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Abstract
On every closed contact manifold there exist contact forms with volume one whose
Reeb flows have arbitrarily small topological entropy. In contrast, for many closed
manifolds there is a uniform positive lower bound for the topological entropy of (not
necessarily reversible) normalized Finsler geodesic flows.
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1 Introduction

1.1 Main results

The main results of this paper are the following two theorems.

Theorem 1.1 Let (M, ξ) be a closed co-orientable contact manifold. For every ε > 0
there exists a contact form α on (M, ξ) with volume one such that the topological
entropy htop(α) of its Reeb flow is smaller than ε.

Given a closed manifold Q let hvol(Q) be the infimum of the volume entropies of
Riemannian metrics on Q that have volume one. This number is equal to 2

√
π(k − 1)
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for a closed orientable surface of genus k ≥ 2, and it is positive for instance if Q
admits a Riemannian metric of negative curvature. Given a Finsler metric F on Q we
denote by htop(F) the topological entropy of the time-one map of the geodesic flow
of F . Define the dimension constants

cn := 1

(n!ωn)1/n

where ωn is the volume of the Euclidean unit ball in R
n . For instance c2 = 1√

2π
, and

asymptotically cn ∼
√

e
2π

1√
n
.

Theorem 1.2 Let Q be a closed connected n-dimensional manifold. Then for every
Finsler metric F on Q of Holmes–Thompson volume one it holds that

htop(F) ≥ cn hvol(Q),

and if F is symmetric that

htop(F) ≥ 2cn hvol(Q).

In the rest of this introduction, we recall the notions appearing in these theorems,
describe in more detail the results proved in this paper, put them into context, and
formulate a few open problems they give rise to. We first tell our story for the special
case of unit circle bundles over closed orientable surfaces of higher genus. Most
ideas are present already for these simple spaces. We keep the presentation informal,
referring to the subsequent sections for the precise definitions and arguments.

1.2 The case of unit circle bundles over higher genus surfaces

Let Qk be the closed orientable surface of genus k ≥ 2. For every Riemannianmetric g
on Qk we consider the geodesic flow φt

g on the unit circle bundle
{
(q, v) ∈ T Qk | gq(v, v) = 1

}
.

A good numerical measure for the complexity of the flow φt
g is the topological entropy

htop(g) := htop(φ1
g). A definition can be found in Appendix A. This is an interesting

invariant because it is related to many other complexity measurements of φt
g , see [60].

For which Riemannian metrics g is htop(g) minimal? Such a g could then rightly
be considered as a best Riemannian metric from a dynamical point of view. Since the
topological entropy scales like

htop(cg) = 1

c
htop(g), (1.1)

the problem is meaningful only if one imposes a normalization. We normalize by the
Riemannian area and consider the scale invariant quantity

ĥtop(g) =
√
areag(Qk) htop(g). (1.2)
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Fig. 1 Spheres S∗q (H) in T ∗q Qk defining (a) a Reeb flow, (b) a Finsler geodesic flow, (c) a reversible Finsler
geodesic flow, (d) a Riemannian geodesic flow

It is a classical theorem of Dinaburg [42] and Manning [69] that the geodesic flow
of any Riemannian metric on Qk has positive topological entropy (cf. Appendix A
below). Their results do not give a uniform positive lower bound on ĥtop(g) nor do
they say anything about the minimizers, however. This was achieved in the following
remarkable result of Katok [64].

Theorem 1.3 (Katok 1983) For every Riemannian metric g on Qk it holds that

ĥtop(g) ≥ 2
√
π(k − 1).

Moreover, equality holds if and only if g has constant curvature.

Geodesic flows are very special Reeb flows. For our unit circle bundle over Qk ,
Reeb flows can be described as follows.We look at the cotangent bundle T ∗Qk instead
of the tangent bundle, endowed with its usual symplectic form ω = dλ, where λ =∑2

j=1 p j dq j . Let H : T ∗Qk → R be a continuous function that is smooth and
positive away from the zero-section and fiberwise positively homogenous of degree
one: H(q, rp) = r H(q, p) for all r ≥ 0. Then S∗(H) := H−1(1) is a smooth
hypersurface of T ∗Qk with the property that for each point q ∈ Qk the intersection
S∗q (H) := S∗(H) ∩ T ∗q Qk with the cotangent plane at q is the smooth boundary of
a domain which is starshaped with respect to the origin 0q , see the left drawing in
Fig. 1. Denote by φt

H the restriction of the Hamiltonian flow of H to S∗(H). The class
of these flows are the Reeb flows on our unit circle bundle. This flow is a co-geodesic
flow exactly if H restricts on each fiber to the square root of a positive quadratic form.
Special shapes of the fibers S∗q (H) in T ∗q Qk correspond to special Reeb flows:

(�) φt
H is a Riemannian geodesic flow if and only if each S∗q (H) is a centrally

symmetric ellipse.
(�) φt

H is a reversible Finsler geodesic flow if and only if each S∗q (H) is a
centrally symmetric closed smooth curve with strictly positive curvature.

(	) φt
H is a Finsler geodesic flow if and only if each S∗q (H) is a closed smooth

curve with strictly positive curvature.

Here we identified co-Finsler geodesic flows with Finsler geodesic flows via the Leg-
endre transform.

Based on [49] it was shown in [68] that the above result of Dinaburg and Manning
about Riemannian geodesic flows extends to all Reeb flows:
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Theorem 1.4 Every Reeb flow φt
H on S∗(H) ⊂ T ∗Qk, k ≥ 2, has positive topological

entropy.

DoesKatok’s theorem also extend toReeb flows? Tomake the questionmeaningful,
we again need to normalize. We do this by the symplectic volume of the bounded
domain D∗(H) in T ∗Qk with boundary S∗(H), and define the Holmes–Thompson
volume of Qk associated with H by

volHTH (Qk) = 1

2π

∫

D∗(H)

ω ∧ ω. (1.3)

Then the normalized topological entropy

ĥHTtop(H) :=
√
volHTH (Qk) htop(φ

1
H )

is invariant under scalings of H . In the Riemannian case, this definition agrees
with (1.2), since then volHTH (Qk) = areag(Qk). The following question was asked
in [48, §7.2].

Question 1.5 Is there a positive constant c(k) such that ĥHTtop(H) ≥ c(k) for every
Reeb flow on the co-circle bundle over Qk ?

Let us first try to answer this question in the affirmative for Finsler geodesic flows.
Given a Finsler metric F on Qk , an obvious idea is to find a lower bound for ĥHTtop(F)
by choosing a larger Riemannian metric

√
g ≥ F , cf. (1.1). In general, the topological

entropy of geodesic flows is not monotonewith respect to the order relation onmetrics,
however. We therefore pass to a more geometric version of entropy, which is indeed
monotone: The volume entropy of F is defined as the exponential growth rate of balls
in the universal cover Q̃k (which is the plane),

hvol(F) := lim
R→∞

1

R
logVol(Bq̃(R)) (1.4)

where q̃ is any fixed point in Q̃k , Bq̃(R) is the ball of radius R about q̃ with respect to
the lifted Finsler metric, and Vol is the volume with respect to the lift of any smooth
area form on Qk (see Appendix A for details). It is clear that F1 ≥ F2 implies

hvol(F2) ≥ hvol(F1). (1.5)

In the case of a Riemmannian metric g, denoting hvol(
√
g) simply by hvol(g), we have

that

htop(g) ≥ hvol(g) (1.6)

with equality if g has non-positive curvature, as proven by Manning in [69]. His proof
of (1.6) readily generalizes to all Finsler metrics, see Appendix A:

htop(F) ≥ hvol(F). (1.7)
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Let g be a Riemannian metric such that
√
g ≥ F . Using (1.7) and (1.5) we can now

estimate

ĥHTtop(F) :=
√
volHTF (Qk) htop(F)

≥
√
volHTF (Qk) hvol(g)

=
√√√√volHTF (Qk)

volHTg (Qk)
ĥvol(g).

In [64], Katok actually proved Theorem 1.3 for the normalized volume entropy ĥvol
(which by Manning’s theorem implies Theorem 1.3). Hence we obtain

ĥHTtop(F) ≥
√√√√volHTF (Qk)

volHTg (Qk)
2
√
π(k − 1). (1.8)

To get a uniform lower bound for ĥHTtop(F)we therefore look for a Riemannian metric g
with

√
g ≥ F that is as close as possible to F in the sense of the Holmes–Thompson

volume. We best do this directly in the cotangent bundle T ∗Qk . We thus look at each
q ∈ Qk for a centrally symmetric ellipse in T ∗q Qk such that, denoting by Eq the
region bounded by it, we have Eq ⊃ D∗q(F) and Eq is as close to D∗q(F) in volume
as possible.

If D∗q(F) is centrally symmetric, the best choice is Loewner’s outer ellipse. This is
the unique centrally symmetric ellipse enclosing D∗q(F) which minimizes the value
of the area of the region bounded by it, which we denote by E(D∗q(F)). Here the
area | | is taken with respect to any translation invariant measure on the plane T ∗q Qk .
Loewner’s ellipse depends continuously on q, and the largest area ratio

|E(D∗q(F))|
|D∗q(F)|

is π
2 , which is attained exactly when D∗q(F) is a parallelogram. If we take the Rie-

mannian metric g on Qk that has the sets E(D∗q(F)) as unit co-disks, we therefore
obtain

volHTF (Qk) ≥ 2

π
volHTg (Qk).

Together with (1.8) this yields

ĥHTtop(F) ≥
√

2

π
2
√
π(k − 1) = 2

√
2(k − 1).
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Fig. 2 The symmetrization conv (K ∪ −K )

If D∗q(F) is not centrally symmetric, we observe that the convex hull

conv
(
D∗q(F) ∪ −D∗q(F)

)

is centrally symmetric. It is not hard to see that for every convex body K ⊂ R
2 that

contains the origin,

|conv (K ∪ −K )| ≤ 4|K |

with equality attained exactly by the triangles with one vertex at the origin. Therefore,

|E(conv (K ∪ −K ))|
|K | ≤ 4 · π

2
= 2π.

Note that the constant 2π is sharp and is attained exactly by the triangles with one
vertex at the origin, see Fig. 2 (b).

Since the two maps

K �→ conv (K ∪ −K ) �→ E(K ∪ −K )

are continuous, we can take as g the Riemannian metric with unit co-disks

E
(
conv

(
D∗q(F) ∪ −D∗q(F)

))

and obtain

ĥHTtop(F) ≥
1√
2π

2
√
π(k − 1) = √

2(k − 1).

Summarizing, we obtain Theorem 1.2 for orientable surfaces:

ĥHTtop (F) ≥
1√
2π

hvol(Qk ), and ĥHTtop (F) ≥
√

2

π
hvol(Qk ) if F is symmetric. (1.9)
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How sharp are these lower bounds? It is still unknown whether the constants 1√
2π

and
√

2
π
can be replaced by 1. In other words, it is unknownwhether there exist Finsler

metrics F on Qk such that ĥHTvol (F) < hvol(Qk). We shall say more on this “minimal
entropy problem" in Sect. 1.7.

Recall that for the closed orientable surfaces Qk of genus k one has

hvol(Qk) = 2
√
π(k − 1).

For the non-orientable surface Pk whose orientation cover is Qk this implies

hvol(Pk) =
√
2π(k − 1).

For the other four closed surfaces (the sphere, the torus, the real projective plane and
the Klein bottle) Theorem 1.2 is not useful since hvol vanishes, and in fact there exist
geodesic flows on these surfaces with vanishing topological entropy.

We now look at general Reeb flows on the co-circle bundle over Qk . As said earlier,
these flows correspond to Hamiltonian flows on S∗(H) = H−1(1) of Hamiltonian
functions H : T ∗Qk → R that are fiberwise homogeneous of degree one. Looking for
a lower bound for ĥHTtop(φH ), we proceed as in the case of Finsler geodesic flows, but
knowing already (1.9) we now compare H with any Finsler metric. Choose a Finsler
Hamiltonian F : T ∗Qk → R such that D∗(H) ⊂ D∗(F), i.e., F ≤ H .

Definition (1.4) can be extended to Reeb flows: Fix a point q ∈ Qk , take a lift
q̃ ∈ Q̃k of q and the lift H̃ : T ∗ Q̃k → R of H , and then define hvol(H , q) as the
exponential growth rate of the volume of the set Bq̃(H̃ , T ) of those points z ∈ Q̃k for
which the fiber S∗z (H̃) can be reached in time ≤ T by a flow line of φt

H̃
that starts

at the fiber S∗q̃ (H̃). As we shall show in Appendix A one then still has Manning’s
inequality,

htop(H) ≥ hvol(H , q).

We now wish to show that there is a constant c > 0 depending only on H and F such
that hvol(H , q) ≥ c hvol(F). The existence of such a constant for non-convex H does
not follow from geometric considerations, since it is not true in general that F ≤ H
implies the inclusion of balls Bq̃(F̃, T ) ⊂ Bq̃(H̃ , T ). However, using Lagrangian
Floer homology in T ∗Qk one can avoid passing through hvol(H , q) and prove directly
that

ĥHTtop(H) ≥ 1

σ(H ; F) ĥvol(F) (1.10)

where σ(H ; F) is the smallest real number such that 1
σ(H ;F)D

∗(F) ⊂ D∗(H),
cf. Fig. 3. This is explained in Sect. 3, using the proof of the above Theorem 1.4
from [68].
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Fig. 3 The co-disks 1
σ(H ;F) D∗q (F) ⊂ D∗q (H) ⊂ D∗q (F) in T ∗q Qk

The number σ(H) := inf{σ(H ; F) | F ≤ H} is a measure for how far the fibers of
D∗(H) are from being convex. Inequalities (1.10) and (1.9) and Katok’s inequality
imply

Proposition 1.6 For every Reeb flow φH on the co-circle bundle over Qk,

ĥHTtop(H) ≥ 1

σ(H)

√
2(k − 1). (1.11)

The following special case of Theorem 1.1 shows that the lower bound in (1.11)
cannot be made uniform, that the answer to Question 1.5 is ‘no’, and that there is no
way to extend Katok’s rigidity theorem to Reeb flows.

Theorem 1.7 For every ε > 0 there exists a Reeb flowφt
H on S∗(H)with ĥHTtop(H) ≤ ε.

Proposition 1.6 shows that this entropy collapse cannot happen unless at least some
of the co-disks D∗q(H) = D∗(H) ∩ T ∗q Qk are very far from convex. Writing down
explicitely such star fields on T ∗Qk that lead to small ĥHTtop seems difficult, however.
In fact, our proof of Theorem 1.7 does not use the special fibration structure of S∗(H),
but uses the existence of open book decompositions valid for all closed 3-manifolds,
see the beginning of Sect. 4.2 for an outline and Sect. 4 for the proof.

1.3 Entropy rigidity for Finsler geodesic flows

Proceeding as in the previous section, one readily arrives at Theorem 1.2 for Finsler
geodesic flows on closed manifolds Q of arbitrary dimension n,

ĥHTtop (F) ≥ cn hvol(Q), and ĥHTtop (F) ≥ 2cn hvol(Q) if F is symmetric. (1.12)

Here the normalization ĥHTtop(F) =
(
volHTF (Q)

)1/n
htop(F) is done in terms of the

Holmes–Thompson volume

volHTF (Q) := 1

n!ωn

∫

D∗(F)
ωn, (1.13)
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which extends definition (1.3). The proof of (1.12) uses Loewner’s outer ellipsoids
and the Roger–Shephard volume bounds for symmetrized convex bodies. Similar
arguments appear in [6], where they are used to derive systolic inequalities for Finsler
metrics from the analogous inequalities for Riemannian metrics.

For Finsler metrics there is another natural volume, the Busemann–Hausdorff vol-
ume. For reversible Finsler metrics, this volume is at least the Holmes–Thompson
volume, see Sect. 2. The second inequality in (1.12) thus also holds true if we normal-
ize by the Busemann–Hausdorff volume. For irreversible Finsler metrics, however,
we do not know whether the first inequality in (1.12) holds true for the Busemann–
Hausdorff volume.

For manifolds of dimension n ≥ 3, it is more difficult to understand the volume
entropy hvol(Q) than for surfaces. The only sharp result is the following extension of
Katok’s theorem.

Theorem 1.8 (Besson–Courtois–Gallot [20, 21]) If Q is a closed manifold of dimen-
sion at least 3 that admits a locally symmetric Riemannian metric g0 of negative
curvature, then

ĥvol(g) ≥ ĥvol(g0)

for every Riemannian metric g on Q, and equality holds if and only if g is also locally
symmetric. In particular, hvol(Q) = ĥvol(g0) > 0.

