'® ¢'(r) ;>_

o X T

In particular, using our choices of f and g we see that R,, = dg on the boundary
torus T, and that R, = %ax is tangent along the core circle C = {r = 0} of the full
torus, and gives the positive orientation to d X. Furthermore, (4.8) shows that R, is
positively transverse to the half-open annuli see Fig.7

Ag :={0} x (0,11 x 3T C D\ {0} x .

The Reeb flow c/)f,x on the full torus D x 9 ¥ is integrable. More precisely, the core

circle C of D x 9 X is the trace of a periodic orbit of qﬁfn ,and (D x d%)\C is foliated by
the flow-invariant tori T, on which ¢>§,S is the linear flow (4.9). The topological entropy
of these linear flows of course vanishes. By the variational principle for topological
entropy we therefore find that

htop((prf;) = Ssup htop(d’oxhl}) = 0. (4.10)

0<r=<l1
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o

19,

2s

Fig.7 Some vectors of Ry, and the annulus Ag

Step 3: A family of contact forms on M. We first observe that the coordinates 6 and
0, r and r, x and x are glued via the identification map used to glue £ (¢) and D x 9 Z.
It follows that they extend to coordinates on

V Uiq (ﬁx 32).

In view of the expressions (4.5) and (4.6) for the contact forms o« on V, and o on
D x 3%, these two contact forms are glued to a smooth contact form t; on M (V).

As mentioned above, the Reeb vector field R is positively transverse to the surfaces
{6} x = in () and to the annuli Ag in D x dX. Also, R, is tangent to the core
circle C of D x 9 X, giving the positive orientation. It follows that the Reeb vector field
of W, 7, is positively transverse to the interior of the pages of the open book (X, i, W),
and positively tangent to the binding of the open book. By Theorem 4.4 the contact
structure ker W, 7, is diffeomorphic to &, by some diffeomorphism p;: M — M.
Summarizing, there are diffeomorphisms W and ps such that

(M), 1) — (M, Wyty) 25 (M., (ps 0 W), 17y) (4.11)

with ker((pg o W), 1) = £.

Step 4: Estimating the volume and the topological entropy of t;. The Reeb flow
¢§S of 7, leaves the compact sets X () and D x 3% invariant. Since these compact
sets cover M and since ¢! |x(y) = ¢}, and ¢! 5,45 = @5, it follows from [60,
Proposition 3.1.7 (2)] and from Lemma 4.6 and (4.10) that

htop((prx) = max {htop(q)as)a htop(‘pas)} < E. (4.12)

We decompose the integral of 5 A dy as

/ T, ANdTy = / as/\das—i—/i os A doy. (4.13)
M®) Z) DxoX
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For the first summand we have by (4.2) that

f ots/\daszf sdO A w+ 0(s?)
) [0,27]x X

= s2n/ 0+ 0(s?) = 0(s). 4.14)
D)

To estimate the second term in (4.13) we use (4.7):

/ os Ndog = / os Ndoyg
DxdxT D\{0}xd%

= s/ h(r)dr A dO A dx. (4.15)

D\{0}xd%
Since the right integral is finite, it follows that also
/ os Ndog = O(s).
Dxaxz

Together with (4.13) and (4.14) we conclude that
/ T, Adty = O(s). (4.16)
M)

Step 5: End of proof. By (4.16) we know that given ¢ > 0 there exists s € (0, s1]
such that

82

volg, (M(¥)) = T, Adtg < 4.17)

2 M®r) E2 '

Defining T := (vol,x (M(t/f)))_% T, We obtain

volz(M(¥)) = 1,

and by (4.12) and (4.17)

hiop(@?) = (volo, (M) hiop(@e,) < .

Together with (4.11) and in view of the conjugacy invariance of topological entropy
if follows that (ps o W),T is a contact form on (M, &) of volume 1 and topological
entropy at most &. O

Question 4.7 It would be interesting to see how in the case of a spherization S*Q»
over the closed orientable surface of genus 2 the open book decomposition used in
the above proof looks like. Since our construction of the contact form 7 is explicit,
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one could then maybe understand the star field {D:;(H )} corresponding to 7. In view
of (1.11) some of the stars must be very spiky. How many spikes appear in these stars?

5 Generalities on Giroux’s correspondence in higher dimensions

In this section, we summarize those concepts and results on the Giroux correspondence
between contact structures and supporting open books in higher dimensions that we
shall use in the proof of Theorem 1.1. While we reprove those parts that we use in a
somewhat different form, we refer to [53] and [54] for the parts that we can cite and
for further results.

5.1 Ideal Liouville domains

Let F be a 2n-dimensional compact manifold with non-empty boundary K, and denote
by F° the interior of F'. A symplectic form w on F° is called an ideal Liouville structure
on F (abbreviated ILS) if w admits a primitive A on F° such that for some (and then
any) smooth function

u: F — [0, +o00) for which K = u! (0) is a regular level set 5.1

the 1-form uA on F° extends to a smooth 1-form 8 on F which is a contact form
along K.

If such a 2-form w exists, the pair (F, w) is called an ideal Liouville domain (ILD),
and any primitive A with the above property is called an ideal Liouville form (ILF).
Given an ILD (F, w), the contact structure

& :=ker(Blrk)

depends on the 2-form w but neither on A nor u, see Proposition 2 in [54]. Moreover,
once A is chosen, one can recover every (positive) contact form on (K, &) as the
restriction to K of the extension of uA for some function # with property (5.1). This
is why the pair (K, &) is called the ideal contact boundary of (F, ). We note that the
orientation of K that is determined by the co-oriented contact structure £ coincides
with the orientation of K as the boundary of (F, w).

A very useful feature of an ILD is that a neighborhood of its boundary admits an
explicit parametrization in which any ILF has a very nice form.

Lemma 5.1 Let (F, w) be an ILD and X be an ILF. Let u be a function satisfying (5.1)
and let B be the extension of uh. Then for any contact form oo on (K, £), there exists
an embedding

1:[0,400) x K - F
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such that
1
1*A = —ag and 1(0,q) = q forall g € K,
,

where r € [0, +00). In particular,

ot
1 B = ag on F°
and forall g € K,
a(uo
(,3|T1<)(61)=( (”; ’)(o,q>)ao.
r

Proof The above statement is a reformulation of Proposition 3 in [54]. We give a
similar but more explicit proof.

Letdim F = 2n. Since § is by assumption a positive contact formon K, A (d )"~}
is a positive volume form on K. Using w = dA = d(f/u) on F° we compute

" = @B/w)" =u"" wdp+np Aduy A@dB)" =0T (5.2)
where p is the 2n-form
wi= wdB+np Adu)AdB) .

The above expression shows that u is smooth on F and, together with (5.2) and the

fact that 0 is a regular value of u, that it is a positive volume form on F. Define the
smooth vector field X on F by

ixp=—npA@p)" . (5.3)

Recall that the Liouville vector field Y of A is the vector field on F° defined by
tydr = A. Using B = uX on F° we compute

—nBAWAB)" " = —nu" A A @V = i iyo" = —u" iy
Comparing with (5.3) we find ¥ = —uX. Then
B(X)=—A(Y)=—dr(Y,Y)=0

on F°, and by continuity S(X) = 0 on F. Hence on F°,

1
LxB =1xdB = —;LY (du AN X+ ud))

= _i (du(Y) A+ ur) = % (du(X) — 1) B. (5.4)
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This shows that du(X) = 1 along K and that the function %(du(X ) — 1) is smooth
on F. In particular, X points inwards on K = 3 F and hence the flow ¢/, of X on the
compact manifold F is well-defined for every ¢ > 0. We define the smooth embedding

®: [0, +00) x K — F, (t,q) — ¢%(q).

By construction we have ®*X = ;. Put,é = ®*B, u := d*u, and A := ®*A. The
identities 8(X) = 0 and (5.4) say that on [0, +00) X K,

n A 0t — 1 4
By =0, ap="""4 (5.5)

u

Here the function a,ﬁu; is smooth and bounded on [0, +00) x K since by (5.4) the

function th(d u(X)—1)is smooth on F'. Define the smooth function vg : [0, +o0)xK —
R by

U oii(T,q) — 1
vo(t, q) =/ —tuET 9) dr.
0 M(Tv LI)

The solution of the problem (5.5) with initial condition By(g) = B(0, q) is then
Bt.q) =exp (wo(t. @) Polq). Y (t,q) € [0, +00) x K,

and therefore

At q) =

1
= exp (vo(t, q)) Po(q), VY (t,q) € (0,+00) x K.
u(t,q)

Now let op be a positive contact form on (K, &). Then there is a positive function «
on K such that g = x ag. On (0, +00) x K define the function

K(q)
u(t, q)

Alr,q) = exp (vo(7, 9)) - (5.6)

Then A = A «ag. Itis clear that A > 0, and lim;—.o A(¢,g) = +oo forallg € K. We
note that

A A
— =—-——<0
ot u
and therefore
|
A(t,q) = A(1,q)exp <—f ~ d‘t). 5.7
1 u(z, q)

On [0, +00) x K, i is bounded from above since F is compact. Therefore
lim;, y» A(t,q) = Oforall ¢ € K. It follows that A(-, g) is an orientation reversing
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diffeomorphism from (0, +00) onto (0, +-00) for all g. Hence there exists a positive
smooth function f on (0, +00) x K such that

1
A(f(r.q).q) = - Y (r,q) € (0,4+00) x K,

and for every g € K the function f (-, ¢) is an orientation preserving diffeomorphism
from (0, 400) onto (0, +00). Define the embedding

W: (0,4+00) x K — [0,400) x K, (r,q)— (f(r,q),q).
By construction WH) = %ao. We claim that W extends to a smooth embedding

W: [0, 400) x K — [0,400) x K with ¥ (0, g) = (0, q).
Postponing the proof of the claim, we note that: = ®oW is then the desired embedding.
The rest of the statement of the lemma follows immediately from the identity 1*A =
- 0.

We now show that the extension of W given by W (0, ¢) = (0, ¢) is smooth. Com-
bining (5.6) and (5.7) we get

feg
A, g) Vexp / ——dt | =r. (5.8)
1 u(z, q)

We consider the function

t
g(t.q) = A(Lq)—lexp</ ! dr)
1 u("—'J])

on (0, +00) x K and we define

W: (0, 400) x K — (0, 4+00) x K, W(t,q) = (g(t,q), q).
Then we have

ToW(r,g) = U(f(r.9),q) = (g(f(r,9).9).q) = (r.q)

on (0, +00) x K. We claim that U extends smoothly to [0, +00) x K by \TJ(O, q) =¢q
for all ¢ € K. To see this we define the function v : [0, +00) x K — R by

"30(t,q) — 1
vi(t, q) = f 'MEI—Q)dr-
1 u(t, q)
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We recall that the above integrand is smooth and bounded on [0, +00) x K and so is
the function v;. For every ¢ € (0, +00) and g € K,

"o — 1 "1
e’ = exp (/ - dr) = exp (logﬁ(r,q) logi(l, q) — / —dr)
1 u 1 U
"1
_ u(t,q) exp (_/ 7dT)
u(l, q) U

u(t,q)
i(l,q)

and so
gt.q) = A(l,q) e "D

Note that A(1,g) # 0. The above expression says that g extends smoothly to
[0, +00) x K by g(0,g) =0 forg € K. For t > 0 we compute

8tg(t,q) — A(l,q)_l e—vl(t,q)|: 8 'U](t q) A( ‘Z) + 81‘12([, q)i|

ul,q)  a(l,q)
@Qu(t,q) — 1) u(t,q)  oul(t, q)}
u(t,q)  a(l,q)  a(l,q)

= Al g)~ e [—
1

=A(l,q)” lL—utg e

By the smoothness of g, this expression also holds true for + = 0. In particular,
d:g(t,q) > 0 forall (¢, q) € [0, +00) x K. It follows that D@(t q) is invertible for
all (z,q) € [0, +00) x K. By the inverse functlon theorem, the extension of ¥ over
[0, +00) x K is C! and in fact C*°-smooth since U is smooth. m]

5.2 Ideal Liouville domains and contact structures

Ideal Liouville domains are particularly useful for clarifying the existence and unique-
ness of contact structures supported by open books in higher dimensions. We first
recollect some facts about open books.

An open book in a closed manifold M is a pair (K, ®) where

(obl) K C M isaclosed submanifold of co-dimension two with trivial normal bundle;
(ob2) ®: M\ K — S' = R/27xZis alocally trivial smooth fibration that on a deleted
neighbourhood (D \ {0}) x K of K reads ®(re'?, q) = 6.

The submanifold K is called the binding of the open book, and the closures of the
fibres of ® are called the pages. The pages are compact submanifolds with common
boundary K. The canonical orientation of S! induces co-orientations of the pages.
Hence if M is oriented, then so are the pages, and then also the binding as the boundary
of a page.

Another way of defining an open book is as follows. Let #: M — C be a smooth
function such that O is a regular value. Set K := h=1(0), and assume that ® :=
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h/|h|: M\K — S"has no critical points. Then the pair (K, ®) is an open book in M.
Moreover, any open book in M can be recovered via a defining function h as above,
and such a defining function is unique up to multiplication by a positive function on M.

Given an open book (K, ®) in a closed manifold M, one finds a vector field X
on M, called a spinning vector field, such that

(ml) X lifts to a smooth vector field on the manifold with boundary obtained from M
by real oriented blow-up along K, in which each disk D x {g} of the neighbour-
hood I x K is replaced by the annulus S! x [0, 1] x {g};

(m2) X =0on K andd®(X) =1 on M\K.

Then the time-27 map of the flow of X is a diffeomorphism
¢: F—F

of the 0-page F := ©~1(0) U K, which fixes K pointwise. The isotopy class [¢] of ¢
among the diffeomorphisms of F that fix K pointwise is called the monodromy of
the open book. It turns out that the open book is characterized by the pair (F, [¢]).
Namely, given the pair (F, ¢), one defines the mapping torus

MT(F, $) := ([0,27] x F)/ ~ where 27, p) ~ (0, p(p)).
This is a manifold with boundary. One has the natural fibration
O: MT(F, ¢) — S

with fibres diffeomorphic to F, and there is a natural parametrization of the fibre
0! (0) via the restriction of the above quotient map to {0} x F. Forevery ¢’ € [¢] there
is a diffeomorphism between MT(F, ¢) and MT(F, ¢') that respects the fibrations
over S! and the natural parametrizations of the O-fibres. Now, given MT(F, ¢) one
collapses its boundary, which is diffeomorphic to S' x K, to K and obtains the so-
called abstract open book OB(F, ¢). In fact, the closed manifold OB(F, ¢) admits an
open book given by the pair (K, ®), where ® is induced by ©. Moreover, for ¢’ €[],
the diffeomorphism between MT(F, ¢) and MT(F, ¢’) descends to a diffeomorphism
between the corresponding abstract open books. In particular, M and OB(F, ¢) may
be identified together with their open book structures. We note that one can choose
the spinning vector field X smooth on M and such that its flow is 27 -periodic near K.
However, not every representative of the monodromy class can be obtained via a
smooth spinning vector field, see Remark 12 in [54]. To obtain all representatives
of the monodromy class, one needs to use the whole affine space of spinning vector
fields.