Note that the space of minimizers up to isometry in Katok’s theorem is the 6k − 6
dimensional Teichmüller space, while the minimizers in Theorem 1.8 are all isometric
up to scaling, by Mostow’s theorem.

In the context of Theorem 1.2 we wish to know when hvol(Q) > 0. The main tool
for proving hvol(Q) > 0 is the simplicial volume ‖Q‖. If Q is orientable, it is defined
as inf

∑
i |ri | where the infimum is taken over those sums

∑
i riσi that represent the

fundamental class [Q] ∈ Hn(Q;R) with real coefficients. If Q is not orientable, pass
to the orientation double covering Q̂ and put ‖Q‖ = 1

2‖Q̂‖. Gromov proved in [59]
that

hvol(Q) ≥ C−1n ‖Q‖1/n

for an explicit dimension constant Cn .
There are many more manifolds Q with positive simplicial volume ‖Q‖ than those

in Theorem 1.8. Indeed, ‖Q‖ > 0 for all manifolds that admit a Riemannian metric of
negative curvature, and positivity of the simplicial volume is preserved under taking
the product with any other closed manifold of positive simplicial volume and under
taking the connected sum with any other closed manifold of the same dimension. We
refer to [59] and [66] for more examples and information on simplicial volume.

1.4 Entropy collapse for Reeb flows

Reeb flows are flows naturally associated to contact manifolds. A contact structure ξ
on a (2n − 1)-dimensional manifold M is a maximally non-integrable hyperplane
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field of the tangent bundle T M . We assume throughout that ξ is co-orientable, i.e.,
ξ = ker α for a 1-form α on M . In terms of such a form α, called a contact form for ξ ,
the maximal non-integrability means that α ∧ (dα)n−1 is a volume form on M . For
any non-vanishing function f on M the 1-form f α is also a contact form on (M, ξ).
Each contact form α gives rise to the Reeb flow φt

α , which is generated by the Reeb
vector field Rα implicitly defined by the two conditions

dα(Rα, ·) = 0, α(Rα) = 1.

For every closed manifold Q the so-called spherization (S∗Q, ξcan ) is a con-
tact manifold whose Reeb flows are exactly the flows φt

H on S∗(H) described in
Sect. 1.2 in the case of closed surfaces Qk , see Appendix B.1. Every closed 3-manifold
admits infinitely many non-isotopic contact structures, and an odd-dimensional closed
manifold M admits a contact structure if and only if its stabilized tangent bundle
T M ⊕ R admits a complex structure [22].

Theorem 1.4 has been extended to many contact manifolds: First, for many closed
manifolds Q every Reeb flow on (S∗Q, ξcan ) has positive topological entropy, [68].
Second, there are many closed 3-dimensional manifolds M such that for every contact
structure ξ on M every Reeb flow has positive topological entropy, [7–10, 74]. For a
recent result for non-degenerate Reeb flows see [33].

While in these results the underlyingmanifolds have rich loop space topology, there
are also examples where the positivity of topological entropy of all Reeb flows does
not come from the topological complexity of the loop space. For instance, it is shown
in [11] that the standard smooth sphere of dimension 2n − 1 ≥ 5 admits a contact
structure for which every Reeb flow has positive topological entropy.

Nevertheless, for none of these contact manifolds there can be a uniform bound
for the normalized topological entropy: The contact volume of the co-oriented contact
manifold (M, α) of dimension 2n − 1 is defined as

volα(M) := 1

n!ωn

∫

M
α ∧ (dα)n−1.

Now define the normalized topological entropy of the Reeb flow φt
α by

ĥtop(α) := (volα(M))1/n htop(φ
1
α). (1.14)

This normalization extends the normalizations (1.3) and (1.13) to all contactmanifolds,
see Appendix B.1. The following result implies Theorem 1.1.

Theorem 1.9 Let (M, ξ) be a closed co-orientable contact manifold of dimension at
least three. Then for every real number c > 0 there exists a contact form α for ξ such
that ĥtop(α) = c.

We shall in fact prove the flexibility expressed in Theorem 1.9 for a larger growth
rate: Given a C1-diffeomorphism φ of a compact manifold M , we define the two real
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numbers

�+(φ) := lim
n→+∞

1

n
log ‖dφn‖∞ ,

�(φ) := max
{
�+(φ), �+(φ−1)

}
.

Here ‖ · ‖∞ denotes the supremum norm induced by a Riemannian metric on M ,
but the above limit, whose existence follows from the subadditivity of the sequence
log ‖dφn‖∞, is clearly independent of the choice of the metric.

The quantity �+ was used by Yomdin [96] to measure the difference between topo-
logical entropy and volume growth, and the study of the growth type of the sequence
‖dφn‖∞ for various classes of diffeomorphisms was proposed in [39, §7.10]. The
more symmetric invariant� and its polynomial versionwere investigated, for instance,
in [82, 83]. For Hamiltonian flows and Reeb flows, where uniformmeasurements (like
the Hofer metric) turned out to capture symplectic rigidity, it is particularly natural to
look at these two growth rates.

The norm growths �+ and � are related to the topological entropy by

htop(φ) ≤ (dim M) �+(φ) ≤ (dim M) �(φ), (1.15)

see [60, Corollary 3.2.10] for the first inequality. The numbers �+(φ) and �(φ) are
upper bounds for several other invariants of φ, and hence the collapsibility of � for
Reeb flows also implies the collapsibility of these other invariants. For instance,�+(φ)
is not less than the largest Lyapunov exponent χmax(p) at every point p ∈ M . With


(p) =
∑

χ+i (p)>0

k+i (p) χ+i (p)

the sum of the positive Lyapunov exponents χ+i (p) at p counted with their mul-
tiplicities k+i (p), we then also have 
(p) ≤ (dim M) �+(φ). Together with the
Margulis–Ruelle inequality (see [60, Theorem S.2.13]) we obtain that the metric
entropy hμ(φ) with respect to any invariant Borel probability measure μ has the
upper bound

hμ(φ) ≤
∫

M

(p) dμ(p) ≤ (dim M) �+(φ).

Applying the variational principle for the topological entropy, we obtain again (1.15).
Fromnowonwe focus on�. For a flowφt we set�(φ) = �(φ1), and for aReebflow

φt
α we set �(α) = �(φα). For c > 0 we have φt

cα = φ
t/c
α and hence �(cα) = 1

c�(α).
Like for the topological entropy, the invariant

�̂(α) = volα(M)1/n �(α),

where dim M = 2n − 1, is therefore invariant under scaling. In view of (1.15), the
following result improves Theorem 1.1.



Entropy collapse versus entropy rigidity for Reeb and … Page 13 of 99 67

Theorem 1.10 Let (M, ξ) be a closed co-orientable contact manifold of dimension at
least three. Then for every real number c > 0 there exists a contact form α for ξ such
that �̂(α) = c.

We shall prove Theorems 1.9 and 1.10 along the following lines. The main step is
to show that for every ε > 0 there exists a contact form αε for ξ such that �̂(αε) ≤ ε.
We do this with the help of an open book decomposition of M and an inductive
construction, in which the induction step dim 2n − 1 � dim 2n + 1 is carried out
by applying the induction hypothesis to the binding of the open book decomposition
of M . We can start the induction in dimension 1 at the circle, for which �̂(dθ) = 0.We
nevertheless present the 3-dimensional case separately in Sect. 4 because we believe
that after understanding the geometric ideas in this particular situation it is easier to
follow the general argument. The induction step is done in Sect. 6. It uses results of
Giroux on the correspondence between contact structures and supporting open books,
that we recollect in Sect. 5.

Given contact forms αε as above, Theorems 1.9 and 1.10 follow from (1.15) and
from a simple modification of αε that increases ĥtop and �̂, see Sect. 7.

1.5 Collapsing the growth rate of symplectic invariants

In theworks [9, 11, 74] it is shown that the exponential growth rate of certain symplectic
topological invariants provides a lower bound for the topological entropy of Reeb
flows. These invariants are linearised Legendrian contact homology [9], wrapped Floer
homology [11], and Rabinowitz–Floer homology [74]. Combining these results with
Theorem 1.1 we obtain that the growth rate of these invariants can be made arbitrarily
small. Details are given in Sect. 8.

1.6 Relations to systolic inequalities

Consider a closed co-orientable contact manifold (M, ξ) of dimension 2n − 1. Given
a contact form α for ξ that has at least one periodic Reeb orbit, take the smallest period
Tmin(α). The so-called systolic ratio

ρsys(α) = volα(M)−1/n Tmin(α)

is then invariant under scalings of α.
While for spherizations S∗Q ofmany closedmanifolds Q there are famous uniform

upper bounds on the systolic ratios of Riemannian Reeb flows, in the full class of Reeb
flows one has the following flexibility result.

Theorem 1.11 For any closed co-orientable contact manifold (M, ξ) and every posi-
tive number c there exists a contact form α such that ρsys(α) > c.

This result was shown for the tight 3-sphere in [1] and for all contact 3-manifolds
in [2] by a plug construction in open book decompositions. The idea in this paper to
use open book decompositions for proving entropy collapse came from these works.
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Theorem 1.11 in dimension ≥ 5 was proved in [88]. That proof was later on much
simplified [89] by using our inductive construction in Sect. 6. Interestingly, our con-
struction in dimension 3 does not yield a proof of Theorem 1.11. This suggests that
at least in the smallest interesting dimension, one has more flexibility to collapse the
topological entropy of Reeb flows than to increase their systolic ratio.

1.7 Minimal entropy problems for Finsler and Reeb flows

Given a class C ofmaps on a compact manifoldM , it is interesting to understandwhich
maps in class C minimize the (normalized) topological entropy. Since topological
entropy is a measure for the complexity, these maps can then be considered as the
simplest, or the best, maps on M in class C.

For the class of Riemannian geodesic flows on the spherization SQ of a compact
manifold Q, the minimal entropy problem consists of three parts.

(P1) Compute the minimal entropy

htop(Q,G) := inf
{
ĥtop(φg) | g a Riemannian metric on Q

}
.

(P2) Decide whether the infimum is attained or not.
(P3) If the infimum is attained, describe the minimizers g.

For manifolds admitting a locally symmetric Riemannian metric of negative cur-
vature, Theorems 1.3 and 1.8 completely solve the minimal entropy problem. Among
the many further interesting works on the minimal entropy problem are [65, 81].

Theminimal entropy problem can also be formulated for the larger classes of Finsler
and Reeb flows. Define three more numbers

hHTtop(Q,R) ≤ hHTtop(Q,F) ≤ hHTtop(Q,Frev) ≤ htop(Q,G)

by taking the infimum in the definition of htop(Q,G) over all contact forms on
(S∗Q, ξcan ) for hHTtop(Q,R), over all Finsler metrics for hHTtop(Q,F), and over all

reversible Finsler metrics for hHTtop(Q,Frev), respectively, where as in (1.13) and (1.14)
we normalize by the Holmes–Thompson volume.

Theorem 1.1 shows that hHTtop(Q,R) = 0 for all compact manifolds Q. This set-
tles (P1) for the classR. Furthermore, formanymanifolds, like thosewith fundamental
group of exponential growth, the answer to (P2) is ‘no’ by the general version of The-
orem 1.4 from [68].

We now turn to the invariants hHTtop(Q,F) and hHTtop(Q,Frev). By Theorems 1.2
and A.2 we have

cn hvol(Q) ≤ hHTtop(Q,F) ≤ htop(Q,G),

2cn hvol(Q) ≤ hHTtop(Q,Frev) ≤ htop(Q,G).

For manifolds admitting a locally symmetric Riemannian metric of negative curvature
(for which htop(Q,G) = hvol(Q)) nothing more seems to be known about the values



Entropy collapse versus entropy rigidity for Reeb and … Page 15 of 99 67

of hHTtop(Q,F) and hHTtop(Q,Frev), so already (P1) in the entropy problem is wide open
for the classes F and Frev.

Addressing (P3) we note that in the Finsler setting one cannot expect metrics of
minimal normalized topological entropy to be unique, or even to be characterised in
terms of curvature-like invariants. Indeed, any exact symplectomorphism of T ∗Q that
is C2-close to the identity maps the unit cotangent sphere bundle S∗(F) of the Finsler
metric F to the unit cotangent sphere bundle S∗(F ′) of some Finsler metric F ′ whose
geodesic flow is conjugated to the one of F by a smooth time-preserving conjugacy.
In particular, the new Finsler metric F ′ has the same normalized topological entropy
as F , but need not be isometric to it. See Appendix D for a discussion of this.

Higher rank. More can be said in higher rank. The following result is proved in
Sect. 2.6 using Verovic’s work [93].

Proposition 1.12 Let (Q, g) be a compact locally symmetric space of non-compact
type and of rank ≥ 2. Then there exists a constant c < 1 such that

hHTtop(Q,Frev) ≤ c ĥvol(g). (1.16)

The constant c only depends on the globally symmetric space (Q̃, g̃), and it can be
computed from its Weyl data. See Proposition 2.7 below for a more precise statement.

Let hsymvol (Q) be the minimum of ĥvol(g) taken over all locally symmetric Rieman-
nian metrics g on Q. This number is easy to compute, see [35, §2]. Unfortunately
it is still not known whether Theorem 1.8 also holds in higher rank, that is, whether
hvol(Q) = hsymvol (Q). However, this is known if (Q, g) is locally isometric to a product
of negatively curved symmetric spaces of dimension ≥ 3, [35], and for quotients of
the k-fold product (H2)k = H2×· · ·×H2 of the real hyperbolic plane, [75]. For these
spaces, (1.16) can thus be written as

hHTtop(Q,Frev) ≤ c hvol(Q).

We shall compute the constant c for quotients of (H2)k in Sect. 2.6. For instance,

c(H2×H
2) = 4

√
2 ≈ 0.841. This should be compared with the constant 2c4 =

√
2
π
≈

0.61 for the lower bound in Theorem 1.1.
The minimal entropy problem can also be studied for the volume entropies hvol

insteadofhtop, andbynormalizing either entropyby theBusemann–Hausdorff volume.
Much of the above discussion applies also to these minimal entropies.

1.8 Topological pressure

In view of Theorem 1.1, there is no minimal entropy program for Reeb flows. Fur-
thermore, the situation cannot be salvaged by looking at subexponential growth
rates, since replacing limn→∞ 1

n log . . . in the definition of topological entropy by
limn→∞ 1

nc log . . . for some c ∈ (0, 1) yields+∞ for all Reeb flows on many contact
manifolds by Theorem 1.4.
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However, increasing topological entropy in terms of topological pressure leads to
a meaningful problem. Given a closed contact manifold (M, ξ) associate with every
continuous function f ∈ C0(M,R) and every contact form α for ξ the topological
pressure P(α, f ) = P(φα, f ), see [95, Chapter 9] for the definition and basic results
on topological pressure. We recall that P(α, 0) = htop(α) and that the variational
principle for topological pressure says

P(α, f ) = sup
μ∈M(α)

{
hμ(φα)+

∫

M
f dμ

}
(1.17)

where M(α) denotes the set of φt
α-invariant Borel probability measures on M and

hμ ≥ 0 is the entropy of the measure μ. Define

P(M, f ) := inf {P(α, f ) | α a normalized contact form on (M, ξ)} .

Since P(α, f + c) = P(α, f ) + c for all c ∈ R, we can assume that min f = 0.
Together with Theorem 1.1 we then obtain

0 ≤ P(M, f ) ≤ max f .

It would be interesting to see if these bounds can be sharpened for functions f that
do not identically vanish. Our proof of Theorem 1.1 does not help with this problem,
since the maximal measures in (1.17) (the so-called equilibrium states) may not be
related in any way to the open book decomposition in our proof.

2 Volume entropy for Finsler geodesic flows

2.1 Finsler metrics and their volumes

By a Finsler metric on an n-dimensional manifold Q we mean in this paper a con-
tinuous function F : T Q → [0,+∞) which is fiberwise convex, fiberwise positively
homogeneous of degree 1, and positive outside of the zero section. TheFinslermetric F
is said to be reversible if F(v) = F(−v) for all v ∈ T Q.

For q ∈ Q the unit disk in TqQ determined by the Finsler metric F is the set

Dq(F) :=
{
v ∈ TqQ | F(v) ≤ 1

}
.

This is a convex compact neighborhood of the origin in TqQ. The function F |Tq Q is
precisely the Minkowski gauge of Dq(F). The unit co-disk in T ∗q Q is the polar set
of Dq(F):

D∗q(F) :=
{
p ∈ T ∗q Q | 〈p, v〉 ≤ 1 ∀v ∈ Dq(F)

}
,

where 〈·, ·〉 denotes the duality pairing between tangent vectors and co-vectors. This
is a compact convex neighborhood of the origin in T ∗q Q.
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On compact Finsler manifolds there are two different notions of volume that are
used in the literature. From the point of view of this paper, the most natural one is the
Holmes–Thompson volume, which can be defined as

volHTF (Q) := 1

n!ωn

∫

D∗(F)
ωn,

where

D∗(F) :=
⋃
q∈Q

D∗q(F) ⊂ T ∗Q

is the unit co-disk bundle of Q, where ωn denotes the standard volume form on T ∗Q
induced by integrating the n-fold exterior power of the canonical symplectic formω =∑

j dq j∧dp j , andwhereωn is the volumeof theEuclidean unit ball inR
n , n = dim Q.

The normalization factor n!ωn makes volHTF (Q) coincidewith theRiemannian volume
of Q when F(v) = √g(v, v) is a Riemannian metric on Q.

Alternatively, the Holmes–Thompson volume can be defined as the integral over Q
of a suitable volume density ρ∗F . Here by volume density we mean a norm on the line
bundle �n(T Q), whose fiber at q ∈ Q is the top degree component of the exterior
algebra of TqQ, that is, the 1-dimensional space spanned by v1 ∧ · · · ∧ vn , where
v1, . . . , vn is a basis of TqQ. When Q is orientable, a volume density is just the
absolute value of a nowhere vanishing differential n-form. A volume density can be
integrated over any non-empty open subset of Q, producing a positive number. The
volume density ρ∗F is defined as follows: Given any volume density ρ on Q set

ρ∗F (q) :=
|D∗q(F)|∗ρ

ωn
ρ(q),

where | · |∗ρ denotes the Lebesgue measure on T ∗q Q that is normalized to 1 on the
n-dimensional parallelogram spanned by the covectors that are dual to basis vectors
v1, . . . , vn in TqQ such that ρ(q)[v1 ∧ · · · ∧ vn] = 1. We then have

volHTF (Q) =
∫

Q
ρ∗F .

Another common choice is to consider the Busemann–Hausdorff volume, which is
defined as

volBHF (Q) :=
∫

Q
ρF ,

where the volume density ρF is given by

ρF (q) := ωn

|Dq(F)|ρ ρ(q).



67 Page 18 of 99 A. Abbondandolo et al.

Here ρ is again an arbitrary volume density on Q and |·|ρ is the Lebesgue measure
on TqQ normalized to 1 on the parallelogram spanned by vectors v1, . . . , vn in TqQ
with ρ(q)[v1∧· · ·∧vn] = 1.When F is reversible, the Busemann–Hausdorff volume
of Q coincides with the n-dimensional Hausdorff measure of Q with respect to the
distance induced by F .

Both volumes reduce to the standard Riemannian volume when the Finsler
metric F is Riemannian. If F is reversible, then

volHTF (Q) ≤ volBHF (Q), (2.1)

with equality holding if and only if F is Riemannian. This follows from the Blaschke–
Santaló inequality, see e.g. [43]. In the non-reversible case, the Holmes–Thompson
volume can be much larger than the Busemann–Hausdorff volume. Note that both the
Holmes–Thompson and the Busemann–Hausdorff volume depend monotonically on
the Finsler metric, meaning that

F1 ≤ F2 ⇒ volHTF1 (Q) ≤ volHTF2 (Q), volBHF1 (Q) ≤ volBHF2 (Q), (2.2)

and rescale as

volHTcF (Q) = cn volHTF (Q), volBHcF (Q) = cn volBHF (Q), (2.3)

when the Finsler metric F is multiplied by a positive constant c.

2.2 Volume entropy

Let F be a Finsler metric on a compact n-dimensional manifold Q. This Finsler metric
lifts to a Finsler metric on the universal cover Q̃ of Q, and we denote the lifted metric
by the same symbol F . The R-ball centered at q ∈ Q̃ that is induced by F is the
following compact subset of Q̃:

Bq (F, R) :=
{
γ (R) | γ : [0, R] → Q̃ Lipschitz curve, γ (0) = q and F ◦ γ̇ ≤ 1 a.e.

}
. (2.4)

When F is reversible, Bq(F, R) is the ball of the distance on Q̃ that is induced by F ;
in general, it is the forward ball of an asymmetric distance.

The volume entropy of F is the non-negative number

hvol(F) := lim
R→∞

1

R
logVol(Bq(F, R)). (2.5)

Here Vol denotes the volume of Borel subsets of Q̃ with respect to the lift to Q̃ of
an arbitrary Riemannian metric on Q. A minor modification of Manning’s argument
from [69] shows that the above limit exists and is independent of the choice of the
point q ∈ Q̃ and of the Riemannian metric on Q, see Proposition A.1. In the case of
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the Finsler metric G = √
g(·, ·) that is induced by a Riemannian metric g, we use

interchangeably the notations

hvol(g) = hvol(G).

The volume entropy is monotonically decreasing in F , meaning that

F1 ≤ F2 ⇒ hvol(F1) ≥ hvol(F2). (2.6)

Indeed, if F1 ≤ F2 on Q then the same inequality holds on Q̃ and hence (2.4) implies

Bq(F1, R) ⊃ Bq(F2, R) ∀ q ∈ Q̃, ∀ R ≥ 0,

from which (2.6) follows. Let c be a positive number. From the identity

Bq(cF, R) = Bq(F, c
−1R)

we deduce that the volume entropy rescales as

hvol(cF) = c−1 hvol(F). (2.7)

Together with (2.3), this suggests to consider the normalized volume entropies

ĥHTvol (F) := volHTF (Q)1/n hvol(F), ĥBHvol (F) := volBHF (Q)1/n hvol(F).

These quantities are now invariant under scaling:

ĥHTvol (cF) = ĥHTvol (F), ĥBHvol (cF) = ĥBHvol (F).

Since the Holmes–Thompson and the Busemann–Hausdorff volumes coincide when
F = G = √

g is Riemannian, there is just one normalized volume entropy in the
Riemannian case, and we denote it by

ĥvol(g) = ĥvol(G).

In the next two subsections, we study how the two different normalized volume
entropies of an arbitrary Finsler metric can be bounded from below and from above
in terms of the normalized volume entropy of suitable Riemannian metrics. Our argu-
ments follow [6], where similar techniques are used in order to derive bounds for the
systolic ratio.

2.3 From reversible Finsler to Riemannian

Let F be a reversible Finslermetric on the compact n-dimensionalmanifold Q. Denote
by Eq the inner Loewner ellipsoid of the symmetric convex body Dq(F), i.e. the
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ellipsoid centered at the origin which is contained in Dq(F) and has maximal volume
among all ellipsoids with this property. Here by volume we mean any translation
invariantmeasure on Tq Q (which is unique up tomultiplication by a positive constant).
It is well known that the inner Loewner ellipsoid is unique, and John proved that it
satisfies

Eq ⊂ Dq(F) ⊂ √n Eq . (2.8)

See [62], or [12] for a modern proof of these results. Denote by G : T Q → [0,+∞)

the function which in each tangent space TqQ is the Minkowski gauge of Eq . The
function G is the square root of a Riemannian metric: G(v) = √

g(v, v) for some
continuous Riemannian metric g on Q. Indeed, the continuity of G easily follows
from the uniqueness of the inner Loewner ellipsoid. From the inclusions (2.8) we
deduce the inequalities

n−1/2 G ≤ F ≤ G, (2.9)

which thanks to (2.6) and (2.7) imply the bounds

hvol(G) ≤ hvol(F) ≤ √n hvol(G). (2.10)

By (2.2) and the second inequality in (2.9) the Busemann–Hausdorff volume of (Q, F)
has the upper bound

volBHF (Q) ≤ volG(Q). (2.11)

In order to get a lower bound for the Holmes–Thompson volume of (Q, F) we can
use (2.2), (2.3) and the first inequality in (2.9) and obtain

volG(Q) ≤ nn/2 volHTF (Q). (2.12)

However, we get a better bound by the following argument. The polar set E∗q = D∗q(G)

of Eq = Dq(G) satisfies

D∗q(F) ⊂ D∗q(G)

and is the outer Loewner ellipsoid of D∗q(F), i.e. the centrally symmetric ellipsoid of
minimal volume among those containing D∗q(F). Then we have

|D∗q(G)|∗ρ ≤
n!ωn

2n
|D∗q(F)|∗ρ.

This follows from the fact that the ratio between the volume of the outer Loewner
ellipsoid of a symmetric convex body K and the volume of K is maximal for the
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cross-polytope, a result that Ball deduced from the inverse Brascamp–Lieb inequality
of Barthe in [13, Theorem 5]. Therefore, we obtain

volG(Q) ≤ n!ωn

2n
volHTF (Q), (2.13)

which is a better bound than (2.12) for every n ≥ 2, and also asymptotically because

lim
n→∞

(
n!ωn

2n nn/2

)1/n

=
√

π

2e

by the Stirling formula. By putting together (2.1), (2.10), (2.11) and (2.13) we obtain
the following result.

Proposition 2.1 Let F be a reversible Finsler metric on the compact n-dimensional
manifold Q and let G = √g be the Riemannian metric on Q whose unit disks are the
inner Loewner ellipsoids of the unit disks of F. Then

2

(n!ωn)1/n
ĥvol(g) ≤ ĥHTvol (F) ≤ ĥBHvol (F) ≤

√
n ĥvol(g).

2.4 From irreversible to reversible Finsler

Let F be an arbitrary Finsler metric on the compact n-dimensional manifold Q. We
symmetrize the metric F by the following procedure: We define S : T Q → [0,+∞)

to be the reversible Finsler metric on Q whose unit co-disk at each q ∈ Q is the
reflection body of D∗q(F), i.e. the centrally symmetric convex body

D∗q(S) := conv
(
D∗q(F) ∪ (−D∗q(F))

)
.

Note that

D∗q(F) ⊂ D∗q(S) ⊂ θ D∗q(F), (2.14)

where θ is the irreversibility ratio of F , i.e. the number

θ := max
v∈T Q
F(v)=1

F(−v), (2.15)

which is at least 1, and equal to 1 if and only if F is reversible. Indeed, the second
inclusion in (2.14) follows from the fact that θ is an upper bound for the norm of
minus the identity on TqQ with the asymmetric norm F , and hence also for the norm
of minus the identity on T ∗q Q with the asymmetric norm that is dual to F . Moreover,
the volume of D∗q(S) has the upper bound

|D∗q(S)|∗ρ ≤ 2n |D∗q(F)|∗ρ, (2.16)
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as proven by Rogers and Shephard in [86, Theorem 3]. From (2.14) we deduce

θ−1S ≤ F ≤ S, (2.17)

and hence (2.6) and (2.7) imply

hvol(S) ≤ hvol(F) ≤ θ hvol(S). (2.18)

On the other hand, from (2.16) and the second inequality in (2.17) we obtain the
following inequalities for the Holmes–Thompson volume

2−n volHTS (Q) ≤ volHTF (Q) ≤ volHTS (Q). (2.19)

The bounds (2.18) and (2.19) imply the following result.

Proposition 2.2 Let F be a Finsler metric on the compact n-dimensional manifold Q
with irreversibility ratio θ and let S be the reversible Finsler metric whose dual disks
are the reflection bodies of the dual disks of F:

D∗q(S) = conv
(
D∗q(F) ∪ (−D∗q(F))

) ∀ q ∈ Q.

Then

1

2
ĥHTvol (S) ≤ ĥHTvol (F) ≤ θ ĥHTvol (S).

The lower bounds of Propositions 2.1 and 2.2, together with Stirling’s formula,
have the following consequence:

Corollary 2.3 Let Q be a compact n-dimensional manifold and denote by hvol(Q) the
infimum of ĥvol(g) over all Riemannian metrics g on Q. Then the Holmes–Thompson
normalized volume entropy of an arbitrary Finsler metric F on Q has the lower bound

ĥHTvol (F) ≥ cn hvol(Q),

where

cn := 1

(n!ωn)1/n
∼

√
e

2π

1√
n
.

Moreover, if the Finsler metric F is reversible, we have

ĥBHvol (F) ≥ ĥHTvol (F) ≥ 2cn hvol(Q).

Remark 2.4 If we symmetrize D∗q(F) by considering the difference body D∗q(F) −
D∗q(F) instead of the reflection body, then we get a worse bound, because in this

case the factor 2n in (2.16) must be replaced by the middle binomial coefficient
(2n
n

)
,
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in view of the Rogers–Shephard inequality for the volume of the difference body,
see [85]. By using the reflection body instead of the difference body, the systolic upper
bounds of Theorem 4.13 and Corollary 4.14 in [6] can be improved by replacing the
dimension dependent quantity n

√
(2n)!/(n!)2 by the constant factor 2.

If the volume entropy is normalized by the Busemann–Hausdorff volume, we do
not get a lower bound that is independent of the irreversibility ratio. From (2.2), (2.3),
(2.17) and (2.18) we obtain

1

θ
ĥBHvol (S) ≤ ĥBHvol (F) ≤ θ ĥBHvol (S).

We do not have a lower bound that is independent of θ because, unlike the volume
ratio |D∗q(S)|∗ρ/|D∗q(F)|∗ρ , the ratio |Dq(F)|ρ/|Dq(S)|ρ can be arbitrarily large.

On the other hand, the upper bound can be made independent of the irreversibility
ratio θ by symmetrizing, this time, directly in T Q: We consider the reversible Finsler
metric T whose unit ball at q is the set

Dq(T ) := conv
(
Dq(F) ∪ (−Dq(F))

)
.

For this metric, we have

T ≤ F ≤ θ T ,

from which we obtain

1

θ
hvol(T ) ≤ hvol(F) ≤ hvol(T ).

Moreover, the Rogers–Shephard inequality for the reflection body gives

volBHT (Q) ≤ volBHF (Q) ≤ 2n volBHT (Q),

and we deduce the following result.

Proposition 2.5 Let F be a Finsler metric on the compact n-dimensional manifold Q
with irreversibility ratio θ and let T be the reversible Finsler metric whose unit disk
at each q is the reflection body

Dq(T ) = conv
(
Dq(F) ∪ (−Dq(F))

)

of the disk of F at q. Then

1

θ
ĥBHvol (T ) ≤ ĥBHvol (F) ≤ 2 ĥBHvol (T ).
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2.5 Lower bounds on the normalized topological entropy

We now assume that the (possibly irreversible) Finsler metric F on Q has better
regularity and convexity properties: Outside of the zero section, F : T Q → R is of
class C2 and the fiberwise second differential of F2 is positive definite. We will refer
to such an F as to a regular Finsler metric. Under these assumptions, the geodesic
flow of F is well defined. We denote by htop(F) the topological entropy of this flow,
and by

ĥHTtop(F) = volHTF (Q)1/n htop(F), ĥBHtop (F) = volBHF (Q)1/n htop(F)

the Holmes–Thompson and Busemann–Hausdorff normalizations of this entropy.
Manning’s inequality

htop(F) ≥ hvol(F)

from [69] holds also in theFinsler setting, as shown inTheoremA.2.ThenCorollary 2.3
has the following immediate consequence.

Corollary 2.6 Let Q be a compact n-dimensional manifold and denote by hvol(Q) the
infimum of ĥvol(g) over all Riemannian metrics g on Q. Then the Holmes–Thompson
normalized topological entropy of any regular Finsler metric F on Q has the lower
bound

ĥHTtop(F) ≥ cn hvol(Q),

where

cn := 1

(n!ωn)1/n
∼

√
e

2π

1√
n
.

Moreover, if the Finsler metric F is reversible, we have

ĥBHtop (F) ≥ ĥHTtop(F) ≥ 2cn hvol(Q).

2.6 Finsler metrics with small topological entropy

The following result is more precise than Proposition 1.12.

Proposition 2.7 Let (Q̃, g̃) be aRiemannian globally symmetric space of non-compact
type and of rank≥ 2. Let G be the connected component of the identity of the isometry
group of (Q̃, g̃). Then there exist computable constants cHT < cBH < 1 that depend
only on (Q̃, g̃)with the following property: For every discrete co-compact subgroup�
of G that acts without fixed points on Q̃ and for every ε > 0 there exists a smooth
reversible G-invariant Finsler metric F on Q = Q̃/� such that

ĥHTtop(F) = ĥHTvol (F) ≤ (1+ ε) cHT ĥvol(g̃), (2.20)
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ĥBHtop (F) = ĥBHvol (F) ≤ (1+ ε) cBH ĥvol(g̃). (2.21)

In particular, ĥHTtop(Q,Frev) ≤ cHT ĥvol(g̃) and ĥBHtop (Q,Frev) ≤ cBH ĥvol(g̃).