Open books meet with contact topology via the following definition. Let M be a
compact manifold with a co-oriented contact structure £&. We say that & is supported
by an open book (K, ®) on M or that the open book (K, ®) supports & if there exists
a contact form o on (M, &), that is & = ker «, such that

e ( restricts to a positive contact form on K;
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e du restricts to a positive symplectic form on each fibre of ®.

It turns out that given a closed manifold M, the isotopy classes of co-oriented contact
structures on M are in one-to-one correspondence with equivalence classes of sup-
porting open books. This statement is a very rough summary of what is called the
Giroux correspondence. We will recall certain pieces of this celebrated statement in
detail.

Theorem 5.2 (Theorem 10 in [53]) Any contact structure on a compact manifold is
supported by an open book with Weinstein pages.

This result is the core of the correspondence between supporting open books and
contact structures. The existence statement of the opposite direction of the corre-
spondence is relatively easy to achieve, especially in dimension three. Namely, given
an open book in a 3-dimensional compact manifold, it is not hard to construct a
contact form on the corresponding abstract open book whose kernel is supported. In
higher dimensions, however, one needs that the pages are exact symplectic and that the
monodromy is symplectic in order to construct a contact form on an abstract open book
whose kernel is supported, see Proposition 9 in [53] and Proposition 17 in [54]. We
will carry out such a construction in Sects.6.1 and 6.2. Concerning the uniqueness
features of the Giroux correspondence, we are mainly interested in one side, namely
the “uniqueness” of supported contact structures. This result is again more involved
in higher dimensions. Heuristically, given an open book, the symplectic geometry of
the pages determines the supported contact structures. In dimension three, any two
symplectic structures on a page are isotopic since they are just area forms on a given
surface, but in higher dimensions this is not the case.

In [54] Giroux introduced the notion of a Liouville open book, which clears out the
technicalities to which we pointed above.

A Liouville open book (LOB) in a closed manifold M is a triple (K, ©, (wg)ges!)
where

(lobl) (K, ®) is an open book on M with pages Fg = @ ' (0) UK, 0 € S!;

(lob2) (Fy, wg)is an ILD for all § € S' and the following holds: there is a defining
function h: M — C for (K, ®) and a 1-form 8 on M such that the restriction
of d(B/|h|) to each page is an ILF. More precisely,

wp =d(B/I1hDIrFg

forall® € S!.

The 1-form B is called a binding I-form associated to h. If A’ is another defining
function for (K, ®), then i’ = « h for a positive function « on M, and B’ := k B is
a binding 1-form associated to h’. We also note that for a fixed defining function, the
set of associated binding 1-forms is an affine space.

Similar to the case of classical open books, LOBs are characterized by their
monodromy, which now has to be symplectic: One considers symplectically spin-
ning vector fields, namely vector fields X satisfying (m1) and (m2) and generating the
kernel of a closed 2-form on M \ K which restricts to wg for all & € S'. Given such
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a vector field, the time-27 map of its flow, say ¢, is a diffeomorphism of F := Fj
which fixes K and preserves w := wq. The isotopy class [¢], among the symplectic
diffeomorphisms that fix K, is called the symplectic monodromy and characterizes the
given LOB. For the construction of a LOB in the abstract open book OB(F, ¢), where
¢*w = w, we refer to Proposition 17 in [54] and to our construction at the end of the
next section.

Again, symplectically spinning vector fields form an affine space, and all repre-
sentatives of the symplectic monodromy can be obtained by sweeping out this affine
space. The obvious choice of a symplectically spinning vector field X is smooth, and
by suitably modifying a given binding 1-form without affecting its restriction to the
kernel of d® one can arrange that the flow of X is 2 -periodic near the binding.

Lemma 5.3 (Lemma 15 in [54]) Let (K, ©, (wg)ycst) be a LOB in a closed mani-
fold M, and let h: M — C be a defining function for (K, ®). Then for every binding
1-form B, the vector field X on M\ K spanning the kernel of d(8/|h|) and satisfying
dO(X) = 1 extends to a smooth vector field on M which is zero along K . Furthermore,
B can be chosen such that the flow of X is 2m-periodic near K.

Natural sources of LOBs are contact manifolds:

Proposition 5.4 (Proposition 18 in [54]) Let (M, &) be a closed contact manifold,
and let (K, ®) be a supporting open book with defining function h: M — C. Then
the contact forms o on (M, &) such that d(«/|h|) induces an ideal Liouville structure
on each page form a non-empty convex cone.

Let (K, ©, (wg)gest) be aLOB in a closed manifold M with a defining function /.
A co-oriented contact structure & on M is said to be symplectically supported by
(K, O, (wg)gest) if there exists a contact form « on (M, &) such that « is a binding
1-form of the LOB associated to /.

By our remark following the definition of a binding 1-form, the property of being
symplectically supported is independent of the given defining function. But the crucial
fact is that once a defining function is fixed, a contact binding 1-form is unique when-
ever itexists, see Remark 20 in [54]. Hence, once a defining function / is fixed, there is a
one-to-one correspondence between contact structures supported by (K, ®, (wg)ges1)
and contact binding 1-forms associated to #.

Given two contact structures &y and &1 supported by (K, ©, (wp)gcst), after fixing h
we therefore have unique contact binding 1-forms o and a7, respectively. Since the
set of binding 1-forms associated to / is affine, there is a path (8;);¢[0,1] of binding
1-forms such that 8o = o and f; = «1. Now it is not hard to explicitely deform the
forms B; without affecting their restrictions to ker d® in such a way that

e foralls > Oandt € [0, 1], B} is abinding 1-form for (K, ®, (wg)gcg1) associated
to & (since the deformation of g; leaves unchanged the restriction to the pages);

e (7 is a contact form for s large enough, uniformly in ¢ € [0, 1];

e if f; is already a contact form, then B} is a contact form for all s > 0.

By the first property of these deformations and by the uniqueness discussed
above, whenever B/ is a contact form then ker 87 is symplectically supported by
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Fig.8 Constructing an isotopy between & and &;
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(K , 0, (w)ges! ) and ] is the unique contact binding 1-form associated to 4. Together
with the other two properties we see that there exists ¢ > 0 such that the con-
catenation of the paths (ker B))sefo,c], (ker Bf)sefo,1] and (ker 7™ *)sefo,c] gives an
isotopy between &y and &; along contact structures that are symplectically supported
by (K, ©, (wg)ges1) (cf. Fig. 8).

In fact the following more general statement holds.

Proposition 5.5 (Proposition 21 in [54]) On a closed manifold, contact structures
supported by a given Liouville open book form a non-empty and weakly contractible
subset in the space of all contact structures.

6 Entropy collapse for Reeb flows in dimension > 3

This section is devoted to the proof of the following main result.

Theorem 6.1 Let (M, &) be a closed co-orientable contact manifold. Then for every
real number ¢ > 0 there exists a contact form o for & such that I' (@) < e.

We prove the statement by induction on n, where dim M = 2n + 1. The initial
case n = 0 is clear: Then M is a circle, and the Reeb flow generated by the vector
field dg has vanishing norm growth. It may be interesting to read the subsequent proof
for n = 0 and to compare the line of argument with the one of Sect.4.

We now assume by induction that Theorem 6.1 holds for n — 1 > 0 and fix a
contact manifold (M, &) of dimension 2n 4 1. By Theorem 5.2 there exists an open
book (K, ©) in M supporting £. Let Fp :== O~ (@) UK, 0 € S' = R/2x7Z, denote
the pages of the open book and let 2: M — C be a defining function for (K, ®). We
wish to construct a contact form on the abstract open book defined via the 0-page

F:=Fy=0"10)UK. (6.1
By Proposition 5.4, there exists a contact form « on (M, &) such that the triple
(K,0,da/|hD|r F;) is a LOB which supports & symplectically. By Lemma 5.3, we

can modify the contact binding 1-form « without affecting its restriction to the kernel
of d®, to obtain a binding 1-form @, not necessarily contact, such that the flow of the
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associated symplectically spinning vector field X is 2 -periodic near K. Hence the
time-2mr map of the flow of X gives us a diffeomorphism ¥ : F — F such that

Y (dr) = di (6.2)

where A € Q!(F°) is the ILF
A= @/IhDIrFe = (a/[AD T Fe (6.3)
and ¥ = id on some neighbourhood of K in F. Now our aim is to recover M as the

abstract open book induced by the pair (F, ) and to define a contact form on the
abstract open book with small norm growth. We first consider the mapping torus

MT(F, ) := ([0, 2] x F)/(27, p) ~ (0, ¥(p))).

Since ¥ = id on some neighbourhood of K, the boundary d MT(F', ¥) has an open
neighbourhood given as a product of K with an annulus, in which we collapse the
boundary and get the abstract open book OB(F, /). We postpone the precise collaps-
ing procedure since it will involve choices of coordinates, but note that the abstract
open book is independent of these choices, and that we can make the identifications

MT(F°, ) = MT(F, ) \ dMT(F, ) = OB(F, ¢) \ K.

6.1 A family of contact forms away from the binding

On [0, 2] x F° with 6 the coordinate on [0, 2], we define the family of 1-forms
ag=d0+s(A+xO)ry), >0 (6.4)

where Ay = ¥*A — A and x: [0,27n] — [0, 1] is a smooth function such that

x(0) = 0, x(2r) = 1 and x’ has support in (0, 27). By the choice of yx, each

1-form o5 descends to a 1-form on MT(F°, v), that we still denote by «;.

Lemma 6.2 There exists so > 0, depending on r, A, x, such that o is a contact form
on MT(F°, ) forall s € (0, so].

Proof Since di.y, = 0, we get doyg = s (x'd6 A Ay +d)) and

oy A (dag)" = (A0 + 5 (A + xhy)) A 5" <nx’d9 Ay A @0 4 (dk)”)

— s"do A ((a’k)" —nsx'A A Ay A (dk)”_l).

Since d® A (d1)" is a volume form and since with Ay also A A dO A Ay A (dr)r—1
is compactly supported in MT(F°, /), there exists so > 0 such that oy A (day)" is a
positive volume form for all s € (0, so]. O
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Next, we study the Reeb vector field Ry, of oy on MT(F°, /). Let Y be the vector
field on MT(F°, ¥) that is tangent to {#} x F° for each 6 and along each {#} x F°
satisfies

tydh = —x Ay

Since ¥’ = O near 0 and 7, Y is well defined, and since v is compactly supported
in F°, Y is compactly supported in MT(F°, ). We compute

Lp+y)doty =8 (1(39+Y)X/d9 Ary + 1(39+Y)d)»)
=s5x'(hy — Ay (Y)dO — 1y)
=sd\Y,Y)do = 0.

Hence on MT(F°, ¥r) the Reeb vector field of «; is

0g +Y

G ©63)

Ay

Note that R,, = dp near K. Since the dy component of R, never vanishes and since
Y is tangent to the pages, Ry, is transverse to F'° x {6} for all 6. Hence F° is a global
hypersurface of section for Ry, on MT(F°, ¥). We have the first return time map

T,: F° > R, Ty(p) = inf {t > 0| p, (0. p) € {0} x F} (6.6)
and the first return map

T:F°— F°, (0,Y(p)=¢r?0,p) VpeF°. 6.7)

os

Remark 6.3 Since R, is a multiple of the vector field d9 + Y that does not depend
on s, the return map Y is independent of s. This justifies the absence of the subscript
in (6.7).

We note that for all s € (0, sg],
Ty, =27 and Y =id on F° \ supp ¥. (6.8)

Recall that we write I"(«y) for the norm growth I' (¢, ) of the Reeb flow q)&s.

Lemma 6.4 There exists s1 € (0, so) such that for every s € (0, s1],
7 <Ty, <4m onF° (6.9)
and such that
I(a) < E (6.10)
for some constant E > 0 that depends only on ¥, A, x.
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Proof We compute

1 1
@@ +Y)  1+s(h(Y)+ xry (1))

d6 (Ry,) =
Since Y is compactly supported, we find s1 € (0, s9) such that for every s € (0, s1],

1 1
—<——— <2 on MT(F°, ¥). 6.11
27 (@ +Y) e (©10

The inequality (6.9) follows. For the second claim, we apply Proposition C.2 to the
vector field dyp + Y and the positive function PRCTESGL and in view of (6.5) and (6.11)
find that T'(cts) < 2T (¢pg,+v) =: E. O

6.2 A family of contact forms near the binding

Let E > 0 be the constant from Lemma 6.4. By our inductive hypothesis, for any
& > 0 there exists a contact form o, on (K, £|g) such that

vol,, (K) =¢ and I'(o;) < E. (6.12)
Indeed, there is a contact form «g on (K, £|x) such that
volgy(K) =1 and T(ag) < e'/"E.

We can thus take o, := ¢!/" qy.
Applying Lemma 5.1 to o, we obtain an embedding

1
1g: [0, 400) x K < F such that iJA = — o, (6.13)
r

and 1,(0, g) = g for every ¢ € K. This embedding induces the smooth coordinate
r € [0, +00) on a neighborhood of K = dF in F. There exists r, > 0 that depends
only on ¥ and o, such that

1 ([0,r:] x K) N suppyr = 0. (6.14)
We define
Fe:=F\ (1:(10, ) x K)) (6.15)
and note that near the boundary of MT(F;, ¥) the expression (6.4) for s reads

o =do + ;ag. (6.16)
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Y
<

Fig.9 The functions f and g

Lemma 6.5 Forevery e > 0 and s € (0, rc/2) there exist smooth functions
f.8:10,r;] = R

with the following properties.
(f1) f(r) =s/rnearr =re and f(r) = 1 nearr = 0.
(f2) f(re/2) =1/2.
(f3) =2/re < f' <0o0n[0,r.]and f' <O0on[re/2,rc].
(gl) g=1lonlre/2,rs]and g(r) = r2/2 nearr = 0.
(g2) 0<g' <4/reon[0,r:]and 0 < g’ on (0, r./2].