Proof Fix a point x0 ∈ G, let K ⊂ G be the stabilizer of x0, let g and k be the Lie
algebras ofG and K , and let g = k⊕p be the Cartan decomposition associatedwith x0.
(Then p ∼= Tx0 Q̃.) Choose a maximal abelian subalgebra a ⊂ p, and let Wa be its
Weyl group.

The set of G-invariant Finsler metrics on Q̃ is in bijection with the set

C = {C ⊂ a | C centrally symmetric Wa-invariant convex body} .

In general, the Finsler metric assoiated with C ∈ C is only continuous, and it is
smooth if and only if the boundary of C is smooth. Let C0 be “the least convex" body
in C of g̃-volume one. (For details we refer to [93], but it should become clear from
Examples 2.8 below how to construct C0.) Since dim a = rank (G/K ) ≥ 2, C0 is
not just a segment, and hence not an ellipsoid, i.e., the Finsler metric F0 associated
with C0 is not Riemannian. In fact, F0 is not smooth. Verovic shows that F0 is the
unique minimizer of ĥvol(F) among all G-invariant continuous Finsler metrics on Q̃.
In particular, the constant cBH defined by

ĥBHvol (F0) = cBH ĥvol(g̃) (2.22)

is strictly less than 1. There is a simple formula computing this constant in terms of
the Weyl data of a.

Fix ε > 0, choose a smooth body C from C such that

C0 ⊂ C ⊂ (1+ ε)C0,

and let F be the associated Finsler metric. Then

ĥBHvol (F) ≤ (1+ ε) ĥBHvol (F0), (2.23)

cf. Sect. 2.2. Since Q̃ is of non-compact type, G is semi-simple, see for instance [99,
Proposition 6.38 (d)]. It thus follows from [40, Theorem 6.3 (2)] that F has negative
flag curvature. Therefore, the extension of Manning’s equality to reversible Finsler
metrics in [44, Theorem 6.1] implies that

ĥBHtop (F) = ĥBHvol (F). (2.24)

The line (2.21) follows from (2.24), (2.23), and (2.22).
Define the constant cHT by

ĥHTvol (F0) = cHT ĥvol(g̃).

By (2.1) and the Santaló inequality, cHT < cBH. Repeating the above arguments we
obtain (2.20). ��
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Example 2.8 1. Let Q be a compact quotient of the symmetric space (H2)k of rank k.
The maximal abelian subalgebra a is R

k , with Weyl chamber a+ = R
k
>0. The set of

positive roots is given by the dual basis ε1, . . . , εk of the standard basis e1, . . . , ek
of R

k .
The standard Riemannian metric g on Q corresponds, up to to scaling, to the closed

unit ball B in a = R
k , and we take F0 to be the non-smooth Finsler metric correspond-

ing to the cross-polytope C0 in a with vertices ±e1, . . . ,±ek . Now Proposition 2.2
in [93] shows that

ĥBHvol (F0) =
(
volBHF0 (Q)

)1/(2k)
max

v∈C0∩a+
(
ε1(v)+ · · · + εk(v)

) =
(
volBHF0 (Q)

)1/(2k)

ĥBHvol (g) =
(
volBHg (Q)

)1/(2k)
max

v∈B∩a+
(
ε1(v)+ · · · + εk(v)

) =
(
volBHg (Q)

)1/(2k)√
k.

Let Dx0(F0) resp. Dx0(g) be the unit ball of F0 resp. g in Tx0 Q̃ ∼ p. By G-invariance
of F0 and g, and in view of the definition of the Busemann–Hausforff volume in
Sect. 2.1,

volBHF0 (Q)

volBHg (Q)
= volg(Dx0(g))

volg(Dx0(F0))
. (2.25)

Lemma 2.9 The quotient on the right of (2.25) is equal to (2k)!
2k k! .

Proof We have Dx0(F0) = Ad(K )(C0) and Dx0(g) = Ad(K )(B). For k = 1, when
G = SL(2;R) and K = SO(2;R), a computation in the orthogonal basis

(
1 0
0 −1

)
,(

0 1
1 0

)
of p shows that the orbit Ad(K )p of a point p ∈ p is the circle through p. For

general k ≥ 1, the Ad(K )-orbit of p = (p1, . . . , pk) ∈ p is the k-torus made of circles
of radius |pi |. Since the restrictions of F0 and g to p are Ad(K )-invariant, it follows
that the quotient on the right of (2.25) is equal to the quotient of the two integrals

∫

B∩a+
(x1x2 · · · xk) dx1dx2 · · · dxk,

∫

C0∩a+
(x1x2 · · · xk) dx1dx2 · · · dxk .

The first integral equals 1
2k k! and the second equals 1

(2k)! as one finds using Fubini’s
theorem and induction. ��

Together with the lemma we conclude that

cBHk := cBH
(
(H2)k

)
= ĥBHvol (F0)

ĥBHvol (g)
=

(
(2k)!
k!

)1/(2k) 1√
2k

.

Wenext compute theHolmes–Thompsonvolumes volHTF0 (Q) andvolHTg (Q). Denote
by C∗0 and B∗ the polar sets of C0 and B in p∗, respectively, and by g∗ the dual
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Riemannian metric on p∗. By G-invariance of F0 and g, and in view of the definition
of the Holmes–Thompson volume in Sect. 2.1,

volHTF0 (Q)

volHTg (Q)
= volg∗(D∗x0(F0))

volg∗(D∗x0(g))
. (2.26)

Using that D∗x0(F0) = Ad∗(K )(C∗0 ) and D∗x0(g) = Ad∗(K )(B∗), that the polar set
C∗0 of the cross-polytope C0 is the unit cube, and the computations

∫

B∗∩Rk≥0
(x1 · · · xk) dx1 · · · dxk = 1

2k k! ,
∫

C∗0∩Rk≥0
(x1 · · · xk) dx1 · · · dxk = 1

2k
,

we find that the right quotient in (2.26) is k!. Therefore,

cHTk := cHT
(
(H2)k

)
= ĥHTvol (F0)

ĥHTvol (g)
= (k!)1/(2k) 1√

k
.

It is shown in [75] that

hsymvol (Q) = hvol(Q).

Together with Theorem 1.2 and Proposition 1.12 we obtain

2c2k hvol(Q) ≤ ĥHTtop(Q,Frev) ≤ cHTk hvol(Q),

2c2k hvol(Q) ≤ ĥBHtop (Q,Frev) ≤ cBHk hvol(Q).

The sequence cBHk , k ≥ 2, is monotone decreasing to
√

2
e ≈ 0.858, starting with

cBH2 ≈ 0.931 and cBH3 ≈ 0.907.

The sequence cHTk is monotone decreasing to
√

1
e ≈ 0.616, starting with

cHT2 ≈ 0.841 and cHT3 ≈ 0.778.

In contrast, the sequence 2c2k = 2(
(2k)!ω2k

)1/(2k) is monotone decreasing like
√

e
2π

1√
2k
,

starting with

2c4 ≈ 0.606 and 2c6 ≈ 0.508.

The constant hvol(Q) can be computed as follows. On (H2)k the minimum of
the volume entropies among symmetric metrics is attained exactly by multiples of
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gk := g× · · · × g, where g is the metric on H of constant curvature −1, see [35, §2].
Since hvol(g) = 1, we have hvol(gk) =

√∑
(hvol(g))2 =

√
k. Hence

hvol(Q) = hsymvol (Q) = (
volgk (Q)

)1/2k √
k.

For instance, if Q is the product of orientable surfaces of genus k j , then

volgk (Q) =
k∏
j=1

areag(Qk j ) = 2k
k∏
j=1

√
π(k j − 1).

2. Take the 5-dimensional symmetric space SL(3;R)/SO(3;R) of rank 2. The
“least convex” body C0 from C is a regular hexagon. We scale this hexagon such that
it is the hexagon Hin inscribed the unit disc B of R

2 = a. Verovic computed in [93,

p. 1644] that for the Finsler metric corresponding to
√

2
3 Hin, the volume growth is 2.

Hence the volume growth of the Finsler metric corresponding to Hin is
√

3
2 2. Further,

the volume growth of the Riemannian metric corresponding to B is 2
√
2.

To compute the volumes, since SO(3;R) is 3-dimensional we now have to take
r3 dxdy as density on a. The integral of r3 over B and over Hin are, respectively, 2π

5
and

Iin = 3
√
3

640
(27 ln 3+ 68) .

With this we find along the lines of the previous examples that

cBH(SL(3;R)/SO(3;R)) =
(
2π

5Iin

)1/5 √3

2
≈ 0.95.

The polar set of Hin is a regular hexagon Hout circumscribed the unit co-disc. After
identifying a with a∗ by the inner product, we have that Hout is obtained from Hin by
dilation by 2√

3
and rotation by π

6 . Hence the integral of r
3 over Hout is

Iout =
(

2√
3

)5

Iin.

Therefore,

cHT(SL(3;R)/SO(3;R)) =
(
5Iout
2π

)1/5 √3

2
=

√
3

2 cBH
≈ 0.912.

These two constants should be compared with the constant 2c5 ≈ 0.551 for the
lower bound in Corollary 2.6.
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Fig. 4 The co-disks 1
σ+ D∗q (F) ⊂ D∗q (H) ⊂ σ− D∗q (F) in T ∗q Q

Question 2.10 Recall that the non-smooth Finsler metric F0 is the unique minimizer
of ĥBHvol (F) among G-invariant continuous Finsler metrics on Q. This Finsler metric
has a high degree of symmetry: Its restriction to a is invariant under the Weyl group,
and it is G-invariant. Since in Theorems 1.3 and 1.8 the Riemannian minimizers are
the locally symmetric metrics, one may expect that F0 minimizes ĥBHvol (F) and ĥ

HT
vol (F)

among all continuous Finsler metrics on Q. Would this imply that there are no smooth
minimizers?

3 A lower entropy bound for Reeb flows on spherizations

Recall from Theorem 1.1 that there cannot be a uniform lower bound for the normal-
ized topological entropy of Reeb flows. In this section we show that for many base
manifolds Q, one nevertheless has a control on the entropy collapse of Reeb flows on
the spherization S∗Q in terms of the geometry of their defining star fields: Entropy
collapse can only happen if some fibers are far from convex. The proof relies on Floer
homology.

We consider a closed manifold Q and two Reeb flows on S∗Q, one arbitrary and
one Finsler. As in the previous section and as in Appendix B.1 we work in T ∗Q. We
then have two Hamiltonian functions H , F : T ∗Q → R that are fiberwise positively
homogeneous of degree one and smooth and positive away from the zero section.
Again we denote by φt

H the flow of H on S∗(H) = H−1(1), and similarly for F . Let
σ− and σ+ be the smallest positive numbers such that

1

σ−
F ≤ H ≤ σ+ F on T ∗Q.

For the co-disk bundles we then have

1

σ+
D∗(F) ⊂ D∗(H) ⊂ σ− D∗(F),

see Fig. 4.
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The number

σ(H ; F) := σ− σ+.

does not change under rescalings of H or F . We have σ(H ; F) ≥ 1 with equality if
and only if H = cF for some positive number c. Moreover, σ(H ; F) ≤ √n if H is
a reversible Finsler Hamiltonian and F is chosen to be the Riemannian Hamiltonian
associated with the outer Loewner ellipsoids of D∗(H), see (2.8).

Proposition 3.1 Let F be a (possibly irreversible) C∞-regular Finsler metric on the
closed manifold Q. Then for every C∞-smooth Reeb flow φt

H on S∗Q we have

ĥHTtop(φH ) ≥ 1

σ(H ; F) ĥvol(F).

Proof After scaling F we can assume that σ−=1. We abbreviate σ(H ; F)=σ+=:σ .
Lemma 3.2 htop(φH ) ≥ hvol(F).

Proof The lemma can be extracted from [68]. We briefly review the proof. Instead of
working with φH and φF , we work with the Hamiltonian flows�H and�F on T ∗Q of
the functions H2 and F2. Then �H = φH on S∗(H). Using the variational principle
for topological entropy and the homogeneity of H2 one finds

htop(φH ) = htop(�H |S∗(H)) = htop(�H |D∗(H)).

Fixing a point q ∈ Q we can further estimate, using Yomdin’s theorem from [96] and
the C∞-smoothness of �H ,

htop(�H |D∗(H)) ≥ lim
n→∞

1

n
logμg∗

(
�n

H (D
∗
q(H))

)
.

Here μg∗(S) denotes the Riemannian volume of the submanifold S ⊂ T ∗Q with
respect to the restriction to S of the Riemannian metric on T ∗Q induced by a
Riemannian metric g on Q. In Theorem 4.6 and Section 5.1 of [68] it is shown by
Lagrangian Floer homology that for every ε > 0 there exists N (ε) such that

μg∗
(
�n

H (D
∗
q(H))

) ≥ volg(Q) e(γ (F)−ε)n for n ≥ N (ε)

where γ (F) is the exponential growth rate of the number of elements in the funda-
mental group of Q that can be represented by a loop of F-length ≤ R. It is easy to
see that γ (F) = hvol(F). (The proof in [60, Prop. 9.6.6] given for a Riemannian F
applies without changes to a general Finsler metric.) The lemma follows. ��

In view of the inclusion 1
σ
D∗(F) ⊂ D∗(H) we infer from Lemma 3.2 that

ĥHTtop(φH ) =
(
volHTH (Q)

)1/n
htop(φH )
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≥ 1

σ

(
volHTF (Q)

)1/n
hvol(F)

= 1

σ
ĥvol(F)

as claimed. ��
We now define the module of starshapedness of H by

σ(H) := inf {σ(H ; F) | F is a Finsler metric} .

While an individual σ(H ; F) can be large even for a Riemannian Hamiltonian H ,
the number σ(H) is a measure for the maximal starshapedness, or non-convexity,
of the fibers of D∗(H). For instance, σ(H) = 1 if and only if H is Finsler. From
Proposition 3.1 and Corollary 2.3 we obtain the following result.

Corollary 3.3 Let Q be a closedmanifold. For everyC∞-smooth Reeb flowφt
H on S∗Q

we have

ĥHTtop(φH ) ≥ cn
σ(H)

ĥvol(Q).

Remark 3.4 (1) In the special case that H = F is a C∞-regular reversible Finsler
Hamiltonian, Proposition 3.1 applied to Riemannian metrics and the Loewner
bound (2.8) yield the uniform lower bound

ĥHTtop(F) ≥ 1√
n
ĥvol(Q).

Even in this special case, this lower bound for ĥHTtop(F) coming from Floer homol-
ogy and from the Loewner bound is only slightly weaker than the lower bound

ĥHTtop(F) ≥ 2cn ĥvol(Q)

from Corollary 2.6 that comes fromManning’s inequality and the Loewner bound.
Indeed, recalling that cn = 1

(n!ωn)1/n
, the function f (n) = 2cn

√
n : N → [1,∞)

is strictly monotone increasing, with

f (2) = 2√
π
≈ 1.13 and lim

n→+∞ f (n) =
√

2e
π
≈ 1.315.

(2) In the case that H is a Finsler Hamiltonian and F is a Riemannian Hamiltonian,
we have obtained the inequality in Lemma 3.2 in Sect. 2.5 by estimating

htop(φH ) ≥ hvol(φH ) ≥ hvol(F).

The first inequality, which is Manning’s inequality, also holds for C∞-smooth
Reeb flows, see Theorem A.8. The second inequality holds in the Finsler case in
view of the inclusion of balls (2.6), which follows from the triangle inequality.
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But in the Reeb case there is no triangle inequality. Floer homology (or, more
precisely: properties of Floer continuation maps that stem from the Floer–Gromov
compactness theorem for J -holomorphic strips) makes up for this.

(3) Proposition 3.1 and Corollary 3.3 are interesting only if ĥvol(F) and hvol(Q) are
positive, which is possible only if the fundamental group of Q has exponential
growth. The results in [68] imply meaningful variations of Proposition 3.1 and
Corollary 3.3 for many other manifolds. For instance, assume that Q is a simply
connectedmanifold such that the exponential growth rate γ (�Q) of the dimension
of the Z2-homology of degree ≤ k of the based loop space �Q is positive. Then

ĥHTtop(φH ) ≥ 1

σ(H ; F) C(F) γ (�Q)

with a positive constant C(F) that does not change under rescalings of F .
(4) We refer to [38] for a thorough study of continuity properties of topological entropy

implied by Floer homological techniques.

4 Entropy collapse for Reeb flows in dimension 3

In this section we prove Theorem 1.1 in dimension 3.

4.1 Recollections on open books

In this paragraph we collect results on open books needed in our proof. For more
information and details we refer to [46] and [52, §4.4].

Let M be a closed connected orientable 3-manifold. An open book for M is a triple
(
,ψ,�), where 
 is a compact oriented surface with non-empty boundary ∂
 and
ψ is a diffeomorphism of 
 that is the identity near the boundary such that there is a
diffeomorphism � from

M(ψ) := 
(ψ) ∪id
(
D× ∂


)

to M . Here 
(ψ) denotes the mapping torus


(ψ) = ([0, 2π ] ×
) / ∼

where (2π, p) ∼ (0, ψ(p)) for each p ∈ 
, and D is the closed unit disk. Viewing
S1 as the interval [0, 2π ] with endpoints identified, we write ∂(
(ψ)) as S1 × ∂
.
The manifold M is thus presented as the union of the mapping torus
(ψ) and finitely
many full tori, one for each boundary component of 
, glued along their boundaries
by the identity map

∂(
(ψ)) = S1 × ∂

id−→ ∂(D× ∂
).
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We remark that the diffeomorphism

� : M(ψ)→ M

is part of the definition of the open book. If ψ ′ is another diffeomorphism of 
 that is
the identity near the boundary and is isotopic to ψ via an isotopy that fixes each point
of ∂
, then M(ψ ′) is diffeomorphic to M(ψ). We also remark that what we call an
open book is usually called an abstract open book decomposition in the literature.

For each θ ∈ S1 denote by
◦θ the image under the diffeomorphism� of the union
of {θ} ×
 with the union of half-open annuli

Aθ =
{
(θ, r) ∈ D \ {0}}× ∂
.

The closure
θ of
◦θ , called a page, is diffeomorphic to
, and the common boundary
of the pages
θ , called the bindingof the openbook, is the imageunder� of {0}×∂
 ⊂
D× ∂
. The orientation of 
 induces orientations on the pages and the binding.

There are several different beautiful constructions proving the existence of an open
book for every 3-manifold M as above. The first of these constructions was given by
J. W. Alexander [5] as early as 1920, who used his findings that every such M is a
branched covering of the 3-sphere branching along a link and that every link in R

3 can
be obtained as the closure of a braid, see also [87, p. 340]. Alexander’s construction
in fact provides an open book such that 
 has just one boundary component.

Contact structures. Let M be a closed connected oriented 3-manifold and (
,ψ,�)

be an open book for M .

Definition 4.1 Acontact formα onM is said to be adapted to the open book (
,ψ,�)

if

• α is positive on the binding,
• dα is a positive area form on the interior of every page.

It is not hard to see that a contact form α is adapted to an open book if and only if

• the Reeb vector field Rα is positively transverse to the interior of the pages,
• the Reeb vector field is tangent to the binding and induces the positive orientation
on the binding.

Definition 4.2 A contact 3-manifold (M, ξ) is said to be supported by an open book
(
,ψ,�) if there exists a contact form α on (M, ξ) adapted to this open book.

Remark 4.3 If a contact 3-manifold (M, ξ) is supported by an open book (
,ψ,�)

and if ψ ′ is another diffeomorphism of 
 that is the identity near ∂
 and that is
isotopic to ψ via an isotopy that fixes ∂
 pointwise, then (M, ξ) is also supported by
an open book (
,ψ ′, � ′). This follows easily from the fact that for such a ψ ′ there
exists a diffeomorphism from M(ψ) to M(ψ ′) that takes pages to pages.

The following result of Giroux shows the central role played by open books in
3-dimensional contact topology.
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Theorem 4.4 (Giroux) Given a closed connected oriented contact 3-manifold (M, ξ),
there exists an open book for M supporting (M, ξ). Moreover, the open book can be
chosen to have connected binding. Two contact structures supported by the same open
book are diffeomorphic.

For the proof of the first and the third assertion we refer to [53, Theorem 3 and
Proposition 2] and to [46, Theorem 4.6 and Proposition 3.18]. That the binding can
be assumed to be connected is shown in [46, Corollary 4.25] and in [34].

4.2 Proof of entropy collapse in dimension 3

We now proceed with the proof of the main result of this section.

Theorem 4.5 Let (M, ξ) be a closed co-orientable contact manifold of dimension 3.
Then for every ε > 0 there exists a contact form α on (M, ξ) such that volα(M) = 1
and htop(α) ≤ ε.

While our proof works verbatim when ∂
 is not connected, the geometry in our
argument is easier to visualize for connected ∂
, so we assume this property.

The structure of the proof is as follows.

• Given (M, ξ) as in Theorem 4.5 we use the first statement in Theorem 4.4 to obtain
an open book (
,ψ,�) for M that supports (M, ξ).

• We then apply a classical recipe due to Thurston–Winkelnkemper to construct
for each ε > 0 a contact form α̃ε adapted to (
,ψ,�) with volα̃ε (M) = 1 and
htop(̃αε) ≤ ε.

• By the second statement of Theorem 4.4, ker�∗α̃ε is diffeomorphic to ξ by a
diffeomorphism ρε. Hence (ρε ◦ �)∗(̃αε) is a contact form on (M, ξ) with the
properties asserted in Theorem 4.5.

For the construction of α̃ε, we first construct on the mapping torus 
(ψ) for all
small s > 0 contact forms αs with volαs (
(ψ)) = O(s) and htop(αs) = O(1).
Crucially, near the boundary of
(ψ) these contact forms are such that they extend to
contact forms (also denoted αs) on the full torus D× ∂
 in such a way that the Reeb
flows are linear on each torus S1(r) × ∂
. Therefore, even though the Reeb vector
fields “explode" in the interior of the full torus as s → 0 (see Fig. 7), the topological
entropy on the full torus vanishes for all s. Since also volαs (D× ∂
) = O(s), we find
that volαs (M) = O(s) and htop(αs) = O(1) for all small s > 0. The form α̃ε is now
obtained by taking s small and rescaling αs .

Proof of Theorem 4.5

Step 1: A family of contact forms αs on
(ψ). By Theorem 4.4 there exists an open
book (
,ψ,�) for M that supports (M, ξ). We first choose a collar neighbourhood
N ⊂ 
 of ∂
 on which ψ is the identity. Thus N is diffeomorphic to [1, 1+ δ]× ∂
,
and we have polar coordinates (r , x) for N , where x is the angular coordinate for ∂
,
such that the boundary of ∂
 corresponds to r = 1.
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Fig. 5 The neighbourhood N of ∂


Choose an area form ω on 
 such that ω = dx ∧ dr on N . By Remark 4.3 and
by Moser’s isotopy theorem we can assume that the diffeomorphism ψ is a symplec-
tomorphism of (
, ω). Since H2(
, ∂
;R) vanishes, there exists a primitive λ of ω
that equals (2− r)dx on N .

We nowconstruct for each sufficiently small s > 0 a contact formαs on themapping
torus 
(ψ). For this, let χ : [0, 2π ] → [0, 1] be a smooth monotone function such
that χ(0) = 0, χ(2π) = 1, and χ ′ has support in (0, 2π). On [0, 2π ] ×
 define the
1-form

αs := dθ + s
(
(1− χ(θ))λ+ χ(θ)ψ∗λ

)
. (4.1)

By the properties of χ , each 1-form αs descends to a 1-form on 
(ψ), that we still
denote by αs . Using that ψ is a symplectomorphism of (
, ω) we compute that

αs ∧ dαs = s dθ ∧ ω + O(s2). (4.2)

Hence there exists s0 > 0 such that αs is a contact form for all s ∈ (0, s0].
We now compute the Reeb vector field Rαs . With λθ := (1− χ(θ))λ+ χ(θ)ψ∗λ

one checks that

Rαs =
∂θ + Y

1+ sλθ (Y )
, (4.3)

where Y is the vector field that is tangent to {θ} ×
 for all θ ∈ S1 and satisfies

ιYω = χ ′(θ)(ψ∗λ− λ).

The formula (4.3) shows that Rαs is positively transverse to each surface {θ} ×
.
The next lemma gives an upper bound for htop(φαs ) when s is sufficiently small.

Notice that it makes sense to talk about htop(φαs ), since 
(ψ) is compact and Rαs is
tangent to ∂
(ψ).

Lemma 4.6 There exists s1 ∈ (0, s0) and a constant E > 0 such that for every
s ∈ (0, s1],

htop(φαs ) ≤ E . (4.4)
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Proof Choose s1 > 0 such that 1
2 ≤ 1

1+sλθ (Y ) ≤ 2 on 
(ψ) for every s ∈ (0, s1]. For
each such s define the function fs = 1

1+sλθ (Y ) on 
(ψ). Then for every s ∈ (0, s1]
we have Rαs = fs (∂θ + Y ) with 1

2 ≤ fs ≤ 2. By Ohno’s result from [79], for a
non-vanishing vector field X and a positive function f on a compact manifold,

htop(φ f X ) ≤ max f · htop(φX ).

It follows that htop(φαs ) ≤ 2htop(φ∂t+Y ) =: E . ��

Step 2: A family of contact forms σs on D × ∂
. We have constructed a family of
contact forms αs on the mapping torus 
(ψ). We now wish to extend these forms to
contact forms on M(ψ). For this let V be the collar neighbourhood of ∂
(ψ) defined
by

V := [0, 2π ] × N/ ∼

where (2π, p) ∼ (0, p) for each p ∈ 
. On V the contact form αs reads

αs = dθ + s (2− r)dx (4.5)

where (r , x) are the coordinates on N introduced above and θ ∈ S1.
We proceed to construct for each s ∈ (0, s1) a contact form σs on D× ∂
, where

D is again the closed unit disk in R
2. Consider polar coordinates (θ, r) ∈ S1 × (0, 1]

on D \ {0} and the coordinate x on ∂
. We can then consider coordinates (θ, r, x) on
D\{0} × ∂
. We pick a smooth function f : (0, 1] → R such that

• f ′ < 0,
• f (r) = 2− r on a neighbourhood of 1,
• f (r) = 2− r4 on a neighbourhood of 0,

and we pick another smooth function g : (0, 1] → R satisfying

• g′ > 0 on (0, 1),
• g(1) = 1 and all derivatives of g vanish at 1,
• g(r) = r2

2 on a neighbourhood of 0 see Fig. 6.

Define the 1-form

σs(θ, r, x) = g(r)dθ+ s f (r)dx (4.6)

on D \ {0} × ∂
. Then

σs ∧ dσs = s h(r)dr ∧ dθ ∧ dx (4.7)
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Fig. 6 The functions f and g

where h(r) = ( f g′ − f ′g)(r). It follows that σs is a contact form on D\{0}× ∂
. For
r near 0 we have h(r) = r(2 + r4), whence σs extends to a smooth contact form on
D× ∂
, that we also denote by σs . The Reeb vector field of σs is given by

Rσs (θ, r, x) =
1

h(r)

(
− f ′(r)∂θ + 1

s
g′(r)∂x

)
. (4.8)

It follows that Rσs is tangent to the tori Tr := {r = const} and that for each
r ∈ (0, 1] the flow of Rσs is linear:

φt
σs
(θ, r, x) =

(
θ− f ′(r)

h(r)
t, r, x+ g′(r)

s h(r)
t

)
. (4.9)

In particular, using our choices of f and g we see that Rσs = ∂θ on the boundary
torus T1, and that Rσs = 1

2s ∂x is tangent along the core circle C = {r = 0} of the full
torus, and gives the positive orientation to ∂
. Furthermore, (4.8) shows that Rσs is
positively transverse to the half-open annuli see Fig. 7

Aθ := {θ} × (0, 1] × ∂
 ⊂ D \ {0} × ∂
.

The Reeb flow φt
σs

on the full torus D× ∂
 is integrable. More precisely, the core

circleC ofD×∂
 is the trace of a periodic orbit of φt
σs
, and (D×∂
)\C is foliated by

the flow-invariant toriTr, onwhichφt
σs
is the linear flow (4.9). The topological entropy

of these linear flows of course vanishes. By the variational principle for topological
entropy we therefore find that

htop(φσs ) = sup
0≤r≤1

htop(φσs |Tr) = 0. (4.10)
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Fig. 7 Some vectors of Rσs and the annulus A0

Step 3: A family of contact forms on M . We first observe that the coordinates θ and
θ, r and r, x and x are glued via the identification map used to glue
(ψ) andD×∂
.
It follows that they extend to coordinates on

V ∪id
(
D× ∂


)
.

In view of the expressions (4.5) and (4.6) for the contact forms αs on V , and σs on
D× ∂
, these two contact forms are glued to a smooth contact form τs on M(ψ).

Asmentioned above, theReeb vector field Rτs is positively transverse to the surfaces
{θ} × 
 in 
(ψ) and to the annuli Aθ in D × ∂
. Also, Rτs is tangent to the core
circleC ofD×∂
, giving the positive orientation. It follows that the Reeb vector field
of�∗τs is positively transverse to the interior of the pages of the open book (
,ψ,�),
and positively tangent to the binding of the open book. By Theorem 4.4 the contact
structure ker�∗τs is diffeomorphic to ξ , by some diffeomorphism ρs : M → M .
Summarizing, there are diffeomorphisms � and ρs such that

(M(ψ), τs)
�−→ (M, �∗τs)

ρs−→ (M, (ρs ◦�)∗τs) (4.11)

with ker((ρs ◦�)∗τs) = ξ .

Step 4: Estimating the volume and the topological entropy of τs . The Reeb flow
φt
τs
of τs leaves the compact sets 
(ψ) and D × ∂
 invariant. Since these compact

sets cover M and since φt
τs
|
(ψ) = φt

αs
and φt

τs
|
D×∂
 = φt

σs
, it follows from [60,

Proposition 3.1.7 (2)] and from Lemma 4.6 and (4.10) that

htop(φτs ) = max
{
htop(φαs ), htop(φσs )

} ≤ E . (4.12)

We decompose the integral of τs ∧ dτs as

∫

M(ψ)

τs ∧ dτs =
∫


(ψ)

αs ∧ dαs +
∫

D×∂

σs ∧ dσs . (4.13)
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For the first summand we have by (4.2) that

∫


(ψ)

αs ∧ dαs =
∫

[0,2π ]×

s dθ ∧ ω + O(s2)

= s 2π
∫




ω + O(s2) = O(s). (4.14)

To estimate the second term in (4.13) we use (4.7):

∫

D×∂

σs ∧ dσs =

∫

D\{0}×∂

σs ∧ dσs

= s
∫

D\{0}×∂

h(r) dr ∧ dθ ∧ dx. (4.15)

Since the right integral is finite, it follows that also

∫

D×∂

σs ∧ dσs = O(s).

Together with (4.13) and (4.14) we conclude that

∫

M(ψ)

τs ∧ dτs = O(s). (4.16)

Step 5: End of proof. By (4.16) we know that given ε > 0 there exists s ∈ (0, s1]
such that

volτs
(
M(ψ)

) = 1

2π

∫

M(ψ)

τs ∧ dτs ≤ ε2

E2 . (4.17)

Defining τ̃ := (
volτs

(
M(ψ)

))− 1
2 τs we obtain

volτ̃
(
M(ψ)

) = 1,

and by (4.12) and (4.17)

htop(φτ̃ ) =
(
volτs

(
M(ψ)

))1/2
htop(φτs ) ≤ ε.

Together with (4.11) and in view of the conjugacy invariance of topological entropy
if follows that (ρs ◦ �)∗τ̃ is a contact form on (M, ξ) of volume 1 and topological
entropy at most ε. ��
Question 4.7 It would be interesting to see how in the case of a spherization S∗Q2
over the closed orientable surface of genus 2 the open book decomposition used in
the above proof looks like. Since our construction of the contact form τ̃ is explicit,
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one could then maybe understand the star field {D∗q(H)} corresponding to τ̃ . In view
of (1.11) some of the stars must be very spiky. Howmany spikes appear in these stars?

5 Generalities on Giroux’s correspondence in higher dimensions

In this section, we summarize those concepts and results on theGiroux correspondence
between contact structures and supporting open books in higher dimensions that we
shall use in the proof of Theorem 1.1. While we reprove those parts that we use in a
somewhat different form, we refer to [53] and [54] for the parts that we can cite and
for further results.

5.1 Ideal Liouville domains

Let F be a 2n-dimensional compactmanifoldwith non-empty boundary K , and denote
by F◦ the interior of F . A symplectic formω on F◦ is called an ideal Liouville structure
on F (abbreviated ILS) if ω admits a primitive λ on F◦ such that for some (and then
any) smooth function

u : F → [0,+∞) for which K = u−1(0) is a regular level set (5.1)

the 1-form uλ on F◦ extends to a smooth 1-form β on F which is a contact form
along K .