See Fig.9. The easy proof is left to the reader. For later use we note that the function.
h=fg —fg:10,r;] > R

is positive on (0, r.], satisfies h(r) = r near r = 0, and

4 2 6
h< —+>==— on0,r] (6.17)

re I'e re

Furthermore,

n [0, re]. (6.18)

|9
IA

Indeed, for r € [r¢/2, r¢] we have (g )(r) = 0by (gl). In 0 we have £ 5 = 0. Further,
> 0.

for r € (0, %] property (g2) shows that g’(r) > 0, and hence — f’ 5 Since
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f(r) = % by (f2) and (f3), we conclude that

as claimed.
Given ¢ > 0 and s € (0, r./2), we define the 1-form

as,6(0,r,q) == g(r)do + f(r)oe(q) (6.19)

on St x [0, r.] x K. We note that by (f1) and (g1),

2
a5:0,r,q) = %d@—i—ag(q) near r = 0.

By considering 6 and r as angular and radial coordinates on the disk r.ID, we thus see
that the 1-form o ¢ is smooth on r.ID x K.

Lemma6.6 Fore > 0ands € (0, r:/2), as ¢ is a contact form on rD x K.

Proof We compute

e A (dag ) = (8d0 + foe) A(g/dr AdO + fldr Aog + f dog)"
=nh " Y(dr AdO Ao, A (dop)" ") (6.20)

where h = fg’ — f’g. Since f"~'h > 0 on (0, r,], it follows that oy ¢ 18 a contact
form away from K. Near K we have h(r) = r, so that there o5 o A (dos )" reads

n(rdr AdO Ao, A (ng)"_l),

which is a positive volume form at any point on K. O

Away from K the Reeb vector field is

£ Jrg(r)

RC(LS (91 r, Q) = - h(r) (7 h(l") RU@ (Q)
and has the flow
/ g
¢, 0.1, q) = (e - % tr. g ’(q)) , (6.21)

where ¢/ is the flow of Ry, .

Lemma 6.7 Fors € (0, rs/2) we have I' (a5 ¢lr.Dxk) < 2E.
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Proof By continuity it suffices to estimate the differentials of qﬁ"g away from K. We
choose abasis dg, 9, 9y, , . . ., 9g,,_, Of the tangent space at (6, r, g). In view of (6.21),

the images of these vectors under d gbéi”g @,r,q) are

\ AY +(4)0
897 ?(%)(”)nae‘i‘ari(%)(”)HRJ‘M d¢0‘g(h) n(evr’q)aqj‘

. , 1
The size of the functions (%)/ and (£)' plays no role when we apply lim — log, and
n—oo n

together with (6.18) we find that
g/
(£)o

The lemma follows together with assumption (6.12). O

['(0e) = 2T (o).

C(oselrDxk) = max

6.3 A family of contact forms on OB(F, y)

For every ¢ > O and s € (0, r./2), we define

{as on MT(Fg, ¥)
Uy e =

g e = g(r) do + f(}") o, onr:D x K (6.22)

on the abstract open book

OB(F,¢) = MT(F,, ¥) U (r:D x K)
where oy on MT(Fg, ) is defined by (6.4) and f and g are given in Lemma 6.5.
By (6.16) and the properties (f1) and (gl), each «; ¢ is a well-defined contact form

on OB(F, ¥).
We first estimate the volume.

/ Ug e N (das,s)n = / g N (das)n + / Og e N (das,s)n-
OB(F,y) MT(Fe,v) reDx K

For s € (0, s1], where the positive number s7 is given by Lemma 6.4, we have

/ oy A (day) = / T, (dasloye )" = f s @y < 25" [ @,
MT(Fg,v) Fe Fe

&

where we used (6.9) in the last inequality. For the second term we use (6.20), the
assumption (6.12), and f < 1 and (6.17) to estimate

/ as.e A (dog )" = / nh ! (dr AdO Ao A (dog)"fl)
reDx K reDx K
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re
=2mn Volgg(K)/ h " ldr
0

< 127mne.

Together we get
/ ase A (dag )" < 25" | (V)" + 127ne. (6.23)
OB(F,¥) Fe

Next we estimate the norm growth I". The bound (6.10) also applies to the subset
MT(Fg, ¥) of MT(F°, ¥) since I is monotone with respect to inclusion of compact
invariant subsets. Since MT(Fg, ¥) and r.[D x K are invariant under the flow, we
conclude together with assertion (3) of Proposition C.1 and Lemma 6.7 that

T(ats,e) = max {T (s [mr(F,,9))s T (s e lrDxk) } < 2E. (6.24)

Now given any g9 > 0, we choose ¢ > O such that 127n¢e < g9/2. Once ¢ is fixed,
so are r, and ng (d))™. If we choose s > 0 such that

1
§ Smln s19r_87 8—0 )
2 4/‘F;(d)‘)n

then the right-hand side of (6.23) is < g¢. Since n!w, > 1 we thus get a contact form
ag . on OB(F, ¥) such that

[(ag¢) <2E and  voly, , (OB(F, ¥)) < &. (6.25)

The last step of the proof consists of pushing the contact form oy . to M in such a
way that the contact structure ker o  is mapped to &. This is possible thanks to the
following lemma.

Lemma 6.8 There exists a diffeomorphism p of M such that p,(§) = ker oy ¢.

Postponing the proof, we use the lemma to complete the proof of Theorem 6.1.
Thanks to the lemma, the 1-form

v = (volg,, (OB(F,v))) /" pray, (6.26)

is a contact form on (M, &), and vol; (M) = 1. By the elementary properties (1) and
(4) in Proposition C.1 and by (6.25),

=~ 1 1

F(1) = T(1) = (volg,, (OB(F, )"V T(e;) < QE) ().
Since the constant E from Lemma 6.4 depends only on ¥, A, x, which are fixed data
associated with (M, &), and since gy > 0 is arbitrarily small, we obtain t with I'(7)

as small as we like.
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6.4 Proof of Lemma 6.8

We first show that the obvious open book structure on OB(F, v) is a Liouville open
book with contact binding form «; .. Let

©: OB(F,¥)\ K — §!

be the fibration induced by the projection MT(F, /) — § ! We construct a defin-
ing function & as follows. As before, we consider the variable r € [0, 400) on a
neighborhood of K = 90 F in F that is induced by the embedding (6.13). Let

i: F — [0, 00)

be a smooth function and d > 0 and § > 0 be constants such that

(df1) ua(r,q) =r for (r,q) € [0, r:] x K,
(df2) u=d on ([0, r, +8) x K)¢ and supp ¢ C ([0, re + 8] x K)€,
(df3) # depends only on r and 9,z > O on [0, rg 4+ 8] X K.

See Fig. 10. Since i is constant on supp v, the S!-invariant extension of i is a well-
defined smooth function on MT(F, ), which constitutes the function |h| Pairing
|| with ® leads to a well-defined defining function h for the open book (K, ®)
on OB(F, ). Note that on r,ID x K, & is simply the projection to the disk 7D, which is
smooth.

Claim1 d(ocs,g/|}~z|) induces an ideal Liouville structure on each fibre of o.

Proof Foreach 6 € S! we abbreviate

Ap 1= (as,a/|m)|T({9}xF0)- (6.27)

Isg1

t % =7 X K
re re+0

Fig. 10 The function i, schematically
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We need to check that dig is a positive symplectic form on {#} x F° = 0! (0). We
do this on the three regions separately:

On {#} x (0, r¢] x K: By (6.22) and (df1) we have

bt f@r)

9 =

O (6.28)

and so

! —_
igy =nf L ran dr Aog A (do)" ™"
r

In view of the parametrization (6.13), d (%08) is a positive symplectic formon {6} x F°,
whence (d(%ag))” = —rn% dr A o, A (dog)"™! is a positive volume form. Since
f:r — f < 0 by (f1) and (£3), it follows that (dig)” is a positive volume form, i.e.,
d)g is a positive symplectic form.

On {6} x [re, e + 8] x K: By (df2) we have 1y = id on this set. Hence, by (6.16),

i = — o, (6.29)
ru

By (df3), i depends only on r. We thus obtain

U +rou

n—1
anV/\Gg/\(dUg) .

(dhg)" = —s

Also by (df3), u + r d,u > 0, and the claim follows as in the previous case.
On {6} x ([0, rs + 8) x K)¢: By (df2), t = d and

ip = 3 (A + x(O)ry). (6.30)

Hence dig = %dA, which is a positive symplectic form. O

Now we are in the following situation. On OB(F, {) we have the Liouville open
book

(K. ©.d(@/IhDIro)xr)) (6.31)
which symplectically supports the contact structure & = ker «. Here «, £, and / stand
for the objects induced by the correspondence between M and OB(F, y) given by the

symplectically spinning vector field X on M. Moreover, by Claim 1 we have a second
Liouville open book

(k.8 (e /D)o ) (6.32)
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which symplectically supports the contact structure ker o .. By the identities (6.28),
(6.29), and (6.30), the ideal Liouville structures (d (cty.e /111) | 7((6)x F*)) g g1 are invari-

antunder the flow of the vector field d5. Although Lo in (6.30) is not invariant under this
flow, the symplectic form dig = 3 d) is. The vector field dp is therefore a symplec-
tically spinning vector field on the LOB (6.32). Note that the symplectically spinning
vector field X on M also reads dg on the LOB (6.31).

Claim 2 There exists a diffeomorphism
d: OB(F,y) — OB(F, ¥) (6.33)
such that ® 0 ©® = © o ® and the restriction of ® to each fibre is symplectic, that is,
O*d (s, /1hl) T o)< oy = d(/1h]) 7 gy oy VO €S

If such a diffeomorphism exists, then ker ®*o; . and ker o are two contact struc-
tures on OB(F, ¥) which symplectically support the Liouville open book (6.31).
Hence they are isotopic by Proposition 5.5. By Gray’s stability theorem we then find
a diffeomorphism p of M such that p,(ker o) = ker ®*w; .. Set p = ® o p. Since
ker ®*ag . = @;1(ker ay.¢), we conclude that p,(ker) = keray ¢, as claimed in
Lemma 6.8.

Proof of Claim 2 'We have the following ideal Liouville structures on the 0-page:

i= d(as.e/1h1) 70} x Fo). (6.34)
= d(a/|h)) |70y Fo) = d. (6.35)

N

S

We first show that
wr=1—-Ho+to
is symplectic on F° for all # € [0, 1]. In fact, we claim that
=0 —DOr+1r (6.36)

isa ]:,iouville form on F° forallz € [0, 1], where A is the primitive of w given by (6.3)
and A is the primitive of @ given by (6.27). Again, we compute d A, on different subsets
of F°:

On {6} x (0, r.] x K: By (6.28) we have

S @) Kk(r)

O =

1
M=0—=1t)—0.+t O
r

r
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where k = (1 —t) +1f. We have « > 0 and «” < 0, so that «’r — k < 0. Hence the
claim follows as in the first case of Claim 1.

On {0} X [re, re + 8] x K: By (6.29) we have

1
)\IZ(I_t)_O'€+ti~Us:K(r)Ue
r ru r

where k = (1 — ) +ts/u. We have k« > O and k¥’ < 0, so that «'r — x < 0. The claim
follows as above.

On {#} x ([0, re +8) x K): By (6.30) we have

S S
dii = (1= )dh+1 5 dh = ((1—:)+z3) .

Hence w; = dA; is symplectic on F° for all ¢ € [0, 1].
Recall that by (6.13) and (f1),

~ 1 .
w=w=d (— 08) on a deleted neighbourhood of K.
r

Hence this identity holds on the same deleted neighbourhood of K for all the symplectic
forms wy, t € [0, 1]. Applying the standard Moser argument to the path w,, we obtain
a smooth isotopy (¥ ):¢[0,1] of F such that

(V1) Yo =id;
(V2) ¥, =id near K for all t € [0, 1];
(W3) ¥ w;, = wp = wforallz € [0, 1].

Now we define ®: [0, 27] x F — [0, 2] x F by

®(0, p) = <9, Yrovy oy o x/x;(p)) (6.37)
2 g
where ¥ is the monodromy that we fixed at the outset of the proof. We note that

@2, p) = (27, ¥ o Y1 (p)),
and by (W1),
@0, ¥(p)) = 0. ¥1(p) = (0. ¥ (¥~ o ¥1(p))).
Hence @ descends to a diffeomorphism on MT(F, ¥). Since ¥ = id near K and
Y, = id near K for each ¢t by (¥2), we have that ® = id on a neighbourhood
of d MT(F, ¥). HCLlCC @ descends to a diffeomorphism on OB(F, v). By definition,

® commutes with ®.
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Now recall that 9y is a symplectically spinning vector field for both LOBs (6.31)
and (6.32). In view of (6.34) and (6.35) and identifying {#} x F° with {0} x F° via
the flow of 9y, we can therefore identify

d(a/Ih)|T o)< Fe) With @l7(o)xre) == o,

d(as.e/1h) 7oy Foy With Blreyxre) i= @.

Also recall that ¥ *w = w. Since 9y generates the monodromy ¥ and preserves @, we
also have ¥*@ = . Therefore, ¥*w, = w; for all r € [0, 1]. Inserting (6.37) and
using (W3) we obtain, with the abbreviation Fg = T ({0} x F°),

*d(as,o/ 1) Fg = P*B|
=(Wov, oy oy ) alr
2 2r
=V 7D W) Yenls
=V ) V) eolg
=¥ WD) e lr
=y 0o lrg

7 27
= wolrpe = ol = d(@/Ih])]Fs.

This concludes the proof of Lemma 6.8, and hence of Theorem 6.1.

7 Full entropy spectrum

By Theorem 6.1 every closed contact manifold (M, £) admits normalized contact
forms with arbitrarily small topological entropy. On the other hand, one can always
find normalized contact forms o on (M, &) with arbitrarily large topological entropy.
We first sketch a direct proof of this fact. A proof of a stronger statement relying on
our previous construction is given thereon.

Existence of contact forms with large entropy. Choose a transverse knot y, that is, a
simple closed curve y: S! — M such that y is everywhere transverse to £. Let B>
be the closed ball in R?* of radius 1. By the normal form theorem for transverse knots
[52, Example 2.5.16], we find a full torus 7 = B2 x S! around y with coordinates
B1,...,6u,11,...,7s, q) such that y is parametrized by r; = 0 and ¢ and such that
on 7 the contact structure & is the kernel of 7 :=dg + }_; r; db;.