If such a 2-form ω exists, the pair (F, ω) is called an ideal Liouville domain (ILD),
and any primitive λ with the above property is called an ideal Liouville form (ILF).
Given an ILD (F, ω), the contact structure

ξ := ker(β|T K )

depends on the 2-form ω but neither on λ nor u, see Proposition 2 in [54]. Moreover,
once λ is chosen, one can recover every (positive) contact form on (K , ξ) as the
restriction to K of the extension of uλ for some function u with property (5.1). This
is why the pair (K , ξ) is called the ideal contact boundary of (F, ω). We note that the
orientation of K that is determined by the co-oriented contact structure ξ coincides
with the orientation of K as the boundary of (F, ω).

A very useful feature of an ILD is that a neighborhood of its boundary admits an
explicit parametrization in which any ILF has a very nice form.

Lemma 5.1 Let (F, ω) be an ILD and λ be an ILF. Let u be a function satisfying (5.1)
and let β be the extension of uλ. Then for any contact form α0 on (K , ξ), there exists
an embedding

ı : [0,+∞)× K → F
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such that

ı∗λ = 1

r
α0 and ı(0, q) = q for all q ∈ K ,

where r ∈ [0,+∞). In particular,

ı∗β = u ◦ ı
r

α0 on F◦

and for all q ∈ K,

(β|T K )(q) =
(
∂(u ◦ ı)

∂r
(0, q)

)
α0.

Proof The above statement is a reformulation of Proposition 3 in [54]. We give a
similar but more explicit proof.

Let dim F = 2n. Sinceβ is by assumption a positive contact formon K ,β∧(dβ)n−1
is a positive volume form on K . Using ω = dλ = d(β/u) on F◦ we compute

ωn = (d(β/u))n = u−n−1(u dβ + nβ ∧ du) ∧ (dβ)n−1 = u−n−1μ (5.2)

where μ is the 2n-form

μ := (u dβ + nβ ∧ du) ∧ (dβ)n−1.

The above expression shows that μ is smooth on F and, together with (5.2) and the
fact that 0 is a regular value of u, that it is a positive volume form on F . Define the
smooth vector field X on F by

ιXμ = −nβ ∧ (dβ)n−1. (5.3)

Recall that the Liouville vector field Y of λ is the vector field on F◦ defined by
ιY dλ = λ. Using β = uλ on F◦ we compute

−nβ ∧ (dβ)n−1 = −n un λ ∧ (dλ)n−1 = −un ιYωn = −u−1 ιYμ.

Comparing with (5.3) we find Y = −uX . Then

β(X) = −λ(Y ) = −dλ(Y ,Y ) = 0

on F◦, and by continuity β(X) = 0 on F . Hence on F◦,

LXβ = ιXdβ = −1

u
ιY (du ∧ λ+ udλ)

= −1

u
(du(Y )λ+ uλ) = 1

u
(du(X)− 1) β. (5.4)
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This shows that du(X) = 1 along K and that the function 1
u (du(X) − 1) is smooth

on F . In particular, X points inwards on K = ∂F and hence the flow φt
X of X on the

compact manifold F is well-defined for every t ≥ 0.We define the smooth embedding

� : [0,+∞)× K → F, (t, q) �→ φt
X (q).

By construction we have �∗X = ∂t . Put β̂ := �∗β, û := �∗u, and λ̂ := �∗λ. The
identities β(X) = 0 and (5.4) say that on [0,+∞)× K ,

β̂(∂t ) = 0, ∂t β̂ = ∂t û − 1

û
β̂. (5.5)

Here the function ∂t û−1
û is smooth and bounded on [0,+∞) × K since by (5.4) the

function 1
u (du(X)−1) is smooth on F . Define the smooth function v0 : [0,+∞)×K →

R by

v0(t, q) =
∫ t

0

∂t û(τ, q)− 1

û(τ, q)
dτ.

The solution of the problem (5.5) with initial condition β0(q) = β(0, q) is then

β̂(t, q) = exp (v0(t, q)) β0(q), ∀ (t, q) ∈ [0,+∞)× K ,

and therefore

λ̂(t, q) = 1

û(t, q)
exp (v0(t, q)) β0(q), ∀ (t, q) ∈ (0,+∞)× K .

Now let α0 be a positive contact form on (K , ξ). Then there is a positive function κ

on K such that β0 = κ α0. On (0,+∞)× K define the function

�(t, q) = κ(q)

û(t, q)
exp (v0(t, q)) . (5.6)

Then λ̂ = �α0. It is clear that � > 0, and limt→0 �(t, q) = +∞ for all q ∈ K . We
note that

∂�

∂t
= −�

û
< 0

and therefore

�(t, q) = �(1, q) exp

(
−

∫ t

1

1

û(τ, q)
dτ

)
. (5.7)

On [0,+∞) × K , û is bounded from above since F is compact. Therefore
limt→+∞�(t, q) = 0 for all q ∈ K . It follows that�(·, q) is an orientation reversing
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diffeomorphism from (0,+∞) onto (0,+∞) for all q. Hence there exists a positive
smooth function f on (0,+∞)× K such that

�( f (r , q), q) = 1

r
∀ (r , q) ∈ (0,+∞)× K ,

and for every q ∈ K the function f (·, q) is an orientation preserving diffeomorphism
from (0,+∞) onto (0,+∞). Define the embedding

� : (0,+∞)× K → [0,+∞)× K , (r , q) �→ ( f (r , q), q).

By construction �∗λ̂ = 1
r α0. We claim that � extends to a smooth embedding

� : [0,+∞)× K → [0,+∞)× K with �(0, q) = (0, q).

Postponing the proof of the claim,wenote that ı = �◦� is then the desired embedding.
The rest of the statement of the lemma follows immediately from the identity ı∗λ =
1
r α0.

We now show that the extension of � given by �(0, q) = (0, q) is smooth. Com-
bining (5.6) and (5.7) we get

�(1, q)−1 exp
(∫ f (r ,q)

1

1

û(τ, q)
dτ

)
= r . (5.8)

We consider the function

g(t, q) := �(1, q)−1 exp
(∫ t

1

1

û(τ, q)
dτ

)

on (0,+∞)× K and we define

�̃ : (0,+∞)× K → (0,+∞)× K , �̃(t, q) = (g(t, q), q).

Then we have

�̃ ◦�(r , q) = �̃( f (r , q), q) = (
g( f (r , q), q), q

) = (r , q)

on (0,+∞)×K . We claim that �̃ extends smoothly to [0,+∞)×K by �̃(0, q) = q
for all q ∈ K . To see this we define the function v1 : [0,+∞)× K → R by

v1(t, q) :=
∫ t

1

∂t û(τ, q)− 1

û(τ, q)
dτ.
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We recall that the above integrand is smooth and bounded on [0,+∞)× K and so is
the function v1. For every t ∈ (0,+∞) and q ∈ K ,

ev1 = exp

(∫ t

1

∂t û − 1

û
dτ

)
= exp

(
log û(t, q)− log û(1, q)−

∫ t

1

1

û
dτ

)

= û(t, q)

û(1, q)
exp

(
−

∫ t

1

1

û
dτ

)

and so

g(t, q) = �(1, q)−1 e−v1(t,q) û(t, q)
û(1, q)

.

Note that �(1, q) �= 0. The above expression says that g extends smoothly to
[0,+∞)× K by g(0, q) = 0 for q ∈ K . For t > 0 we compute

∂t g(t, q) = �(1, q)−1 e−v1(t,q)
[
−∂tv1(t, q) û(t, q)

û(1, q)
+ ∂t û(t, q)

û(1, q)

]

= �(1, q)−1 e−v1(t,q)
[
− (∂t û(t, q)− 1)

û(t, q)

û(t, q)

û(1, q)
+ ∂t û(t, q)

û(1, q)

]

= �(1, q)−1 e−v1(t,q) 1

û(1, q)
.

By the smoothness of g, this expression also holds true for t = 0. In particular,
∂t g(t, q) > 0 for all (t, q) ∈ [0,+∞)× K . It follows that D�̃(t, q) is invertible for
all (t, q) ∈ [0,+∞) × K . By the inverse function theorem, the extension of � over
[0,+∞)× K is C1 and in fact C∞-smooth since �̃ is smooth. ��

5.2 Ideal Liouville domains and contact structures

Ideal Liouville domains are particularly useful for clarifying the existence and unique-
ness of contact structures supported by open books in higher dimensions. We first
recollect some facts about open books.

An open book in a closed manifold M is a pair (K ,�) where

(ob1) K ⊂ M is a closed submanifold of co-dimension twowith trivial normal bundle;
(ob2) � : M \K → S1 = R/2πZ is a locally trivial smooth fibration that on a deleted

neighbourhood (D \ {0})× K of K reads �(reiθ , q) = θ .

The submanifold K is called the binding of the open book, and the closures of the
fibres of � are called the pages. The pages are compact submanifolds with common
boundary K . The canonical orientation of S1 induces co-orientations of the pages.
Hence ifM is oriented, then so are the pages, and then also the binding as the boundary
of a page.

Another way of defining an open book is as follows. Let h : M → C be a smooth
function such that 0 is a regular value. Set K := h−1(0), and assume that � :=
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h/|h| : M\K → S1 has no critical points. Then the pair (K ,�) is an open book in M .
Moreover, any open book in M can be recovered via a defining function h as above,
and such a defining function is unique up tomultiplication by a positive function onM .

Given an open book (K ,�) in a closed manifold M , one finds a vector field X
on M , called a spinning vector field, such that

(m1) X lifts to a smooth vector field on the manifold with boundary obtained from M
by real oriented blow-up along K , in which each disk D×{q} of the neighbour-
hood D× K is replaced by the annulus S1 × [0, 1] × {q};

(m2) X = 0 on K and d�(X) = 1 on M\K .

Then the time-2π map of the flow of X is a diffeomorphism

φ : F → F

of the 0-page F := �−1(0)∪ K , which fixes K pointwise. The isotopy class [φ] of φ
among the diffeomorphisms of F that fix K pointwise is called the monodromy of
the open book. It turns out that the open book is characterized by the pair (F, [φ]).
Namely, given the pair (F, φ), one defines the mapping torus

MT(F, φ) := ([0, 2π ] × F)
/ ∼ where (2π, p) ∼ (0, φ(p)).

This is a manifold with boundary. One has the natural fibration

�̂ : MT(F, φ)→ S1

with fibres diffeomorphic to F , and there is a natural parametrization of the fibre
�̂−1(0)via the restriction of the above quotientmap to {0}×F . For everyφ′ ∈ [φ] there
is a diffeomorphism between MT(F, φ) and MT(F, φ′) that respects the fibrations
over S1 and the natural parametrizations of the 0-fibres. Now, given MT(F, φ) one
collapses its boundary, which is diffeomorphic to S1 × K , to K and obtains the so-
called abstract open book OB(F, φ). In fact, the closed manifold OB(F, φ) admits an
open book given by the pair (K ,�), where� is induced by �̂. Moreover, for φ′ ∈ [φ],
the diffeomorphism betweenMT(F, φ) andMT(F, φ′) descends to a diffeomorphism
between the corresponding abstract open books. In particular, M and OB(F, φ) may
be identified together with their open book structures. We note that one can choose
the spinning vector field X smooth on M and such that its flow is 2π -periodic near K .
However, not every representative of the monodromy class can be obtained via a
smooth spinning vector field, see Remark 12 in [54]. To obtain all representatives
of the monodromy class, one needs to use the whole affine space of spinning vector
fields.

Open books meet with contact topology via the following definition. Let M be a
compact manifold with a co-oriented contact structure ξ . We say that ξ is supported
by an open book (K ,�) on M or that the open book (K ,�) supports ξ if there exists
a contact form α on (M, ξ), that is ξ = ker α, such that

• α restricts to a positive contact form on K ;
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• dα restricts to a positive symplectic form on each fibre of �.

It turns out that given a closed manifold M , the isotopy classes of co-oriented contact
structures on M are in one-to-one correspondence with equivalence classes of sup-
porting open books. This statement is a very rough summary of what is called the
Giroux correspondence. We will recall certain pieces of this celebrated statement in
detail.

Theorem 5.2 (Theorem 10 in [53]) Any contact structure on a compact manifold is
supported by an open book with Weinstein pages.

This result is the core of the correspondence between supporting open books and
contact structures. The existence statement of the opposite direction of the corre-
spondence is relatively easy to achieve, especially in dimension three. Namely, given
an open book in a 3-dimensional compact manifold, it is not hard to construct a
contact form on the corresponding abstract open book whose kernel is supported. In
higher dimensions, however, one needs that the pages are exact symplectic and that the
monodromy is symplectic in order to construct a contact form on an abstract open book
whose kernel is supported, see Proposition 9 in [53] and Proposition 17 in [54]. We
will carry out such a construction in Sects. 6.1 and 6.2. Concerning the uniqueness
features of the Giroux correspondence, we are mainly interested in one side, namely
the “uniqueness” of supported contact structures. This result is again more involved
in higher dimensions. Heuristically, given an open book, the symplectic geometry of
the pages determines the supported contact structures. In dimension three, any two
symplectic structures on a page are isotopic since they are just area forms on a given
surface, but in higher dimensions this is not the case.

In [54] Giroux introduced the notion of a Liouville open book, which clears out the
technicalities to which we pointed above.

A Liouville open book (LOB) in a closed manifold M is a triple (K ,�, (ωθ )θ∈S1)
where

(lob1) (K ,�) is an open book on M with pages Fθ = �−1(θ) ∪ K , θ ∈ S1;
(lob2) (Fθ , ωθ ) is an ILD for all θ ∈ S1 and the following holds: there is a defining

function h : M → C for (K ,�) and a 1-form β on M such that the restriction
of d(β/|h|) to each page is an ILF. More precisely,

ωθ = d(β/|h|)|T F◦θ

for all θ ∈ S1.

The 1-form β is called a binding 1-form associated to h. If h′ is another defining
function for (K ,�), then h′ = κ h for a positive function κ on M , and β ′ := κ β is
a binding 1-form associated to h′. We also note that for a fixed defining function, the
set of associated binding 1-forms is an affine space.

Similar to the case of classical open books, LOBs are characterized by their
monodromy, which now has to be symplectic: One considers symplectically spin-
ning vector fields, namely vector fields X satisfying (m1) and (m2) and generating the
kernel of a closed 2-form on M \ K which restricts to ωθ for all θ ∈ S1. Given such
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a vector field, the time-2π map of its flow, say φ, is a diffeomorphism of F := F0
which fixes K and preserves ω := ω0. The isotopy class [φ], among the symplectic
diffeomorphisms that fix K , is called the symplectic monodromy and characterizes the
given LOB. For the construction of a LOB in the abstract open book OB(F, φ), where
φ∗ω = ω, we refer to Proposition 17 in [54] and to our construction at the end of the
next section.

Again, symplectically spinning vector fields form an affine space, and all repre-
sentatives of the symplectic monodromy can be obtained by sweeping out this affine
space. The obvious choice of a symplectically spinning vector field X is smooth, and
by suitably modifying a given binding 1-form without affecting its restriction to the
kernel of d� one can arrange that the flow of X is 2π -periodic near the binding.

Lemma 5.3 (Lemma 15 in [54]) Let (K ,�, (ωθ )θ∈S1) be a LOB in a closed mani-
fold M, and let h : M → C be a defining function for (K ,�). Then for every binding
1-form β, the vector field X on M\K spanning the kernel of d(β/|h|) and satisfying
d�(X) = 1 extends to a smooth vector field on M which is zero along K . Furthermore,
β can be chosen such that the flow of X is 2π -periodic near K .

Natural sources of LOBs are contact manifolds:

Proposition 5.4 (Proposition 18 in [54]) Let (M, ξ) be a closed contact manifold,
and let (K ,�) be a supporting open book with defining function h : M → C. Then
the contact forms α on (M, ξ) such that d(α/|h|) induces an ideal Liouville structure
on each page form a non-empty convex cone.

Let (K ,�, (ωθ )θ∈S1) be a LOB in a closed manifold M with a defining function h.
A co-oriented contact structure ξ on M is said to be symplectically supported by
(K ,�, (ωθ )θ∈S1) if there exists a contact form α on (M, ξ) such that α is a binding
1-form of the LOB associated to h.

By our remark following the definition of a binding 1-form, the property of being
symplectically supported is independent of the given defining function. But the crucial
fact is that once a defining function is fixed, a contact binding 1-form is unique when-
ever it exists, seeRemark 20 in [54].Hence, once a defining function h is fixed, there is a
one-to-one correspondence between contact structures supported by (K ,�, (ωθ )θ∈S1)
and contact binding 1-forms associated to h.

Given two contact structures ξ0 and ξ1 supported by (K ,�, (ωθ )θ∈S1), after fixing h
we therefore have unique contact binding 1-forms α0 and α1, respectively. Since the
set of binding 1-forms associated to h is affine, there is a path (βt )t∈[0,1] of binding
1-forms such that β0 = α0 and β1 = α1. Now it is not hard to explicitely deform the
forms βt without affecting their restrictions to ker d� in such a way that

• for all s ≥ 0 and t ∈ [0, 1], βs
t is a binding 1-form for (K ,�, (ωθ )θ∈S1) associated

to h (since the deformation of βt leaves unchanged the restriction to the pages);
• βs

t is a contact form for s large enough, uniformly in t ∈ [0, 1];
• if βt is already a contact form, then βs

t is a contact form for all s ≥ 0.

By the first property of these deformations and by the uniqueness discussed
above, whenever βs

t is a contact form then ker βs
t is symplectically supported by
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Fig. 8 Constructing an isotopy between ξ0 and ξ1

(
K ,�, (ωθ )θ∈S1

)
andβs

t is the unique contact binding1-formassociated toh. Together
with the other two properties we see that there exists c > 0 such that the con-
catenation of the paths (ker βs

0)s∈[0,c], (ker βc
t )t∈[0,1] and (ker βc−s

1 )s∈[0,c] gives an
isotopy between ξ0 and ξ1 along contact structures that are symplectically supported
by (K ,�, (ωθ )θ∈S1) (cf. Fig. 8).

In fact the following more general statement holds.

Proposition 5.5 (Proposition 21 in [54]) On a closed manifold, contact structures
supported by a given Liouville open book form a non-empty and weakly contractible
subset in the space of all contact structures.

6 Entropy collapse for Reeb flows in dimension≥ 3

This section is devoted to the proof of the following main result.

Theorem 6.1 Let (M, ξ) be a closed co-orientable contact manifold. Then for every
real number ε > 0 there exists a contact form α for ξ such that �̂(α) ≤ ε.

We prove the statement by induction on n, where dim M = 2n + 1. The initial
case n = 0 is clear: Then M is a circle, and the Reeb flow generated by the vector
field ∂θ has vanishing norm growth. It may be interesting to read the subsequent proof
for n = 0 and to compare the line of argument with the one of Sect. 4.

We now assume by induction that Theorem 6.1 holds for n − 1 ≥ 0 and fix a
contact manifold (M, ξ) of dimension 2n + 1. By Theorem 5.2 there exists an open
book (K ,�) in M supporting ξ . Let Fθ := �−1(θ) ∪ K , θ ∈ S1 = R/2πZ, denote
the pages of the open book and let h : M → C be a defining function for (K ,�). We
wish to construct a contact form on the abstract open book defined via the 0-page

F := F0 = �−1(0) ∪ K . (6.1)

By Proposition 5.4, there exists a contact form α on (M, ξ) such that the triple
(K ,�, d(α/|h|)|T F◦θ ) is a LOB which supports ξ symplectically. By Lemma 5.3, we
can modify the contact binding 1-form α without affecting its restriction to the kernel
of d�, to obtain a binding 1-form α̂, not necessarily contact, such that the flow of the
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associated symplectically spinning vector field X is 2π -periodic near K . Hence the
time-2π map of the flow of X gives us a diffeomorphism ψ : F → F such that

ψ∗(dλ) = dλ (6.2)

where λ ∈ �1(F◦) is the ILF

λ := (̂α/|h|)|T F◦ = (α/|h|)|T F◦ (6.3)

and ψ = id on some neighbourhood of K in F . Now our aim is to recover M as the
abstract open book induced by the pair (F, ψ) and to define a contact form on the
abstract open book with small norm growth. We first consider the mapping torus

MT(F, ψ) := ([0, 2π ] × F
)/(

(2π, p) ∼ (0, ψ(p))
)
.

Since ψ = id on some neighbourhood of K , the boundary ∂ MT(F, ψ) has an open
neighbourhood given as a product of K with an annulus, in which we collapse the
boundary and get the abstract open book OB(F, ψ). We postpone the precise collaps-
ing procedure since it will involve choices of coordinates, but note that the abstract
open book is independent of these choices, and that we can make the identifications

MT(F◦, ψ) = MT(F, ψ) \ ∂ MT(F, ψ) = OB(F, ψ) \ K .

6.1 A family of contact forms away from the binding

On [0, 2π ] × F◦ with θ the coordinate on [0, 2π ], we define the family of 1-forms

αs = dθ + s
(
λ+ χ(θ)λψ

)
, s > 0 (6.4)

where λψ := ψ∗λ − λ and χ : [0, 2π ] → [0, 1] is a smooth function such that
χ(0) = 0, χ(2π) = 1 and χ ′ has support in (0, 2π). By the choice of χ , each
1-form αs descends to a 1-form on MT(F◦, ψ), that we still denote by αs .

Lemma 6.2 There exists s0 > 0, depending on ψ, λ, χ , such that αs is a contact form
onMT(F◦, ψ) for all s ∈ (0, s0].
Proof Since dλψ = 0, we get dαs = s

(
χ ′dθ ∧ λψ + dλ

)
and

αs ∧ (dαs)
n = (

dθ + s
(
λ+ χλψ

)) ∧ sn
(
nχ ′dθ ∧ λψ ∧ (dλ)n−1 + (dλ)n

)

= sn dθ ∧
(
(dλ)n − nsχ ′λ ∧ λψ ∧ (dλ)n−1

)
.

Since dθ ∧ (dλ)n is a volume form and since with λψ also λ ∧ dθ ∧ λψ ∧ (dλ)n−1
is compactly supported in MT(F◦, ψ), there exists s0 > 0 such that αs ∧ (dαs)n is a
positive volume form for all s ∈ (0, s0]. ��
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Next, we study the Reeb vector field Rαs of αs on MT(F◦, ψ). Let Y be the vector
field on MT(F◦, ψ) that is tangent to {θ} × F◦ for each θ and along each {θ} × F◦
satisfies

ıY dλ = −χ ′λψ.

Since χ ′ = 0 near 0 and π , Y is well defined, and since ψ is compactly supported
in F◦, Y is compactly supported in MT(F◦, ψ). We compute

ı(∂θ+Y )dαs = s
(
ı(∂θ+Y )χ ′dθ ∧ λψ + ı(∂θ+Y )dλ

)

= s χ ′
(
λψ − λψ(Y ) dθ − λψ

)

= s dλ(Y ,Y ) dθ = 0.

Hence on MT(F◦, ψ) the Reeb vector field of αs is

Rαs =
∂θ + Y

αs(∂θ + Y )
. (6.5)

Note that Rαs = ∂θ near K . Since the ∂θ component of Rαs never vanishes and since
Y is tangent to the pages, Rαs is transverse to F◦ × {θ} for all θ . Hence F◦ is a global
hypersurface of section for Rαs on MT(F◦, ψ). We have the first return time map

Ts : F◦ → R, Ts(p) = inf
{
t > 0 | φt

Rαs
(0, p) ∈ {0} × F◦

}
(6.6)

and the first return map

ϒ : F◦ → F◦, (0, ϒ(p)) = φ
Ts (p)
Rαs

(0, p) ∀ p ∈ F◦. (6.7)

Remark 6.3 Since Rαs is a multiple of the vector field ∂θ + Y that does not depend
on s, the return map ϒ is independent of s. This justifies the absence of the subscript
in (6.7).

We note that for all s ∈ (0, s0],

Ts ≡ 2π and ϒ = id on F◦ \ suppψ. (6.8)

Recall that we write �(αs) for the norm growth �(φαs ) of the Reeb flow φt
αs
.

Lemma 6.4 There exists s1 ∈ (0, s0) such that for every s ∈ (0, s1],

π ≤ Ts ≤ 4π on F◦ (6.9)

and such that

�(αs) ≤ E (6.10)

for some constant E > 0 that depends only on ψ, λ, χ .
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Proof We compute

dθ
(
Rαs

) = 1

αs(∂θ + Y )
= 1

1+ s
(
λ(Y )+ χ λψ(Y )

) .

Since Y is compactly supported, we find s1 ∈ (0, s0) such that for every s ∈ (0, s1],
1

2
≤ 1

αs(∂θ + Y )
≤ 2 on MT(F◦, ψ). (6.11)

The inequality (6.9) follows. For the second claim, we apply Proposition C.2 to the
vector field ∂θ + Y and the positive function 1

αs (∂θ+Y ) , and in view of (6.5) and (6.11)
find that �(αs) ≤ 2�(φ∂θ+Y ) =: E . ��

6.2 A family of contact forms near the binding

Let E > 0 be the constant from Lemma 6.4. By our inductive hypothesis, for any
ε > 0 there exists a contact form σε on (K , ξ |K ) such that

volσε (K ) = ε and �(σε) ≤ E . (6.12)

Indeed, there is a contact form α0 on (K , ξ |K ) such that

volα0(K ) = 1 and �(α0) ≤ ε1/n E .

We can thus take σε := ε1/n α0.
Applying Lemma 5.1 to σε we obtain an embedding

ıε : [0,+∞)× K ↪→ F such that ı∗ε λ =
1

r
σε, (6.13)

and ıε(0, q) = q for every q ∈ K . This embedding induces the smooth coordinate
r ∈ [0,+∞) on a neighborhood of K = ∂F in F . There exists rε > 0 that depends
only on ψ and σε such that

ıε ([0, rε] × K ) ∩ suppψ = ∅. (6.14)

We define

Fε := F \ (
ıε([0, rε)× K )

)
(6.15)

and note that near the boundary of MT(Fε, ψ) the expression (6.4) for αs reads

αs = dθ + s

r
σε. (6.16)
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Fig. 9 The functions f and g

Lemma 6.5 For every ε > 0 and s ∈ (0, rε/2) there exist smooth functions

f , g : [0, rε] → R

with the following properties.

(f1) f (r) = s/r near r = rε and f (r) = 1 near r = 0.
(f2) f (rε/2) = 1/2.
(f3) −2/rε ≤ f ′ ≤ 0 on [0, rε] and f ′ < 0 on [rε/2, rε].
(g1) g = 1 on [rε/2, rε] and g(r) = r2/2 near r = 0.
(g2) 0 ≤ g′ ≤ 4/rε on [0, rε] and 0 < g′ on (0, rε/2].

See Fig. 9. The easy proof is left to the reader. For later use we note that the function.

h := f g′ − f ′g : [0, rε] → R

is positive on (0, rε], satisfies h(r) = r near r = 0, and

h ≤ 4

rε
+ 2

rε
= 6

rε
on [0, rε]. (6.17)

Furthermore,

g′

h
≤ 2 on [0, rε]. (6.18)

Indeed, for r ∈ [rε/2, rε] we have ( g′h )(r) = 0 by (g1). In 0 we have g′
h = 0. Further,

for r ∈ (0, rε
2 ] property (g2) shows that g′(r) > 0, and hence − f ′ g

g′ ≥ 0. Since
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f (r) ≥ 1
2 by (f2) and (f3), we conclude that

h

g′
= f − f ′ g

g′
≥ 1

2
,

as claimed.
Given ε > 0 and s ∈ (0, rε/2), we define the 1-form

αs,ε(θ, r , q) := g(r)dθ + f (r)σε(q) (6.19)

on S1 × [0, rε] × K . We note that by (f1) and (g1),

αs,ε(θ, r , q) = r2

2
dθ + σε(q) near r = 0.

By considering θ and r as angular and radial coordinates on the disk rεD, we thus see
that the 1-form αs,ε is smooth on rεD× K .

Lemma 6.6 For ε > 0 and s ∈ (0, rε/2), αs,ε is a contact form on rεD× K.

Proof We compute

αs,ε ∧ (dαs,ε)
n = (g dθ + f σε) ∧ (g′dr ∧ dθ + f ′dr ∧ σε + f dσε)

n

= n h f n−1
(
dr ∧ dθ ∧ σε ∧ (dσε)

n−1) (6.20)

where h = f g′ − f ′g. Since f n−1h > 0 on (0, rε], it follows that αs,ε is a contact
form away from K . Near K we have h(r) = r , so that there αs,ε ∧ (dαs,ε)n reads

n
(
rdr ∧ dθ ∧ σε ∧ (dσε)

n−1),

which is a positive volume form at any point on K . ��
Away from K the Reeb vector field is

Rαs,ε (θ, r , q) = −
f ′(r)
h(r)

∂θ + g′(r)
h(r)

Rσε (q)

and has the flow

φt
αs,ε

(θ, r , q) =
(
θ − f ′(r)

h(r)
t, r , φ

g′(r)
h(r) t
σε (q)

)
, (6.21)

where φt
σε

is the flow of Rσε .

Lemma 6.7 For s ∈ (0, rε/2) we have �(αs,ε|rεD×K ) ≤ 2 E.
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Proof By continuity it suffices to estimate the differentials of φ±nαs,ε
away from K . We

choose a basis ∂θ , ∂r , ∂q1 , . . . , ∂q2n−1 of the tangent space at (θ, r , q). In view of (6.21),
the images of these vectors under dφ±nαs,ε

(θ, r , q) are

∂θ , ∓
(

f ′

h

)′
(r) n ∂θ + ∂r ±

(
g′

h

)′
(r) n Rσε , dφ

±
(
g′
h

)
(r) n

σε (θ, r , q) ∂q j .

The size of the functions
( f ′
h

)′ and ( g′
h

)′ plays no role when we apply lim
n→∞

1

n
log, and

together with (6.18) we find that

�(αs,ε|rεD×K ) = max
r

∣∣∣∣
(
g′

h

)
(r)

∣∣∣∣ �(σε) ≤ 2�(σε).

The lemma follows together with assumption (6.12). ��

6.3 A family of contact forms on OB(F,Ã)

For every ε > 0 and s ∈ (0, rε/2), we define

αs,ε =
{
αs on MT(Fε, ψ)

αs,ε = g(r) dθ + f (r) σε on rεD× K
(6.22)

on the abstract open book

OB(F, ψ) = MT(Fε, ψ) ∪ (rεD× K )

where αs on MT(Fε, ψ) is defined by (6.4) and f and g are given in Lemma 6.5.
By (6.16) and the properties (f1) and (g1), each αs,ε is a well-defined contact form
on OB(F, ψ).

We first estimate the volume.

∫

OB(F,ψ)

αs,ε ∧ (dαs,ε)
n =

∫

MT(Fε,ψ)

αs ∧ (dαs)
n +

∫

rεD×K
αs,ε ∧ (dαs,ε)

n .

For s ∈ (0, s1], where the positive number s1 is given by Lemma 6.4, we have

∫

MT(Fε,ψ)

αs ∧ (dαs)
n =

∫

Fε
Ts (dαs |{0}×Fε )

n =
∫

Fε
Ts s

n(dλ)n ≤ 2sn
∫

Fε
(dλ)n,

where we used (6.9) in the last inequality. For the second term we use (6.20), the
assumption (6.12), and f ≤ 1 and (6.17) to estimate

∫

rεD×K
αs,ε ∧ (dαs,ε)

n =
∫

rεD×K
n h f n−1

(
dr ∧ dθ ∧ σε ∧ (dσε)

n−1)
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= 2πn volσε (K )

∫ rε

0
h f n−1dr

≤ 12πn ε.

Together we get

∫

OB(F,ψ)

αs,ε ∧ (dαs,ε)
n ≤ 2sn

∫

Fε
(dλ)n + 12πn ε. (6.23)

Next we estimate the norm growth �. The bound (6.10) also applies to the subset
MT(Fε, ψ) of MT(F◦, ψ) since � is monotone with respect to inclusion of compact
invariant subsets. Since MT(Fε, ψ) and rεD × K are invariant under the flow, we
conclude together with assertion (3) of Proposition C.1 and Lemma 6.7 that

�(αs,ε) = max
{
�(αs |MT(Fε,ψ)), �(αs,ε|rεD×K )

} ≤ 2E . (6.24)

Now given any ε0 > 0, we choose ε > 0 such that 12πn ε ≤ ε0/2. Once ε is fixed,
so are rε and

∫
Fε
(dλ)n . If we choose s > 0 such that

s ≤ min

⎧
⎨
⎩s1,

rε
2
,

(
ε0

4
∫
Fε
(dλ)n

) 1
n

⎫
⎬
⎭ ,

then the right-hand side of (6.23) is ≤ ε0. Since n!ωn ≥ 1 we thus get a contact form
αs,ε on OB(F, ψ) such that

�(αs,ε) ≤ 2E and volαs,ε
(
OB(F, ψ)

) ≤ ε0. (6.25)

The last step of the proof consists of pushing the contact form αs,ε to M in such a
way that the contact structure ker αs,ε is mapped to ξ . This is possible thanks to the
following lemma.

Lemma 6.8 There exists a diffeomorphism ρ of M such that ρ∗(ξ) = ker αs,ε.