Next, take a second such full torus (73, t2) that is disjoint from 7, perturb 7 in
the interior of 75 to a contact form ¢} with positive topological entropy, and take a
contact form « on (M, §) that agrees with r on 7 and with ) on 7. Now for § > 0
let F: M — R be a positive smooth function that is equal to § outside 7, on 7
depends only on the coordinates ry, ..., r,, and is such that volg; (7)) = 1. Take the
smooth contact form «s r on M that is equal to Fr on 7 and to o on M\7. Then
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hiop(ats, pl7) = 0 whence

htop(aé,F) = htop(“S,F|M\T) = htop(5a|M\T) =" htop(a)~

With this one then readily finds

htop ((X) n+1

(;l\top(OlS,F))n_‘_l = (ﬁlop(a|M\7))n+1 +(

Varying § on (0, oo) we obtain a normalized contact form with topological entropy ¢
for every ¢ > hop(ct|p\7)- O

Remark 7.1 For spherizations $* Qy of closed orientable surfaces of genus k > 2 this
result has been obtained in [45] inside the much smaller class of geodesic flows of
negatively curved Riemannian metrics: For every ¢ > 2m+/2(k — 1) there exists a
negatively curved Riemannian metric g on Qg such that EtOB\(g) = c. In the class of
all Riemannian metrics, geodesic flows with arbitrarily large hop were constructed on
all closed manifolds of dimension at least two already in [70].

We shall now combine the above argument with the construction in the proof of
Theorem 6.1 to prove the following more precise result.

Proposition7.2 Let (M, &) be a closed co-orientable contact manifold of dimension
2n + 1 > 3. Then for every ¢ > 0 there exist normalized contact forms o and o'
on (M, &) such that hyop(a) = c and T' () = c.

Proof We give the proof for the topological entropy. The proof for the norm growth I
is similar. Fix ¢ > 0 as in the proposition. As in (6.26) let

r = U*]/(nJrl) ,O*Ols,g

be a contact form with hyp(t) < ¢ and vol;(M) = 1. Here we abbreviated v :=
volg, , (OB(F, w)). In view of (6.25) we can assume that

v<1. (7.1)

Recall that s . onr.ID x K was constructed recursively, starting from the circle S ! For

Jj=1,...,nlet f;, g;, h; be the functions from Lemma 6.5 that we used in (6.19) to
construct o ¢, on rgj]D) x K;j.Setr = min{rg,, ..., re,} > 0.Let B2 (r) be the closed
r-ball in R?" with polar coordinates (0,r) = (61, ...,6,,71,...,7,), and abbreviate

T, = B¥(r) x S.

For 6 > 0 choose a positive smooth function F: OB(F, 1) — R with the follow-
ing properties:

(F1) F=6on7° := OB(F, Y)\7;.

(F2) F only depends on r on 7.

(F3) volpq, . (T,) = L.
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Lemma7.3 hyp(Fogel7) =0.
Proof The full torus 7, is foliated by the tori

Ty:i= SH S x {r=(1,...,r)} x S!
with r, ..., r, > 0 constant, of dimension k + 1 < n + 1. By (f1) and (gl),

8@y
hj(rj)

firy)
- = —2r; and

= =1 forr; near0. (7.2)
hj(rj) /

Writing out (6.21) recursively and using (7.2) we see that the Reeb flow of o . leaves
the tori T, invariant and on each T} is a Kronecker flow.
Applying now (6.19) recursively we see that on 7.,

o5:(0,1,9) = p1(X)dO + - - + pu(r)db, + p(r)dg

with smooth functions p;, p. The Reeb flow of any 1-form of this form leaves the tori T’

invariant and there restricts to a Kronecker flow. This is clear at r if the Jacobian

determinant of %(r) does not vanish, and in general follows by approximation.
J

Therefore, for each r the Reeb flow of Faj . is a Kronecker flow on Ty, and hence
hiop(Fets ¢|T,) = 0. The variational principle for topological entropy now implies
that

htop(Fas,a) = Ssup htop(Fas,£|Tr) =0,
r

as claimed. O

By Lemma 7.3 the topological entropy of «; . and Fog . on 7, vanishes. Together
with (F1) we obtain

hiop(Fots.e) = hiop(Fots e|7¢) = § hiop(@s.el7e) = 5 hiop(@tse).  (7.3)
Now consider the contact form
(Fop)yt = v 10D p*(Fay ) (74)

on (M, £). By (7.4) and (7.3),

-~ 1 1

Tiop((F 0 0) 7)™ = Vol (Fop) (M) hiop((F 0 p)7)" "
= v Vol g, (OB(F, ¥)) v hop(Fatg o)™
= vol g, , (OB(F, ¥)) 8"tV hgp(ars )" .

By (7.1), v := volg, (7)) € (0, 1), and by (F1) and (F3),
Vol g, (OB(F, ¥)) = 148"y,
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whence
=~ 1 —
Fiop((F 0 p) 7)™ = (467D higpla )" = (8™,

Assume first that Ap(ots,e) > 0. Then the range of the function f: (0, 00) — R is
yl/(”“) hiop(ts.¢), 00). Since v < 1 and hop(a5.¢) < ¢, we in particular find § such
p s, p&s,
that htop((F 0p) 1:) = c¢. If hyop(ag,e) = 0, Proposition 7.2 follows from the following
result.

Lemma 7.4 We can assume that hyop(cts ¢ IMT(F,,y)) > 0.

Proof Assume that hiop (s, IMT(F,,y)) = 0. By Theorem 6.2 in [76] there exists a
contact form aé)s on MT(Fg, ¥) that is C'-close to a5 ¢ and equal to oy . near the
boundary, and whose Reeb flow has a generic 1-elliptic periodic orbit. Hence this flow
contains a hyperbolic basic set, and therefore /op (oz;’ ¢) > 0.Further, the C L_closeness
of oy . and «; . implies that all the 1-forms

(I -9)age+sa;,, sel01],

are contact forms. Gray’s stability theorem therefore shows that there exists a diffeo-
morphism ¢ of MT(Fg, ¥) that is the identity near the boundary such that the kernel
of (*a;!g is &. The contact form on (M, &) that agrees with s . on M\ MT(F¢, V)
and with £*a; . on MT(Fe, v) is the contact form we were looking for.

Newhouse’s full Theorem 6.2 starts with the C!-closing lemma, and holds in all
dimensions. We do not need to appeal to the closing lemma in our situation, and we only
need the easier 3-dimensional result: Assume that dim M = 3. By (6.8) we can choose
a flow-invariant neighbourhood U C MT(F%, 1) of the boundary of MT(F¢, ¥) such
that all orbits in U are closed. Let y be one of these orbits that is not on the boundary
of MT(Fp, V), and choose a flow-invariant open neighbourhood N (y) whose closure is
also disjoint from the boundary of MT(Fg, v). Since N (y) is foliated by closed orbits,
y is elliptic. Using the Birkhoff normal form theorem and the KAM theorem, one can
(o 1-perturb a5 ¢ to a contact form Oléy . that agrees with o , outside N (y) and whose
Reeb flow has a transverse homoclinic connection near y, see [97]. This Reeb flow
therefore contains a horse-shoe and thus has positive topological entropy. As above we
can isotope « , without changing it outside N (y) to a contact form o], for (M?, §).
Proceeding from this contact form with positive topological entropy, our inductive
construction in Sect. 6.2 shows that o, on M>"*1 also has positive topological entropy.
Hence this also holds true for o . on the boundary of MT(F¢, ¥) and therefore, by
the monotonicity of topological entropy, also on MT (F, ¥). O

8 Collapsing the growth rate of symplectic invariants
Theorem 1.1 on the collapse of topological entropy of Reeb flows implies the collapse
of the growth rate of two symplectic invariants: symplectic homology and wrapped

Floer homology.
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8.1 Liouville domains and fillings

Recall thata Liouville domain is a compact exact symplectic manifold W = (W, @, 1)
with boundary ¥ = 0 W and a primitive A of @ such that ¢y = A|y is a contact form
on X. The Liouville 1-form A also induces the contact structure £y = keraty on X.
The Liouville domain W is called an exact symplectic filling for the contact form ey,
and we say that the contact form ayy is exactly filled by W.

A standard construction (see for example [11, Section 2.2.1]) shows that if a contact
form « on a contact manifold (X, &) is exactly filled by a Liouville domain W, then
we can construct for any other contact form a’ on (X, &) a Liouville domain W, that
fills o’. It therefore makes sense to say that a contact manifold is fillable by Liouville
domains.

8.2 Symplectic homology and collapse of its exponential growth

Let W, be a Liouville domain filling the contact form « on the contact manifold (X, ).
The symplectic homology SH(W,,) is a homology theory associated to W,. While
there are various versions of symplectic homology, we here consider the one originally
developed by Viterbo [94].

Geometrically, one can think of the chain complex associated to SH(W,,) as the
Z»-vector space generated by the periodic orbits of the Reeb flow of « and by the
critical points of a C?-small non-positive Morse—Smale function f: W, — R such
that £~1(0) = X is a regular energy level. The differential of SH(W,) counts Floer
cylinders connecting generators. We refer the reader to [24, 78] for details.

There is a filtration of SH(W,,) by the action of its generators. For the Reeb orbits
the action equals the period. For each real number a > 0 let SH~*(W,) be the
homology of the subcomplex generated by the Reeb orbits of action < a and the
critical points of f. The inclusion of this subcomplex induces the homomorphism of
Zh-vector spaces

wo: SHY(W,) — SH(Wy).
We define the exponential growth rate of SH(W,,) by

F(SH(W,)) = fim sup 28 (2K (¥e))

a—+00 a
The following remarkable result is due to Meiwes [74].

Theorem [f W, is a Liouville domain filling a contact form a on (X, §), then

htop(¢a) = F(SH(Wa))-

Together with Theorem 1.1 we obtain the following result.
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Corollary 8.1 Let (X, &) be a contact manifold fillable by Liouville domains. Then for
every ¢ > (0 there exists a contact form o with voly (X) = 1 such that

['(SH(Wo)) < ¢,

for any Liouville filling W, of «.

It follows that one cannot, in general, recover the volume of a contact form « from
the exponential growth rate of SH(W,,) of a Liouville filling W,,. To obtain a better
geometric formulation of the corollary, we notice that if W, = (WZ", Wy, Ay) 1S a
Liouville filling of &, then the symplectic volume f W, (wg)" equals the contact volume
of voly(X). Corollary 8.1 thus says that every Liouville fillable contact manifold
admits fillings by Liouville domains of symplectic volume 1 and arbitrarily small
growth of symplectic homology.

In the opposite direction, one can ask if for a fixed contact manifold (X, £) there
exists a constant Ky ¢ such that

[(SH(W)) = Ksx¢

for every Liouville domain W that fills some normalized contact form on (X, £). A
partial negative answer to this question is given by the following result. Recall that the
spherization of a closed manifold Q is the contact manifold (S*Q, &, ) whose Reeb
flows comprise the co-geodesic flows of Riemannian metrics on Q.

Lemma 8.2 Let Qi be the closed orientable surface of genus k > 2. Then for every real
number ¢ > 27w /2(k — 1) there exists a contact form o of volume 1 on (S*Qy, &can )
and a Liouwville domain W, filling o such that

[(SH(W,)) = c.

Proof Tt follows from [45, Theorem A] that for any real number ¢ > 272k — 1)
there exists a negatively curved Riemannian metric g with area 1/(27) such that the
topological entropy of the geodesic flow ¢, is equal to c. Let o be the contact form on
(S*Qk, &can ) Whose Reeb flow is the co-geodesic flow of g. Then voly (S* Q) = 1
and htop(¢a) = htop(¢g) =cC.

Let W, = D*(g) C (T*Qk, Acan) be the unit co-disk bundle associated to the
Riemannian metric g, where Acqp is the Liouville form on the cotangent bundle 7* Q.
Then W, is a Liouville domain filling «.

Since the Riemannian metric g is negatively curved, a theorem of Margulis [71]
shows that

log (P! (¢

where P’(¢y) denotes the number of periodic orbits of the flow ¢, of length < ¢,
see also [25]. Since all periodic Reeb orbits have Morse index zero and are non-
contractible, there are no Floer cylinders starting or ending at these orbits. Hence there
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is a bijection between the Reeb orbits of action < a and the generators of SH* (W),
up to a finite error coming from the finitely many critical points of the function f. It
follows that

log (P! (¢
P(SH(Wo) = lim M

see [7, 67] for details. Combining these two equalities we get

F(SH(Wq)) = hiop(¢a) = ¢,

while as noted above vol, (S* Q) = 1. O

8.3 Wrapped Floer homology and collapse of its exponential growth

In a similar way we obtain a collapse result for the exponential growth of another
symplectic invariant called wrapped Floer homology. The wrapped Floer homo-
logy WH(W, L) is an invariant associated to a Liouville domain W and an asymptoti-
cally conical exact Lagrangian submanifold L of W. One of several references giving
the precise definition of WH(W, L) is [11].

With « the contact form on the boundary of a Liouville domain W, one can think
of the chain complex associated to WH(W,,, L) as the Z,-vector space generated by
the Reeb chords of « that start and end on 9L, and by the intersection points of L
and a C2-small perturbation of L. The differential of WH(W,, L) counts Floer strips
connecting generators.

As in the case of symplectic homology there is a filtration of WH(W,,, L) by the
action of the generators, and again the action of Reeb chords is equal to their time.
For each real number a > 0 let WH=%(W,, L) be the homology of the subcomplex
generated by Reeb chords and intersection points of action < a. Again there are natural
homomorphisms

we: WH(Wy, L) - WH(W,, L),
and we define the exponential growth rate of WH(W,,, L) by

T (WH(Wq, L)) := lim sup log (rank (¥5))

a—+00 a

The following result was obtained in [11].

Theorem Let W, be a Liouville domain filling a contact form o on (X, &), and let L
be an asymptotically conical exact Lagrangian submanifold of W, whose intersection
with dWy, is a sphere.) Then

hop(dpe) = F(WH(Wy), L).

! The assumption that L N W, is a sphere has been removed in [47] using the techniques introduced
in [31]. This can also be achieved with the methods developed by Meiwes in [74].
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Together with Theorem 1.1 we obtain

Corollary 8.3 Let (X, &) be a contact manifold fillable by Liouville domains. Then for
every ¢ > (0 there exists a contact form o with voly (X) = 1 such that

F(WH(We, L)) =< &,

for any Liowville filling W, of o and any asymptotically conical Lagrangian
submanifold L of W, whose intersection with OW y is a sphere.

Classical examples of pairs (W, L) are the unit co-disk bundles D*(g) over a
closed Riemannian manifold Q, with L a co-disk D; (g) over a point ¢ € Q. Here is
the analogue of Lemma 8.2.

Lemma 8.4 Let Qy be the closed orientable surface of genus k > 2. Then for every real

number ¢ > 2w +/2(k — 1) there exists a Riemannian metric g on Qi of area 1/(21m)
such that

C(WH(D*(g). D(g)) = c.
Proof As in the proof of Lemma 8.2 we appeal to [45] and take a negatively curved

Riemannian metric g on Qy of area 1/(27) whose geodesic flow has topological
entropy

htop(g) = C.

Since g is negatively curved, Manning’s inequality in Theorem A.2 is an equality,

htop (&) = hv(g).
On the other hand, it is clear that

log C'(¢g. )
t

hyvot(8) = tl_ipgo Vq € Ok,

where C’ (¢, ¢) denotes the number of geodesics from g to g of length < ¢. Further-
more, since the Morse indices of all geodesics vanish, we have as for the symplectic
homology that

log (C! (¢,
T(WH(D"(g), Dy(g)) = lim M.

These four identities prove the lemma. O
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Appendix A. Volume entropy and Manning’s inequality for Finsler
metrics

In this appendix we first give an elementary proof of Manning’s inequality for regular
Finsler geodesic flows. We then use Yomdin’s theorem to prove a generalization of

Manning’s inequality to arbitrary C°°-smooth flows on compact fiber bundles whose
fibers are of dimension one less than the base.

A.1.The volume entropy of a Finsler metric
Let F be a Finsler metric on the closed n-dimensional connected manifold Q: F is a
continuous real function on the tangent bundle 7 Q which is positive away from the

zero section, fiberwise positively one-homogeneous and fiberwise convex. The Finsler
metric F induces the length functional

b
Lr(y) 2=f F(y () dt

on the space of Lipschitz curves y: [a, b] — Q and the function dp: Q x Q —
[0, +00),

dp(x,y) == inf {€r(y) | y: [0, 1] = Q Lipschitz curve with y(0) = x, y(1) = y}.
By the Arzela—Ascoli theorem, the above infimum is actually a minimum: There is a
Lipschitz curve y from x to y such that £ (y) = dr(x, y). The function dF is positive
away from the diagonal and satisfies the triangle inequality

dr(x,2) <dr(x,y) +dr(y,2) Vx,y,z€0.
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In general, dF is not symmetric because we are not assuming F to be reversible, i.e. to
satisfy F(—v) = F(v) forevery v € T Q. By the compactness of Q, the irreversibility
ratio of F, i.e. the number

0 := max F(—v) € [1, +00),
veT Q
F(v)=1

is well-defined and we have

dp(y,x) =0dp(x,y) Vx,yeQ. (A.D)

The Finsler metric F lifts to a Finsler metric F on the universal cover é of Q. We
denote by £ and d the induced length functional and asymmetric distance on 0.
Note that the lifted Finsler metric has the same irreversibility ratio 8 and (A.1) holds
also for the lifted asymmetric distance d. The closed forward R-ball centered at
X € é is the set

B.(F.R) = {y € Q | d§(x.y) < R},
which is easily seen to be compact also when 0 is not compact. The compactness of
the forward balls and the Arzela—Ascoli theorem imply the existence of a Lipschitz

curve y of F- length £(y) = dz(x, y) joining two arbitrary points x and y on Q
This in turn implies the following characterization of forward balls:

By(F,R) = {y(R) | y: 10, R] - é Lipschitz curve with y (0) = x and Fo y <1 a.e.} . (A2)
We fix an arbitrary Riemannian metric on Q, lift it to é, and denote by Vol the

induced volume (i.e. n-dimensional Hausdorff measure) of Borel subsets of é . The
volume entropy of F' is the number

1 ~
hyol(F) 1= Rli_l)nooElogVol(Bx(F, R)) € [0, +00). (A.3)

Proposition A.1 The limit (A.3) exists, is finite, and is independent of the point x € é
and of the choice of the Riemannian metric on Q.

Proof The independence of the choice of the Riemannian metric on Q is clear because
by the compactness of Q the volume Vol induced by another Riemannian metric
satisfies

1
~Vol < Vol < ¢ Vol
c
for a suitable positive number c. Given x € é and R > 0 we abbreviate
By(R):= By«(F,R) and  V,(R) := Vol(B,(R)).
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Choose a closed fundamental domain N in @ and set
a :=max{dp(y,2) | y.z € N}.

By the triangle inequality we have

By (R) C By(R+a) VYR=>0, Vx,x' €N,
and hence

Vo(R) < Vi(R+a) VYR>0, Vx,x' €N. (A.4)
Let t be a deck transformation of é . Since 7 preserves the F -length of oriented curves,

Br)(R)=7(B:(R)) VYR=0, Vzel.
Since t also preserves Vol, we have

Vi (R)=V.(R) VR=0, Vze.

Applying this to deck transformations that bring points into N we can upgrade the
inequalities (A.4) to

Vi(R) < Vi(R+a) VR>0, Vx,x'€O. (A.5)
This implies that the limit (A.3) is independent of x, if it exists. Set

v:= inf V;(1) = min V(1) > 0.
zeQ ZEN

Fix R > 0, and let Y be a maximal subset of By (R) such that the balls B, (1), y € Y,
are pairwise disjoint. If z belongs to By (1) for some y € Y then

dp(x,z) < dp(x,y)+dp(y,2) < R+ 1.
Therefore,

U By() € Bi(R+ D).
yeY

and from the fact that the balls on the left-hand side are pairwise disjoint and from the
definition of v we obtain

(cardY)v < ZVJ’(D < Vi(R+1)
yeyY
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and so
1
cardY < -V, (R+1). (A.6)
v

From the maximality property of ¥ we deduce that for every z € B, (R) thereis a point
y € Y such that B, (1) intersects By (1). If w is a point in this non-empty intersection,
we find

dp(y,2) <dg(y,w) +dp(w,2) <dp(y,w) +0dp(z,w) < 1406,

where 0 is the irreversibility ratio of F and we have used (A.l). This proves the
inclusion

By(R) C | By(1+0). (A7)
yeY

LetS > Oandz € By (R+S5).By(A.2),z = y(R+S) where y: [0, R+ S] — éisa
Lipschitz curve satisfying y (0) = x and F oy < 1a.e.. Then y (R) belongs to B, (R),
and from the above inclusion we find y € Y such that dz(y, y(R)) < 1 + 6. With
this,

dp(y,2) =dp(y,y(R+S5)) =dp(y, y(R) +dg(y(R),y(R+S)) = 1+6+,
and hence (A.7) can be upgraded to

By(R+S) C | JBy(S+140) VvS=o0.
yeY

From this, together with (A.6) and (A.4), we obtain
Vi(R+S8) < (cardY) V,(S+140) < %VX(R+ DVi(S+1+60+a) VS=0.
Abbreviating b := 1 4 0 + a, this implies

Vi(R+S) < %VX(R +b)Vi(S+b) VR, §=0.

Taking logarithms, we find
log Vi(R+ S) < log V(R + b) +log Vi (S + b) — logv VR,S > 0.
This inequality implies that the function
f:10,+00) — R, f(R) :=1log Vi (R + 2b) — logv,
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is subadditive, i.e. f(R+ S) < f(R)+ f(S) forevery R, S > 0. Therefore, f(R)/R
converges to its infimum for R — oo, which is a non-negative finite number because
f is monotonically increasing. From the identity

log Vi(R) [ f(R —2b) log v R —2b
R o R—12b R—12b R

we deduce that the limit (A.3) exists and is a non-negative finite number. Proposi-
tion A.1 is proven. O

A.2.The topological entropy

We shall use the following definition of the topological entropy /op (¢) of a continuous
flow ¢’ on a compact metrizable space X: Choose a metric d which generates the
topology of X. For T > 0 define a new metric d7 on X by

dr(x,x") = Jnax d (¢' (), 9" (). (A.8)

For § > 0, a subset Y of X is called (T, §)-separated if dr(y, y’) > & forall y # y’
in Y. Abbreviate

v(T, §) := maximum cardinality of a (T, §)-separated subset of X.

Then the function § — v(T, §) is monotonically decreasing for every T > 0, and one
possible definition of A, (@) is

1
hiop(@) = gg% lim sup T logv(T, 6)

T—o0

1
= sup lim sup; logv(T,$) € [0, 4o00]. (A.9)

§>0 T—o0

This number represents the exponential growth rate of the number of orbit segments
that can be distinguished with arbitrary fine but finite precision. As the notation sug-
gests, one obtains the same number if one starts with another metric which generates
the topology of X. We refer to [60, §3.1] and [95, §7] for this fact and for much infor-
mation on topological entropy. We here only mention that for a Lipschitz-continuous
flow on a compact manifold, p(¢) is finite, see [60, Theorem 3.2.9].

A.3. Manning’s inequality
We now assume the Finsler metric F to be regular: F is of class C? away from the
zero section and the second fiberwise differential of F? is positive definite at every

non-zero tangent vector. Under these assumptions, the Euler—Lagrange equations for
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the energy functional

1 1
Er) =5 /O FG @) di

define a well-posed second order Cauchy problem on Q. Solutions of this Cauchy
problem are C2-curves defined on the whole R and are called Finsler F-geodesics.
The function F o y is constant for every Finsler F-geodesic y. After an orientation
preserving reparametrization making F o y constant, any minimizer y of £ among
Lipschitz curves from x to y is an arc of a Finsler F-geodesic.

The Cauchy problem for Finsler F-geodesics defines a C'-flow ¢’ on the unit
sphere bundle

SQ:={weTQ|F@) =1}

Denoting by 7 : SQ — Q the footpoint projection, y (t) := 7 o ¢’ (v) is the unique
Finsler F-geodesic starting at 7 (v) with velocity v for t = 0, and ¢’ (v) = y (¢).

We denote by /p(F) the topological entropy of the flow ¢’ defined above. Man-
ning’s celebrated inequality from [69] states that for any Riemannian metric F' = ,/g
on the closed manifold Q, the topological entropy is bounded from below by the
volume growth,

htop(g) > hyvot(8),

where we are writing the argument of both /), and Ay, as g instead of ,/g, as this is
the standard notation when dealing with Riemannian geodesic flows. It is well-known
that this inequality persists to hold for Finsler metrics:

Theorem A.2 Let F be a regular Finsler metric on a closed connected manifold Q.

Then the topological entropy of the Finsler geodesic flow of F is at least the volume
entropy of F':

hiop(F) = hyot (F).

The above theorem is stated for instance in [16, Theorem 15] as well as [44, The-
orem 6.1] and [93, Remarque 3.3]. Since there does not seem to be a proof in the
literature, we give one here, by a straightforward adaptation of Manning’s proof.

We will use the following standard property of functions having exponential growth:

Lemma A.3 Assume that the function f: (0, +00) — (0, 400) satisfies

1
li —1 R)=nh
i, g loe /(P
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for some h € (0, 400). Then for every ¢ > 0 and every § > 0 there exists a sequence
(Ry) C (0, 400) tending to +oo such that

f(Rn+8)_f(Rn) —

Rl -0, 00
Proof The assumption on f is equivalent to
f(R) = Rte®) R~ 0, (A.10)

where the function R +— o (R) tends to zero for R — +00. We claim that

L := lim sup R(U(R +8) — a(R))
R—+o00

belongs to [0, +00]. Indeed, if by contradiction L is negative or —oo, then we can find
Ry > 0 and p > 0 such that

R(o(R+8) —0(R) = —n YR =Ry
This inequality can be rewritten as
“
o(R+94) < o(R) — R YR = Ro,

which implies

n—1
%
o(Ry+n8) < o(Ry) — Z VneN.
paar Ro + kb

But then the divergence of the harmonic series implies that o (Rg + nd) tends to —oo,
contradicting the fact that this sequence is infinitesimal.
Let (R,) be a sequence of positive numbers that diverges to 400 and such that

lim R,(o (R, +8) —o(Ry) = L.
n—oo
Then we have

lim eRn(U(Rn+5)*‘7(Rn)) — eL (All)

’
n— o0

where we are using the notation et> := +oo in the case L = +oc0. The identity (A.10)
and a simple algebraic manipulation produce the identity

JRn+8) = f(Rn) _ Ry(eto(Rn) (ea(h+a(R,,+a))eR,, (0 (Ra+8)—0 (Rn)) _ 1) (A.12)
=)k, = . .
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By (A.11) and the fact that o (R, + §) is infinitesimal, the expression in brackets on
the right-hand side of this identity tends to

el — 1,

which belongs to (0, +oc] because 84 > 0 and L € [0, +o00]. This, together with the
positivity of ¢ and the fact that o (R),) is infinitesimal, implies that the right-hand side
of (A.12) tends to +oo. m]

Proof of Theorem A.2 We can assume that & := hyo(F) > 0. Fix ¢ € (0, h). We must
show that

htop(F) > h—e.
We use the following notation from the proof of Proposition A.1: Given x in the
universal cover Q of Q and R > 9, B, (R) := B, (R, F) denotes the closed forward
ball of radius R centered at x in Q, see (A.2), and Vy(R) := Vol(B,(R)) denotes its
volume with respect to a Riemannian metric on Q which has been lifted to Q.
Fix xo € Q. By Proposition A.1, there exists Ry(¢e) such that
MOR >y (R) = "R v R > Ry(e). (A.13)

Fix some § > 0. By Lemma A.3, we find a diverging sequence of positive numbers
(R;) C [Ro(¢e), +00) that satisfies

Vio(Ry +8/2) — Vi (Ry) = "R wp eN, (A.14)
The F-distance function dz on é is not necessarily symmetric, because we are not
assuming F to be reversible, but we can symmetrize it and obtain the genuine distance
function
d: 0 x Q0 —1[0,400), d(x,y) :=dp(x,y) +dp(y,x).
If 6 € [1, +00) denotes the irreversibility ratio of F', then we have

d(x,y) < 1+6)dz(x,y) Vx,yeO. (A.15)

For every n € N, we take a maximal subset X, of the annulus B, (R, + 6/2) \
By, (Ry) such that

dix,x) > 20+ 1)8 Vx,x' € X, x #x. (A.16)

Since X, 1~s maximal, for every point z € By, (R, +8/2)\ By, (R,) there exists x € X,
such that d(x, z) < (20 + 1) 8. A fortiori, dg(x, z) < (20 + 1) 4 and hence

Byy(Ry +8/2)\ Byy(Ry) C ) Bx(8(20 +1)).

xeX,

) Birkhauser



67 Page 76 of 99 A. Abbondandolo et al.

If we set

w = sup V-(8(20 + 1)) > 0,
ze@

we therefore find
Vio(Ry +68/2) — Vi (Ry) = Vol (Byy(Ry +8/2) \ Byy(Ry)) < (card X)) w

and hence, by (A.14),
L h—o)r
card X,, > —e ", (A.17)
w

Given x € X,,, we denote by
v [0, dj(x0, )] = O

an F-geodesic segment from xo to x realizing the minimal distance d(xo, x) and
such that F o yy = 1. Since X,, C By, (R, + §/2)\ By, (Ry), we have

1)
Ry = dp(x0,x) = Ry + 3. (A.18)

Now comes the crux of the proof: Consider the subset

Y, ={y(0) | x € X} C Son

of the F-unit sphere Sy, 0 C Ty, Q, See Fig11. Choose any metric ds on SO such
that the footpoint projection 7 : SQ — Q is distance decreasing:

~

ds(v,v') = d(F), 7)) VYv,v €S0.

For instance, one can take gg(v, v’) = E(Fr’(v), ﬁ(v’)) +d (v, v'), where d is any
metric on SQ.

Lemma A.4 The set Y, is (Ry, 8)-separated for the Finsler geodesic flow 5’ of F on
the metric space (SQ, ds), and card Y,, = card X,.

Proof We first show that the surjective map X,, — Y, x — p,(0), that defines the
set Yy, is abijection. Assume that x, x’ € X, give the same point Y, (0) = y,/(0) of Y;,.
We can assume that d (xo, x") < dj(xo, x). Then the fact that the vectors y, (0) and
y); +(0) coincide implies that y, is the restriction of yy to the interval [0, d(xo, x)].
The restriction of y to the interval [d(xo, x,d #(x0, x)] is a curve of F -length
dp(x0, x) — dg(xg, x") from x’ to x, and by (A.18) we have

W Birkhauser



Entropy collapse versus entropy rigidity for Reeb and ... Page 77 of 99 67

Y, C S,,Q

/N

(pf, @t
N - Y
~ ~ S

(5Q.,ds) —————» (5Q,ds) D prg(Yn)

(Qd) ———— (@)

X, CQ

Fig. 11 Manning’s construction

8
dp(x,x") < dg(xo,x) —dp(x0,x") < —.

[\

Therefore, (A.15) implies
T 1 1
dx',x) < @+ Ddp(x',x) < §(9+ 1)s.

Our choice (A.16) now implies that x = x’.
By the definition of (R, §)-separated, for the first assertion it suffices to show that

ds(@% (y), R (y)) =8 Vy#y €Y,

Letx, xN’be the points in X,, with y = ,(0) and y" = ,/(0). Then x = y,(df (xo, X))
and 7 (¢® (y)) = yx(Ry), and so, by (A.18) again,

(=2

dp(F@™ (1)), x) = dp(x0,x) = Ry < =

In the same way, df(?f(aR" (y/)),x/) < §/2. Together with (A.16), we can now
estimate

20+ 1)8 < d(x,x) <d(x, T@% (y) +d (D" (), F(@" (')
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+d (7 @R (v')), %)
<d (7@ (). F@  (y)) + O + 1)s.

Hence

ds(@%(y), ¢ (v)) = d (F(@" (), F(@*"(v')) = 668 > s.
The proof of Lemma A.4 is complete. O

We now consider the projection prg: S 0 — SO induced by the covering map
pr: QO — Qandwelookatthesetprg(Y,).Since Y, C Sy, Q, wehave card prg(Y,) =
card Y, and so by the previous lemma and by (A.17),

1
cardprg(Y,) > — =R, (A.19)
w

As for é , we symmetrize the asymmetric distance dr on Q and obtain the genuine
metric

d(x,y) = dr(x,y) +dr(y, x),

and we choose a metric dg on SQ such that the projection 7 : (SQ, ds) — (Q,d)
is distance decreasing. Note that the covering map pr: (é d ) — (Q,d) is alocal
isometry. Therefore, there egsts §1 > O such thatforall z, 7' € é with d (z,7) <81
we have d(pr(z), pr(z))) = d(z, 2).

LemmaA.5 For every § > 0 smaller than 81 the set prg(Y,) is (R, 8)-separated for
the Finsler geodesic flow ¢’ of F on the metric space (SQ, dy).

Proof Let v = prg(y) and v/ = = prg (") be two different points of prg(Y,). Recall
from the previous proof that d (n (¢R" ), n(qu" (y ))) > §. This does not imply
that the same lower bound holds for d (n (@R (v)), (PR (v ))), because pr is only a
local isometry. _

Since d (7 (R (y)). T (@%"(y'))) = 8, we can look at

ts == min {r € [0, R,] | d (F(@' (). F@' (V') = 8}.

Sinceprso:ﬁl =¢'oprgandpro® =x oprS,Wehavepror'?oat =7 o¢’ opry.
Hence, by the fact that § < §; and by the local isometry property of pr,

6 =d(F@" (), F@" () =d(pro T 0 d" (), proF o $"(v)
= d(7 (" (), (0" ().

For the dynamical metric (ds) g, on SQ defined in (A.8) we therefore find
ds)r, (v, V") > ds((¢” (), 9" (V")) > d(w(¢"” (v), m($p" (V) =8
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Hence prg(Y,) is (R,, 8)-separated. O

Using a §p < J; as in Lemma A.5, the sequence R, — oo satisfying (A.14) for

8 = 8o, and the estimate (A.19), and noting that w = Sup, 5 V.(60(20 4 1)) depends
only on §p but not on R, we can conclude:

1
hiop(¢") = sup lim sup T log v(T, 8)

§>0 T—o0

1
> lim sup T log v(T, 8o)

T—00

1
> lim sup R_ log (card prS(Yn))

Ry—o0 f\n

zh_89

as we wished to show. O

Remark A.6 Manning’s inequality hop(g) > hyo1(g) for Riemannian geodesic flows
has several improvements:

ey

@)

Let M ¢ C S O be the set of minimal vectors, namely those vectors v for which the
lifts to Q of the geodesic determined by v are shortest paths between any of their
points. The set M, is invariant under the geodesic flow. Then hop(¢glrt,) =
hyvo1(g), see [60, Theorem 9.6.7] and [55, Theorem 1.1]. This follows from a
modification of Manning’s proof of /o (g) > hvo1(g), and the same modification
of our proof above shows that this stronger inequality generalizes to regular Finsler
geodesic flows:

htop(¢F|MF) > hyot(F).

Manning also showed in [69] that i (g) = hvoi(g) if g has non-positive sectional
curvature. This hypothesis was weakened by Freire and Mané [51], who only need
to assume that the geodesic flow has no conjugate points. Manning’s equality
extends to Finsler geodesic flows if F has non-positive flag curvature, see [16,
Theorem 15]. On the other hand, it is not known if the improvement of Freire—
Mané extends to Finsler geodesic flows. We thank Thomas Barthelmé for pointing
out this open problem.

A.4. A proof via Yomdin’s theorem

Given a C! flow ¢’ on a closed manifold M, define the volume growth of ¢ by

v(¢) := suplim sup % log H(d)T(S)).

S T—oo

Here the supremum is taken over all compact smooth submanifolds S of M of any
dimension and H (S) denotes the Riemannian volume of the submanifold S with respect
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to the restriction of a fixed Riemannian metric on M or, equivalently, the k-dimensional
Hausdorff measure H* (S) of S in the metric space M, where k = dim S. The Rieman-
nian metric is not specified, since v(¢) does not depend on its choice. Yomdin proved
in [96] that if the flow ¢: R x M — M is smooth, i.e. C*°, then

htop(¢) > U(¢) (A.20)

Actually, equality holds in (A.20), since by a result of Newhouse [77], hiop(¢p) <
v(¢) for C 1+¢ flows. Hence the volume growth v(¢) is another way to think of the
topological entropy of smooth flows.

Gabriel Paternain noticed in [80, p. 72] that Yomdin’s theorem yields a quick proof
of Mannings’ inequality for smooth Riemannian geodesic flows. We conclude this
appendix by showing that a variant of his argument applies to general smooth flows
on the total space of a fiber bundle and in particular implies Theorem A.2 in the case
of smooth Finsler metrics.

Consider the following setting: ¢’ is an arbitrary smooth flow on the total space E
of a smooth fiber bundle

n: E— Q

over the closed n-dimensional manifold Q with typical fiber a closed manifold of
dimension k < n. The universal cover of Q is denoted by

pr: 0 — 0,
and the pull-back bundle of E by the map pr is denoted by
7 E— O.

Therefore, we have the commutative diagram of smooth maps

1

where pry is a covering map. We choose Riemannian metrics on Q, O, E and E
such that the horizontal maps are local isometries and the vertical projections are
Riemannian submersions. The d-dimensional Hausdorff measures induced by these
metrics are denoted H¢. The flow ¢’ on E lifts to a smooth flow 5’ on E such that

(Qz<— tm

%
%

prp o = ¢ opry.
We shall prove the following result:
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Proposition A.7 For any Xo in Q let E;O .= %1(R) be the fiber of E at Xy and
Ey, = 7~ (x0) the fiber of E at xq := 7 (Xo). Then

lim sup % log H 1 (7 ($([0, T1 x Ex,)))

T—o0

< max {0, lim sup % log HF (d)T(ExO))} , (A21)

T—o0

where on the left-hand side we are using the convention log(0 := —oo.

Postponing the proof, we specialize to the case k + 1 = n, and for xg € Q define
the volume entropy of ¢ by the left-hand side of (A.21):

1 o~ -
Tyl (¢; x0) 1= lim sup — logH"(n(d)([O, T]x Ex))). (A.22)

T—o00

Note that the right-hand side indeed does not dependent on the lift X xq of xo nor on the
Riemannian metric used to define the Hausforff measure. The set 77 (¢([O T]x E3 XO))
is the set of points X € Q for which the fiber Ex can be reached in time < T by
a ¢-flow line starting at E;O In the case of a Finsler geodesic flow, when E is an
$"~1_bundle, this set is the forward ball By, (F T). Hence (A.22) generalizes (2.5).

The right-hand side of (A.21) is, by definition, a lower bound for the volume
growth v(¢) of ¢. Together with Yomdin’s inequality (A.20) we obtain

hyvot (95 x0) < v(¢) < htop(¢)-

We have shown the following result.

Theorem A.8 Assume that ¢ is a C°°-smooth flow on the compact fiber bundle E
over Q with fibers of dimension dim Q — 1. Then

htop(¢) > hyol(; x) Vxe Q.

In the case of Finsler geodesic flows, Theorem A.8 together with Proposition A.1
imply Theorem A.2. This proof is less satisfactory than the one in the previous para-
graphs, however: It needs the Finsler geodesic flow to be C*°-smooth and it is less
elementary, as it relies on Yomdin’s theorem whose proof is highly non-trivial. On the
other hand, this proof shows that the special features of Finsler geodesic flows which
are given by the underlying length functional and the triangle inequality are needed
only to guarantee that the limit defining the volume entropy exists and is independent
of the center of the balls, whereas for a general flow on the total space of a fiber bundle
the limit superior in definition (A.22) cannot be replaced by a limit and may depend
on the choice of x(. These special features of a Finsler geodesic flow are instead not
needed for proving that the volume entropy does not exceed the topological entropy.

Theorem A.8 in particular applies to Reeb flows on spherizations S*Q and to
magnetic flows on § Q. In the latter situation, Theorem A.8 improves the first statement
in [26, Theorem D].

) Birkhauser



67 Page 820f99 A. Abbondandolo et al.

Proof of Proposition A.7 As it intertwines the flows #' and ¢', the projection pr p maps
qu (E ) bijectively to o7 (Ey,) forevery T, and since pr is alocal isometry we have

H (@7 (Ezy) = HN(#T(Ey)) VYT R (A23)

By the area formula, we have

H(B(10, T1 x Ex,)) 5/ Ty, E)drds (A.24)

[0,71x Ex,
1
where JY (¢, &) := det(dt//(t, el dy(t, 5))7 is the Jacobian of the map

Y [0,T]1x Ex, — E, (1,8 :=¢' (&),

and d§ denotes the Riemannian volume form on the compact manifold Ex0 If X
denotes the vector field on E generating the flow ¢’ and /' is the map

v En > B ) =08,
we easily see that the symmetric linear endomorphism
dy(t, &)Tdy(t, £): R x Ty Ex, - R x Tz Ex,

has the form

2
Ay (e ) dy(1,6) = ('X(‘”Z’g”' dwt@?dwt@))

By the Schur determinant identity, this implies the bound

JY (. §)

det(dy (1, )T dy (1, £))
X, ) det(dy! &) dy' (©)F < eIy @),

IA

where c is the supremum norm of the vector field X, which is bounded being the lift
of a vector field on the compact manifold E. Together with (A.24) and using the area
formula for injective maps, we find

Hk+l(¢([0 T] x Exo) / / JY' () dsdt = C/ Hk(d) (Ex, )dt
0
and hence

lim sup 7{ longH((p([O T] % Exo)) < lim sup llog/ Hk(at(fgo)) dt

T—o0 T—o0
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It is easy to see that if f is a positive function on [0, +00) then

hmsup—log/ f(®)dt < max {O hmsup—log f(T)}

T—00 T—00

see [80, Lemma 3.24.2], so using also (A.23) we obtain the bound

1 ~ ~ 1
lim sup T long+1(¢([O, T] x E%,)) < max {O lim sup—log’l—(k(d) (EXO))}

T—o0 T—o00

The desired bound (A.21) now follows from the fact that the projection 7 is 1-Lipschitz,
by our choice of the Riemannian metrics. O

Remark A.9 If one replaces the inequality (A.24) in the above proof by the equality

fEH(’(w—l({s})de“@) _ / . E)didE

[0,T]><E;0

which is given by the area formula, one gets the more precise bound

lim sup — log/ HOw (&) de+1(§) < max {0, lim sup%long(ch(ExO))}.

T— 00 T—o00

For k + 1 = n, this inequality and the argument leading to Theorem A.8, applied
to Q instead of the universal cover Q, yield the bound

1
lim Supflog/ nr(xo, x) dH" (x) < hiop(#), (A.25)
Q

T—o0

where nr (xo, x) denotes the number of ¢-flow lines of time at most 7 from Ey, to E.
For Finsler geodesic flows, n7 (xg, x) is the number of F-geodesics arcs from x to x,
and (A.25) is a Finsler generalization of [80, Corollary 3.28].

Appendix B. From Riemannian geodesic flows to Reeb flows

In this appendix we first recall from a historical and geometric perspective how Finsler
and Reeb flows are successive generalizations of Riemannian geodesic flows. We then
give for each of the four circles below at least two results on Riemannian geodesic
flows that stop to hold exactly at (O or at (@) or at (3), or extends all the way to Reeb
flows (@).

{Reeb} O {irreversible Finsler} 2 {reversible Finsler} 2 {geodesic} (B.1l)
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B.1. Reeb flows on spherizations as a generalization of Riemannian geodesic flows

Fix an n-dimensional manifold Q. Consider a smooth star field along Q: At every
point g € Q thereis aset S;Q C T, Q that is the smooth boundary of a subset D, Q
of T, O that is strictly starshaped with respect to the origin of 7, Q, and S, Q varies
smoothly with g. The star field {S,; O}, can be used to define the length of oriented
curves in Q: For a smooth curve y : [a, b] — Q with non-vanishing derivative, set

b
length(y) :=/ L(y (1)) dt

where £(y (1)) = s if %;}(t) € Sy (1) Q. The number length (y) does not change under
orientation preserving reparametrisations of y. Given ¢, ¢’ € Q set

ds(q.q’) := inf {length(y)}

where the infimum is taken over all curves as above from ¢ to ¢’. The function dy is
non-degenerate in the sense that ds(g, ¢’) = 0 if and only if ¢ = ¢’. Furthermore, dg
satisfies the ordered triangle inequality

ds(g.q") < ds(qg.q')+ds(q'.q") Vq.q9'.q" € Q.

The function dg is symmetric if and only if each star S, Q is symmetric, thatis —S, O =
S, Q0 forallg € Q.Ifeach S, Q is strictly convex, then there are unique shortest curves
between sufficiently nearby points, see e.g. [15, §6.3].

A star field {S,; Q} as above is called a Finsler structure if each D, Q is strictly
convex, and a Finsler structure is called reversible if each S, Q is symmetric, and irre-
versible otherwise. A reversible Finsler structure is a Riemannian structure if each S; O
is an ellipsoid, i.e., the level set of an inner product on 7, Q.

Riemannian structures were introduced in 1854 by Riemann in his Habilitationsvor-
trag [84]. Both Berger [18, p. 708] and Chern [30] pointed out that what Riemann really
had in mind are Finsler structures. However, from his text® and given that Riemann’s
main conceptual point was to do intrinsic measurements, that were all based on length
measurements, one may at least as well argue that what he meant is “reversible star
field geometry”, see also Spivak [92, p. 167 and p. 202]. In contrast to Riemannian
geometry, Finsler geometry developed only slowly, see [15], and “star field geometry”
developed only in the setting of Lorentzian and semi-Riemannian geometry (and their
Finsler generalizations), in which however the stars S, Q are not compact.

If each D, Q is strictly convex, one can pass from T Q to T*Q by the Legendre
transform. In geometric terms, each convex body D, QO C T, Q is replaced by its dual

2 In Sect. IL.1 of his text, page 259 of [84], he writes: “Unter diesen Annahmen wird das Linienelement
eine beliebige homogene Function ersten Grades der Grossen dx sein konnen, welche ungeéndert bleibt,
wenn simmtliche Grossen dx ihr Zeichen @ndern”. He then readily specializes to the convex (Finsler)
case, mentioning just an example, and then restricts to Riemannian metrics, since “die Untersuchung dieser
allgemeinern Gattung wiirde zwar keine wesentlich andere Principien erfordern, aber ziemlich zeitraubend
sein”.
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O DK

=2 %

D:Q = {(q,p) €TFQ| p(v) < 1forallve DqQ}

Fig. 12 Stars in 7, Q and T

body

in 7.7 Q. The dual body D} Q is strictly convex, or is symmetric, or is an ellipsoid, if
and only if D, Q has this property, cf. Fig. 12.
In more dynamical terms, we associate to the field of strictly convex disks { D, O}
and its dual field {D’q" Q} the functions
F: TQO—-R, F“T'Q—R
that are homogenous of degree one in each fiber and satisfy

Fl)=s0,  (FH (1) =5*Q.
The Legendre transform
L:TQ—T*0, (q,v) (q, o, (LF2(q, v)))
is a diffeomorphism that maps fibers to fibers and Dy Q to Dy Q. This diffeomorphism
conjugates the Finsler geodesic flow of F on SQ with the Hamiltonian flow of F*
restricted to S*Q,

Lo@di(q,v) = ¢l 0 L(q,v) YtER, V(g,v) € SQ.

For strictly convex starfields, one can therefore freely switch between Finsler geodesic
flows on tangent bundles and co-Finsler geodesic flows on cotangent bundles.
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For non-convex star fields {S, O} along Q there is no Legendre transform. However,
a smooth star field {S:;Q} in T*Q is the same thing as a Reeb flow on the spheriza-
tion S*Q of Q, as we shall recall below. We conclude that while Riemann’s concept
of a star field geometry in T Q led to nothing, the same picture in 7*Q describes the
main example of contact geometry and Reeb flows, a by now huge and thriving theory!
This is one more instance for the fact that it is always worthwhile and often crucial to
work in 7*Q instead of T Q.

The flows ¢ on S*(H) are Reeb flows. For every function H: T*Q — R that is
fiberwise homogenous of degree one and smooth and positive off the zero-section we
consider the regular hypersurface S*(H) = H (1) in T* Q and the restriction qb;i
of the Hamiltonian flow of H to S*(H). The flows qﬁ;{ live on different spaces. To
have a class of flows on one manifold, we consider the spherization, or positive pro-
jectivization, of the cotangent bundle

S*Q = (T*Q \ Q)/ ~  where (¢, p) ~ (g, sp) fors > 0.

While the 1-form 2 = ) jpjdgj on T*Q does not descend to this quotient, the
kernel of A does descend. The resulting hyperplane field &.,;, is the canonical contact
structure on S* Q. If for every function H as above we abbreviate Ay = A|s+(g) and
&y = ker(Apy), we have that (S*(H), &£y) is diffeomorphic to (S*Q, &an ) under the
map (g, p) — [(g, p)].

We wish to show that the set of flows ¢, is in bijection with the set of Reeb flows
on (S*Q, &an ). For this we first recall that q)}, is the Reeb flow of the contact form A g
on (S*(H), &), see [48, Lemma 4.2] for the short proof. To identify the Reeb flows
of the contact forms Ay with the Reeb flows on (S*Q, &can ), We fix a representative
(8*(Ho), &n,) of (S*Q, &can), and for an arbitrary H consider the diffeomorphism
Wy S*(H) — S*(Hy) given by fiberwise radial projection,

H(q, p) )

Yulg.p) = (q’ Ho(q. p)

A computation shows that the differential of Wy takes the Reeb vector field of Ay to

the Reeb vector field of % AH,- Therefore, the map Wy conjugates the Reeb flows of

Ay and of % AH,- In conclusion, each Reeb flow on (§*Q, &4n ) corresponds to the

Reeb flow of fA g, on (S*(Hp), £n,) for a positive smooth function f on S*(Hp), and

this Reeb flow is conjugate to the Hamiltonian flow ¢}, on $*(H), where H = Hy/ f

and f is the extension of f to 7*Q \ Q that is fiberwise homogenous of degree zero.
For a Hamiltonian H as above, the Holmes—Thompson volume is defined as

1
wilf(@) =~ [ o,
D*(H)

n! w,

and for a contact form « on S*Q we defined the contact volume in Sect. 1.4 as

voly (S* Q) =/ o A (do)" L.

S*Q
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Under the above identification of (S*(H), Ag) with (S*Q, «) we obtain, using Ay =
Als+(Hy and dA = w and Stokes’ theorem,

/ a A (da)"! =/ A A (dhg)" ! =/ o'
*0 S*(H) D*(H)

Therefore,

volg (S*Q) = n!w, voliT(Q).

B.2. A few generalizations of Riemannian results to Finsler geodesic flows and
Reeb flows

Given aresult in Riemannian geometry or dynamics, it is interesting to see whether this
result extends to reversible or even irreversible Finsler metrics, or even to Reeb flows. In
this way it becomes clear to which geometry the Riemannian result belongs properly.
In this section we state a few such results from dynamics. For (non-)extensions of
results from Riemannian geometry, involving for instance curvatures and spectra, we
refer to [16, 17, 32, 93].

(@ (i) Riemannian 2-tori without conjugate points are flat, [61], but there are many
reversible and irreversible Finsler 2-tori without conjugate points that are not flat [27,
§33].

(i1) There is (up to scaling) only one Riemannian metric on RP? all of whose
geodesics are simple closed and of the same length, [56], but there are many such
Finsler metrics on RP2, among them reversible ones, see [91] and also [28].

® (i) Every Riemannian 2-sphere carries infinitely many geometrically distinct
closed geodesics [14]. This result extends to reversible Finsler metrics [41], but not to
all Finsler metrics: Katok [63] gave a simple example of a Finsler metric on S> with
only two geometrically distinct geodesics (where the reverse geodesic is counted, since
it has different period).

(ii) For reversible Finsler geodesic flows on S? that are periodic all orbits have the
same period [57], but there exist irreversible periodic Finsler geodesic flows on S2
whose orbits have different minimal periods, [98, p. 143].

® (1) For many compact manifolds Q (namely so-called essential ones and all
surfaces), there exists a constant C > 0 such that every normalized Finsler metric F
on Q has a closed geodesic of F-length at most C, cf. Sect. 1.6. This was shown
by Loewner, Pu, Croke, and Gromov in the Riemannian case and was extended to
the Finsler case by Alvarez Paiva—Balacheff-Tzanev [6]. The generalization of length
to closed orbits of Reeb flows is the period f , o It is shown in [2, 88] that every
spherization $*Q of a compact manifold Q admits for every C > 0 a normalized
contact form o whose Reeb flow has periodic orbits, but none of period < C.

(i1) Theorems 1.2 and 1.1 of this paper show that there is a positive lower bound for
the topological entropy of all normalized Finsler geodesic flows on compact surfaces
of genus at least two, but not for Reeb flows.
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® (1) Most of the existence and multiplicity results for closed geodesics on com-
pact Riemannian manifolds Q extend to Reeb flows on spherizations. For instance, the
isomorphism in [4] implies that every Reeb flow on S$*Q has a closed orbit in every
component of the free loop space A Q. Also the Gromoll-Meyer theorem, according
to which every Riemannian metric has infinitely many prime closed geodesics pro-
vided that the Betti numbers of A Q are unbounded [58], extends to Reeb flows on
spherizations [73].

(i1) The exponential growth of the fundamental group of a compact manifold Q or
of the rank of the homology of the based loop space of a simply connected compact
manifold Q implies that the topological entropy of every Riemannian geodesic flow
on Q is positive, see [42] and [80, §5.3]. This result generalizes to all Reeb flows on
the spherization $* Q, see [50, 68], and in fact to time-dependent Reeb flows, namely
contact isotopies that are everywhere transverse to the contact distribution &, see [36].

(iii) According to the Bott—Samelson theorem [23, 90], the cohomology ring of a
Riemannian manifold all of whose geodesics are simple closed and of equal length
must be generated by one element. Finer versions are proven in [19, Chapter 7]. All
these results hold true for Reeb flows on spherizations, even time-dependent ones, see
[37, 48].

Appendix C. Properties of the norm growth

Given a C'-diffeomorphism ¢ of a compact manifold M, we define the two real
numbers

|
Iy (p) = nllToo - log [|d¢" o »

F@) = max {4 @), T+ 07}
Here || - ||co denotes the supremum norm induced by the operator norm on endo-
morphisms of 7'M that is determined by any Riemannian metric on M. The limit
defining I" exists because the sequence (log ||d¢"|o0) is subadditive. Clearly, I',
and I do not depend on the choice of the Riemannian metric on M.

For a C'-flow ¢ = {¢'}ier, we set [ (@) = F+(¢1) and I'(¢) = F((])l), or
equivalently

1
F4(¢) = lim —log ldo" oo ,

— : 1 t —t
L) = t_l)nlloo;logmax{ndqﬁ lloos ldd ™" lloo} -
The following properties of '+ and I" are analogous to those of the topological entropy,
cf. [60, Prop. 3.1.7], except for (5) (the topological entropy of a product is the sum
of the topological entropies of the factors). The proofs are somewhat easier, since in
contrast to the case of topological entropy, which is defined in metrical terms, we can
use differential calculus.
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Proposition C.1 Let ¢ be a C'-diffeomorphism of the compact manifold M. The norm
growths 'y and T have the following properties.

(1) (Conjugacy invariance) If y is another C'-diffeomorphism of M, then

Co oy) =T4(@), T 'oy) =T@).

(2) (Monotonicity) If K is a compact submanifold of M that is invariant under @,
then

Fi(olk) =T4(9),  T(olg) =T'(@).

(3) (Decomposition) If M = | Ji-, K;, where K1, ..., K,, are compact ¢-invariant
submanifolds, then

F1(@) = max I'1($lg;). I'(@) = max I'(¢|k,).

(4) (Elementary time change) I'+(¢™) = m I'(p) for all m € N and T'(¢™) =
|m| T (@) for all m € Z. For a flow,

({0 her) =sTo({¢' her) Vs =0, T'({¢"}ier) = IsIT({¢'}er) Vs eR.
(5) (Product) If ¢ = ¢ X ¢p on My x My, then T4 (¢p) = max {T'1(¢1), T ()} and
I'(¢) = max {I'(¢1), I'(¢2)}.

Proof Properties (2) and (4) are clear, and (1) follows from the chain rule.
For (3) it suffices to show that I' { (¢) < maxi<;<m, ['+(¢|k;) in view of (2). For
each n € N choose i,, € {1, ..., m} such that

1d¢" loo = (d9lk;,)" lloo-

There exists j € {1, ..., m} such that i, = j for infinitely many n. For such a j it
holds that I'y (¢) = I'{ (¢;). The result for I" follows.

For (5), given norms || - ||; on TMj and || - ||2 on T M, we choose the norm
I(vi, v2)|| = max{||vy |1, |[v2]l2} on T M. With this choice,

ld¢" oo = max {1d¢ lloc, ld¢5llc} Vn €N.

The equality I'; (¢) = max{I';+(¢1), '+ (¢2)} now follows by arguing as in the proof
of (3) for m = 2. The result for I" follows. O

The following result improves property (4) above. It is an analogue of the time
change estimate for the topological entropy in [79].

Proposition C.2 Let X be a smooth vector field on a compact manifold M, and let
f: M — R be a positive smooth function. Then

Fi(@rx) = 1 flloo T(@x),  T(drx) = I flloo T'(@x).
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Proof Fix some positive number y > ' (¢x). By the definition of I' (¢x) and the
continuity of 7 > ||¢) ||, there exists a positive number C,, such that

ldpklloc < Cye?’"  Vi>0. (C.1)
The smooth function F: R x M — R that is defined by

WF@, p)=f(@yx(p), FO,p =0 VY@, peRxM,

is the time change function relating the two flows:

$rx(p) = o3 (p).
We have
F@,p) <|fllct V@, p)el0,+00) x M,
and from (C.1) we find
|dg kP (p)|| < €, e’ Ml=t v, p) €0, +00) x M. (C.2)

Here and in the following equations, d denotes differentiation with respect to the
spatial variables. By differentiating the identity

aF @, p)=f(ox""(p),

we obtain

QdF(t, p) = df (dy " (p) 0 dpy " (p)
+df oy " () [X @y P (p)]AF . p)
=df (px"" () 0 dpy " (p)
+df (0 x(P)[X(@x (P)]dF (. p) (€3
=df(py" ”><p>) dpy " (p)

1
_— dF
f(¢fx( ) dtf(cbfx(p)) (. p).

Let v € T, M be a vector of norm one and set

u(t) :=dF@, p)lvl, a0 = f(@x(p)).
From (C.3) and (C.2) we find

o (1)

o "0 = df (L (p)) 0 dp kP (p)lv]

u'(r) —
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< Cylldfllooe” /=t v >o0.

Multiplying both sides of this inequality by 1/« (), which is bounded from above by
1/ min f, we obtain

du@ _ Cyldfllee yifier o Crlldflloe piinr gy s,
dt a(t) — a(t) ~  min f -

Since u(0) = 0, integration on the interval [0, ¢] and multiplication by «(¢), which is
bounded from above by || f ||, yields

() < a(t)M/teyll.fllmsds < Sldfle yifier  yy s
- min f 0 ~ yminf -

Recalling that u(¢) = d F (¢, p)[v] where v is an arbitrary unit tangent vector at p, we
have proven the bound

ldF (@, p)| < C, e’ V=" V(1 p) e [0,400) x M, (C4)
where C), = C; ﬂﬁﬁ !fo . Thanks to the identity
e’y (p) = dgy " (p) + X (¢ " () dF (2, ),
(C.2) and (C.4) imply
1d)xlloe = (€ + Xl Cy ) e 1=t Vi =0,
and hence

.1
Fi(@rx) = lim —log ld¢xlloc < ¥ 1l flloc-

Since y is an arbitrary number that is larger than 'y (¢x), we deduce the desired
bound

Fi(@rx) = [ flloo It (Px).

The analogous bound for I' immediately follows. O

Appendix D. Dynamically trivial deformations of Finsler metrics
The aim of this section is to show that it is always possible to deform any given
regular Finsler metric on a closed manifold of dimension at least two into a new

Finsler metric which is not isometric to the original one but whose geodesic flow is
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nevertheless conjugate to the one of the original metric by a smooth time-preserving
conjugacy.

Let Q be a closed manifold and A = ) iPj dgq; be the canonical Liouville one-
form on T*Q. A diffeomorphism ¢: T*Q — T*Q is a symplectomorphism, i.e.
preserves the symplectic form d A, if and only if the one-form ¢*A — A is closed. When
this form is exact, ¢ is called an exact symplectomorphism.

Any diffeomorphism 6 : Q — Q lifts to an exact symplectomorphism 7*6 of T*Q
by setting

T*0(q. p) := (0(q), d0 (@) *[p]).

where the symbol —x denotes the inverse of the adjoint. Indeed, T*6 preserves the
Liouville form A. Actually, every diffeomorphism of 7*Q preserving A is the lift
of some diffeomorphism of Q, see for instance Proposition 2.1 and Homework 3.3
in [29].

Therefore, the diffeomorphism group of O embeds naturally into the group of exact
symplectomorphisms of 7* Q. The latter group is much larger, though. For instance,
any symplectomorphism ¢: T*Q — T*Q which is compactly supported is exact:
The exactness of ¢*A — A is equivalent to the fact that this closed one-form has
vanishing integral on any closed curve in 7* Q, and if ¢ is compactly supported this is
certainly true since every closed curve in 7*Q is freely homotopic to a closed curve
taking values in the complement of any given compact subset of 7*Q. Producing
non-trivial compactly supported symplectomorphisms of 7*Q is very easy, as one
can integrate the vector field that is induced by a compactly supported Hamiltonian
function. Actually, the time-one map of any possibly time-dependent Hamiltonian
vector field with globally defined flow is exact even without assuming the support to
be compact. Indeed, denoting by X; the Hamiltonian vector field of the time-dependent
function H, and by ¢}, its flow, we compute with the help of Cartan’s identity

d
E(WH)*?» = (@p)" (ix,dr+dix,2) = ($)*d (ix, 1 — H;)

and hence

1
(D1 — 2 = d/ (1x,k — Hy) o ¢}, dr.
0

If O has non-trivial de-Rham cohomology in degree one, then any closed one-form 7n
on Q that is not exact induces a symplectomorphism

T"°Q —>T"Q. (q.p)+ (q.p+n(q),
which is symplectically isotopic to the identity but not exact.
Recall from Sect. B.1 that to a fiberwise starshaped hypersurface S C T*Q we

associate the Reeb flow ¢, of & := A|g, namely the flow generated by the vector field
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R, defined by
da(Ry,) =0, a(Ry) =1.

Equivalently, ¢4 is the restriction to S of the Hamiltonian flow on 7* Q of the function

T*Q — R that is fiberwise positively homogeneous of degree 1 and equal to 1 on S.
The next result tells us that the Reeb dynamics on fiberwise starshaped hypersur-

faces does not change when we transform them by exact symplectomorphisms.

Proposition D.1 Let Q be a closed manifold, S a fiberwise starshaped hypersurface
of T*Q and ¢ : T*Q — T*Q an exact symplectomorphism such that S' := ¢(S) is
also fiberwise starshaped. Then there exists a diffeomorphism ¥ : S — S’ such that

¥ (Alg) = Als.

In particular, the diffeomorphism v is a smooth time-preserving conjugacy between
the Reeb flows of S and S'.

The above proposition is proven at the end of this appendix. We now discuss its
consequences concerning Finsler geodesic flows. Let F be a regular Finsler metric
on Q and denote by S*(F) C T*Q the corresponding unit cotangent sphere bundle,
which we here consider as the domain of the geodesic flow of F. The push-forward
0. F of this Finsler metric by a diffeomorphism 6: Q — Q is another Finsler metric
on Q. By construction, the Finsler manifolds (Q, F) and (Q, 6, F) are isometric, and
their geodesic flows are smoothly conjugate. Indeed, the cotangent lift 7*6 restricts
to a diffeomorphism from S*(F) to S*(6,F) conjugating the two geodesic flows.
Diffeomorphisms of Q induce “metrically trivial deformations” of F.

Now consider a more general exact symplectomorphism ¢: T*Q — T*Q.If ¢
is C2-close to the identity, then the image of $*(F) under ¢ is still fiberwise strictly
convex and hence can be seen as the unit cotangent sphere bundle of another Finsler
metric F’:

@(S*(F)) = S*(F').

The fact that ¢ is volume preserving implies that the Finsler metrics F and F’ have
the same Holmes—Thompson volume. By Proposition D.1 above, the geodesic flows
of the Finsler metrics F and F’ are conjugate by a smooth time-preserving conjugacy.
Therefore, the exact symplectomorphism ¢ induces a “dynamically trivial deforma-
tion” F’ of F. However, F and F’ need not be isometric. For instance, F could be a
Riemannian metric, meaning that S*(F) is a field of centrally symmetric ellipsoids.
In the special case in which ¢ is the cotangent lift of a diffeomorphism of Q, ¢ maps
fibers into fibers and acts linearly on them, so ¢(S*(F)) is still a field of centrally
symmetric ellipsoids and the metric F’ is still Riemannian. But for a more general
exact symplectomorphism ¢, there is no reason why ¢(S*(F)) should still be a field
of ellipsoids, so the new Finsler metric F” is in general not Riemannian.

Let F again be an arbitrary regular Finsler metric on Q and let g be a point in Q.
By acting just by diffeomorphisms of Q, we obtain Finsler metrics ' on Q which
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are isometric to F and whose unit sphere S;(F ') at g is the image of some S;‘,(F )
by some linear isomorphism. Therefore, all the possible cotangent unit spheres at g
of Finsler metrics which are constructed in this way belong to the finite dimensional
family of sets

{L(S;:(F)) ¢ € Q. L: T;Q — T,Q linear isomorphism}.

Instead, by acting by more general exact symplectomorphisms, we can get a new
Finsler metric F’ whose geodesic flow is still conjugate to the one of F but such that
SZ’I‘(F ") is an arbitrary convex hypersurface which is sufficiently close to S;‘; (F). When
S;‘(F ") does not belong to the above finite dimensional family, the metric F’ cannot
be isometric to F.

Let us prove this fact. Let S; be a strictly convex hypersurface in Tq*Q. Using a
cotangent local chart, we identify 71 (U), where U is a neighborhood of g in Q and
w: T*Q — Q denotes the footpoint projection, with T*R" = R"” x (R")* in such
a way that Tq*Q is identified with {0} x (R™)*. Then both S;‘(F ) and St/] are subsets
of {0} x (R")* = (R")*. Let &: (R")* — (R™)* be a compactly supported smooth
vector field whose flow at time one maps Sy (F) to S Z] (one easily achieves this by a
radial vector field). Consider the Hamiltonian function

H(q.p) = x(@) (&P, q), (g,p) € R" x (R")",

where (-, -) denotes the duality pairing and x: R” — R is a smooth compactly
supported function taking the value 1 near 0. This function extends to a compactly sup-
ported smooth function on 7* Q and the corresponding Hamiltonian flow leaves Tq* (0]
invariant and restricts to the flow of & on it. Therefore, denoting by ¢: T*Q — T*Q
the time-one map of this Hamiltonian flow, we obtain an exact symplectomorphism ¢
such that (S (F)) = S,. If S is C3-close to Sy (F), meaning that

Sq =1’ p | p e Si)

for some C3-small function f on Sy (F), then the vector field & can be chosen to be
C3-small, the Hamiltonian vector field of H is C2-small and hence ¢ is C2-close to the
identity. Under this closeness assumption, ¢(S*(F)) is fiberwise strictly convex and
hence is the unit cotangent sphere bundle of a Finsler metric F” such that S; (F') = S,.

Note that if the Finsler metric F is reversible and S,/] is centrally symmetric, then
the dynamically equivalent Finsler metric F’ as above can be chosen to be reversible
by requiring £ to be an odd map.

Summarizing: Given any regular (reversible) Finsler metric F, we obtain a large
family of non-isometric (reversible) Finsler metrics F’ having the same Holmes—
Thompson volume and whose geodesic flows are smoothly conjugate to the one of F';
F’ can be chosen to be non-Riemannian even if F is Riemannian. The topological
entropy, the volume growth used in Appendix A.4, the norm growth from Appendix C,
the length spectrum and all the dynamical invariants of F’ coincide with those of F.
If one uses exact symplectomorphisms that are isotopic to the identity, then also the
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marked length spectrum is preserved, and if one starts with a reversible Finsler met-
ric F of negative flag curvature and deforms it to a reversible Finsler metric F’ that
still has negative flag curvature, then also the volume entropy of F and F’ agrees,
since for Finsler metrics of negative flag curvature the volume entropy is equal to the
topological entropy by the equality case in Manning’s theorem, see [16, Theorem 15].
One deformation to Finsler metrics with equal marked length spectrum and equal vol-
ume entropy was constructed in [32] for the Riemannian metrics of constant curvature
on hyperbolic surfaces. Our discussion here shows that this is a general phenomenon
and is a manifestation of the fact that a neighborhood of the identity on the group of
exact symplectomorphisms of 7*Q can transform a Finsler metric in ways in which
diffeomorphisms of Q cannot.

Proof of Proposition D.1 The proof is given in [3, §8] for the case of convex hypersur-
faces in a Hilbert space. That proof is readily adapted to our situation. We give the
proof for the reader’s convenience.

Since the symplectomorphism ¢ is assumed to be exact, there exists a smooth
function 2: T*Q — R such that

©*r = A +dh.

We abbreviate @ = A|g and &’ = A|g. The pull-back of &’ to §, that is the 1-form
(pl)*(@) = a +dhls, (D.1)
is a contact form on S, and its Reeb vector field is
©*(Ry') = Rutdns-

Since « and « + dh|s have the same differential, we have

Rotdns = [ Ra (D.2)
for a nowhere vanishing function f on S.If Y = p 9, denotes the canonical Liouville
vector field on 7* Q, the identity 1ydx = A implies that for every x € S the one-form
(ig,d))(x), whose kernel is the tangent space 7S, is negative on tangent vectors

which are pointing outwards, i.e. belong to the half-space containing Y (x). Similarly,
1R, d is negative on outward pointing vectors based at §". By the identity

@ (R, dL) = 1gxR,)®"(dL) = ! Ry-vanis 42

and by the fact that the differential of ¢ maps outward pointing vectors based at S to
outward pointing vectors based at §’, we deduce that the above one-form is negative
on outward pointing vectors based at S. Since also 1z, d is negative on these vectors,
the function f appearing in (D.2) is everywhere positive.

By applying the 1-forma+dh|sto(D.2) weobtain 1 = f (1 +dh(Ra)). Therefore,

14+tdh(Ry) >0 Vtel01] (D.3)
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We now apply Moser’s homotopy method: We look for a smooth time-dependent
vector field X; on § of the form X; = x; Ry, where x; is a family of functions on S,
such that the flow 5, of X, satisfies

nf(@+tdh) =a Vitel0,1]. (D.4)

Since nja = a, this identity is equivalent to

%(nf(oz—}—tdh)) =0 Vrelo,1]. (D.5)

Using Cartan’s identity we compute

d
(0 @ 1dh) = nf (Lx, (e + 1 dh) + dh)
=} (1x,d(a + 1 dh) + dix, (@ + 1 dh) + dh).

Since 1x,da = x; 1, da = 0, it follows that (D.5) holds if and only if
dix,(a +tdh)+dh = 0. (D.6)
Since 1x, (o +tdh) = x; (1 +t dh(Ra)), equation (D.6) is satisfied if we take

hls

o Ms oL
1+ 1dh(Ry) € 10.1]

Xt =

By (D.3) the functions x; are well-defined.
In view of (D.1) and (D.4), the diffeomorphism v := @ o ny: S — §’ satisfies

yra' =i (p*’) = 0 (@ +dh) = a,
as required. O
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