Postponing the proof, we use the lemma to complete the proof of Theorem 6.1.
Thanks to the lemma, the 1-form

τ := (
volαs,ε

(
OB(F, ψ)

))−1/(n+1)
ρ∗αs,ε (6.26)

is a contact form on (M, ξ), and volτ (M) = 1. By the elementary properties (1) and
(4) in Proposition C.1 and by (6.25),

�̂(τ ) = �(τ) = (
volαs,ε

(
OB(F, ψ)

))1/(n+1)
�(αs,ε) ≤ (2E) (ε0)

1/(n+1).

Since the constant E from Lemma 6.4 depends only on ψ, λ, χ , which are fixed data
associated with (M, ξ), and since ε0 > 0 is arbitrarily small, we obtain τ with �̂(τ )

as small as we like.
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6.4 Proof of Lemma 6.8

We first show that the obvious open book structure on OB(F, ψ) is a Liouville open
book with contact binding form αs,ε. Let

�̃ : OB(F, ψ) \ K → S1

be the fibration induced by the projection MT(F, ψ) → S1. We construct a defin-
ing function h̃ as follows. As before, we consider the variable r ∈ [0,+∞) on a
neighborhood of K = ∂F in F that is induced by the embedding (6.13). Let

ũ : F → [0,∞)

be a smooth function and d > 0 and δ > 0 be constants such that

(df1) ũ(r , q) = r for (r , q) ∈ [0, rε] × K ,
(df2) ũ ≡ d on ([0, rε + δ)× K )c and suppψ ⊂ ([0, rε + δ] × K )c,
(df3) ũ depends only on r and ∂r ũ ≥ 0 on [0, rε + δ] × K .

See Fig. 10. Since ũ is constant on suppψ , the S1-invariant extension of ũ is a well-
defined smooth function on MT(F, ψ), which constitutes the function |h̃|. Pairing
|h̃| with �̃ leads to a well-defined defining function h̃ for the open book (K , �̃)

onOB(F, ψ). Note that on rεD×K , h̃ is simply the projection to the disk rεD, which is
smooth.

Claim 1 d
(
αs,ε/|h̃|

)
induces an ideal Liouville structure on each fibre of �̃.

Proof For each θ ∈ S1 we abbreviate

λ̃θ :=
(
αs,ε/|h̃|

)|T ({θ}×F◦). (6.27)

Fig. 10 The function ũ, schematically
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We need to check that dλ̃θ is a positive symplectic form on {θ} × F◦ = �̃−1(θ). We
do this on the three regions separately:

On {θ} × (0, rε] × K : By (6.22) and (df1) we have

λ̃θ = f (r)

r
σε (6.28)

and so

(dλ̃θ )
n = n f n−1 f ′r − f

rn+1
dr ∧ σε ∧ (dσε)

n−1.

In view of the parametrization (6.13), d( 1r σε) is a positive symplectic formon {θ}×F◦,
whence (d( 1r σε))

n = − n
rn+1 dr ∧ σε ∧ (dσε)n−1 is a positive volume form. Since

f ′r − f < 0 by (f1) and (f3), it follows that (dλ̃θ )n is a positive volume form, i.e.,
dλ̃θ is a positive symplectic form.

On {θ} × [rε, rε + δ] × K : By (df2) we have ψ = id on this set. Hence, by (6.16),

λ̃θ = s

r ũ
σε. (6.29)

By (df3), ũ depends only on r . We thus obtain

(dλ̃θ )
n = −s n ũ + r ∂r ũ

rn+1ũn+1
dr ∧ σε ∧ (dσε)

n−1.

Also by (df3), ũ + r ∂r ũ > 0, and the claim follows as in the previous case.

On {θ} × ([0, rε + δ)× K )c: By (df2), ũ ≡ d and

λ̃θ = s

d

(
λ+ χ(θ)λψ

)
. (6.30)

Hence dλ̃θ = s
d dλ, which is a positive symplectic form. ��

Now we are in the following situation. On OB(F, ψ) we have the Liouville open
book

(
K , �̃, d(α/|h|)|T ({θ}×F◦)

)
, (6.31)

which symplectically supports the contact structure ξ = ker α. Here α, ξ , and h stand
for the objects induced by the correspondence between M and OB(F, ψ) given by the
symplectically spinning vector field X on M . Moreover, by Claim 1 we have a second
Liouville open book

(
K , �̃, d

(
αs,ε/|h̃|

)|T ({θ}×F◦)
)
, (6.32)
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which symplectically supports the contact structure ker αs,ε. By the identities (6.28),
(6.29), and (6.30), the ideal Liouville structures

(
d
(
αs,ε/|h̃|

)|T ({θ}×F◦)
)
θ∈S1 are invari-

ant under the flowof the vector field ∂θ . Although λ̃θ in (6.30) is not invariant under this
flow, the symplectic form dλ̃θ = s

d dλ is. The vector field ∂θ is therefore a symplec-
tically spinning vector field on the LOB (6.32). Note that the symplectically spinning
vector field X on M also reads ∂θ on the LOB (6.31).

Claim 2 There exists a diffeomorphism

� : OB(F, ψ)→ OB(F, ψ) (6.33)

such that � ◦ �̃ = �̃ ◦� and the restriction of � to each fibre is symplectic, that is,

�∗d
(
αs,ε/|h̃|

)|T ({θ}×F◦) = d
(
α/|h|)T ({θ}×F◦), ∀ θ ∈ S1.

If such a diffeomorphism exists, then ker�∗αs,ε and ker α are two contact struc-
tures on OB(F, ψ) which symplectically support the Liouville open book (6.31).
Hence they are isotopic by Proposition 5.5. By Gray’s stability theorem we then find
a diffeomorphism ρ̂ of M such that ρ̂∗(ker α) = ker�∗αs,ε. Set ρ = � ◦ ρ̂. Since
ker�∗αs,ε = �−1∗ (ker αs,ε), we conclude that ρ∗(ker α) = ker αs,ε, as claimed in
Lemma 6.8.

Proof of Claim 2 We have the following ideal Liouville structures on the 0-page:

ω̃ := d
(
αs,ε/|h̃|

)|T ({0}×F◦), (6.34)

ω := d
(
α/|h|)|T ({0}×F◦) = dλ. (6.35)

We first show that

ωt := (1− t)ω + t ω̃

is symplectic on F◦ for all t ∈ [0, 1]. In fact, we claim that

λt = (1− t)λ+ t λ̃ (6.36)

is a Liouville form on F◦ for all t ∈ [0, 1], where λ is the primitive of ω given by (6.3)
and λ̃ is the primitive of ω̃ given by (6.27). Again, we compute dλt on different subsets
of F◦:
On {θ} × (0, rε] × K : By (6.28) we have

λt = (1− t)
1

r
σε + t

f (r)

r
σε = κ(r)

r
σε
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where κ = (1− t)+ t f . We have κ > 0 and κ ′ < 0, so that κ ′r − κ < 0. Hence the
claim follows as in the first case of Claim 1.

On {θ} × [rε, rε + δ] × K : By (6.29) we have

λt = (1− t)
1

r
σε + t

s

r ũ
σε = κ(r)

r
σε

where κ = (1− t)+ ts/ũ. We have κ > 0 and κ ′ ≤ 0, so that κ ′r − κ < 0. The claim
follows as above.

On {θ} × ([0, rε + δ)× K )c: By (6.30) we have

dλt = (1− t)dλ+ t
s

d
dλ =

(
(1− t)+ t

s

d

)
dλ.

Hence ωt = dλt is symplectic on F◦ for all t ∈ [0, 1].
Recall that by (6.13) and (f1),

ω = ω̃ = d

(
1

r
σε

)
on a deleted neighbourhood of K .

Hence this identity holds on the samedeleted neighbourhoodof K for all the symplectic
forms ωt , t ∈ [0, 1]. Applying the standard Moser argument to the path ωt , we obtain
a smooth isotopy (ψt )t∈[0,1] of F such that

(�1) ψ0 = id;
(�2) ψt = id near K for all t ∈ [0, 1];
(�3) ψ∗t ωt = ω0 = ω for all t ∈ [0, 1].

Now we define � : [0, 2π ] × F → [0, 2π ] × F by

�(θ, p) :=
(
θ, ψ1 ◦ ψ−1θ

2π
◦ ψ−1 ◦ ψ θ

2π
(p)

)
(6.37)

where ψ is the monodromy that we fixed at the outset of the proof. We note that

�(2π, p) = (
2π,ψ−1 ◦ ψ1(p)

)
,

and by (�1),

�(0, ψ(p)) = (0, ψ1(p)) =
(
0, ψ(ψ−1 ◦ ψ1(p))

)
.

Hence � descends to a diffeomorphism on MT(F, ψ). Since ψ = id near K and
ψt = id near K for each t by (�2), we have that � = id on a neighbourhood
of ∂ MT(F, ψ). Hence� descends to a diffeomorphism on OB(F, ψ). By definition,
� commutes with �̃.
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Now recall that ∂θ is a symplectically spinning vector field for both LOBs (6.31)
and (6.32). In view of (6.34) and (6.35) and identifying {θ} × F◦ with {0} × F◦ via
the flow of ∂θ , we can therefore identify

d
(
α/|h|)|T ({θ}×F◦) with ω|T ({θ}×F◦) := ω,

d
(
αs,ε/|h̃|

)|T ({θ}×F◦) with ω̃|T ({θ}×F◦) := ω̃.

Also recall that ψ∗ω = ω. Since ∂θ generates the monodromy ψ and preserves ω̃, we
also have ψ∗ω̃ = ω̃. Therefore, ψ∗ωt = ωt for all t ∈ [0, 1]. Inserting (6.37) and
using (�3) we obtain, with the abbreviation F◦θ = T ({θ} × F◦),

�∗d
(
αs,ε/|h̃|

)|F◦θ = �∗ω̃|F◦θ
= (

ψ1 ◦ ψ−1θ
2π
◦ ψ−1 ◦ ψ θ

2π

)∗
ω̃|F◦θ

= ψ∗θ
2π

(ψ−1)∗ (ψ−1θ
2π

)∗ ψ∗1ω1|F◦θ
= ψ∗θ

2π
(ψ−1)∗ (ψ−1θ

2π
)∗ ω0|F◦θ

= ψ∗θ
2π

(ψ−1)∗ω θ
2π
|F◦θ

= ψ∗θ
2π

ω θ
2π
|F◦θ

= ω0|F◦θ = ω|F◦θ = d(α/|h|)|F◦θ .

This concludes the proof of Lemma 6.8, and hence of Theorem 6.1.

7 Full entropy spectrum

By Theorem 6.1 every closed contact manifold (M, ξ) admits normalized contact
forms with arbitrarily small topological entropy. On the other hand, one can always
find normalized contact forms α on (M, ξ) with arbitrarily large topological entropy.
We first sketch a direct proof of this fact. A proof of a stronger statement relying on
our previous construction is given thereon.

Existence of contact forms with large entropy. Choose a transverse knot γ , that is, a
simple closed curve γ : S1 → M such that γ̇ is everywhere transverse to ξ . Let B2n

be the closed ball in R
2n of radius 1. By the normal form theorem for transverse knots

[52, Example 2.5.16], we find a full torus T = B2n × S1 around γ with coordinates
(θ1, . . . , θn, r1, . . . , rn, q) such that γ is parametrized by r j = 0 and q and such that
on T the contact structure ξ is the kernel of τ := dq +∑

j r j dθ j .
Next, take a second such full torus (T2, τ2) that is disjoint from T , perturb τ2 in

the interior of T2 to a contact form τ ′2 with positive topological entropy, and take a
contact form α on (M, ξ) that agrees with τ on T and with τ ′2 on T2. Now for δ > 0
let F : M → R be a positive smooth function that is equal to δ outside T , on T
depends only on the coordinates r1, . . . , rn , and is such that volFτ (T ) = 1. Take the
smooth contact form αδ,F on M that is equal to Fτ on T and to δα on M\T . Then
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htop(αδ,F |T ) = 0 whence

htop(αδ,F ) = htop(αδ,F |M\T ) = htop(δα|M\T ) = δ−1 htop(α).

With this one then readily finds

(̂
htop(αδ,F )

)n+1 = (̂
htop(α|M\T )

)n+1 +
(
htop(α)

δ

)n+1
.

Varying δ on (0,∞) we obtain a normalized contact form with topological entropy c
for every c > ĥtop(α|M\T ). ��
Remark 7.1 For spherizations S∗Qk of closed orientable surfaces of genus k ≥ 2 this
result has been obtained in [45] inside the much smaller class of geodesic flows of
negatively curved Riemannian metrics: For every c ≥ 2π

√
2(k − 1) there exists a

negatively curved Riemannian metric g on Qk such that ĥtop(g) = c. In the class of
all Riemannian metrics, geodesic flows with arbitrarily large ĥtop were constructed on
all closed manifolds of dimension at least two already in [70].

We shall now combine the above argument with the construction in the proof of
Theorem 6.1 to prove the following more precise result.

Proposition 7.2 Let (M, ξ) be a closed co-orientable contact manifold of dimension
2n + 1 ≥ 3. Then for every c > 0 there exist normalized contact forms α and α′
on (M, ξ) such that htop(α) = c and �(α′) = c.

Proof We give the proof for the topological entropy. The proof for the norm growth �

is similar. Fix c > 0 as in the proposition. As in (6.26) let

τ = v−1/(n+1) ρ∗αs,ε

be a contact form with htop(τ ) ≤ c and volτ (M) = 1. Here we abbreviated v :=
volαs,ε

(
OB(F, ψ)

)
. In view of (6.25) we can assume that

v ≤ 1. (7.1)

Recall thatαs,ε on rεD×K was constructed recursively, starting from the circle S1. For
j = 1, . . . , n let f j , g j , h j be the functions from Lemma 6.5 that we used in (6.19) to
construct αs,ε j on rε j D×K j . Set r = min{rε1 , . . . , rεn } > 0. Let B2n(r) be the closed
r -ball in R

2n with polar coordinates (θ, r) ≡ (θ1, . . . , θn, r1, . . . , rn), and abbreviate
Tr = B2n(r)× S1.

For δ > 0 choose a positive smooth function F : OB(F, ψ)→ R with the follow-
ing properties:

(F1) F = δ on T c
r := OB(F, ψ)\Tr .

(F2) F only depends on r on Tr .
(F3) volFαs,ε (Tr ) = 1.



67 Page 62 of 99 A. Abbondandolo et al.

Lemma 7.3 htop(Fαs,ε|Tr ) = 0.

Proof The full torus Tr is foliated by the tori

Tr := (S1)k × {r = (r1, . . . , rn)} × S1

with r1, . . . , rn ≥ 0 constant, of dimension k + 1 ≤ n + 1. By (f1) and (g1),

f ′j (r j )
h j (r j )

= −2r j and
g′j (r j )
h j (r j )

= 1 for r j near 0. (7.2)

Writing out (6.21) recursively and using (7.2) we see that the Reeb flow of αs,ε leaves
the tori Tr invariant and on each Tr is a Kronecker flow.

Applying now (6.19) recursively we see that on Tr ,

αs,ε(θ, r, q) = ρ1(r)dθ1 + · · · + ρn(r)dθn + ρ(r)dq

with smooth functionsρ j , ρ. TheReebflowof any1-formof this form leaves the toriTr
invariant and there restricts to a Kronecker flow. This is clear at r if the Jacobian
determinant of

(
∂ρi
∂r j

(r)
)
does not vanish, and in general follows by approximation.

Therefore, for each r the Reeb flow of Fαs,ε is a Kronecker flow on Tr, and hence
htop(Fαs,ε|Tr) = 0. The variational principle for topological entropy now implies
that

htop(Fαs,ε) = sup
r

htop(Fαs,ε|Tr) = 0,

as claimed. ��
By Lemma 7.3 the topological entropy of αs,ε and Fαs,ε on Tr vanishes. Together

with (F1) we obtain

htop(Fαs,ε) = htop(Fαs,ε|T c
r
) = 1

δ
htop(αs,ε|T c

r
) = 1

δ
htop(αs,ε). (7.3)

Now consider the contact form

(F ◦ ρ)τ = v−1/(n+1) ρ∗(Fαs,ε) (7.4)

on (M, ξ). By (7.4) and (7.3),

ĥtop
(
(F ◦ ρ)τ)n+1 = vol(F◦ρ)τ (M) htop

(
(F ◦ ρ)τ)n+1

= v−1 volFαs,ε
(
OB(F, ψ)

)
v htop(Fαs,ε)

n+1

= volFαs,ε
(
OB(F, ψ)

)
δ−(n+1) htop(αs,ε)n+1.

By (7.1), v := volαs,ε (T c
r ) ∈ (0, 1), and by (F1) and (F3),

volFαs,ε
(
OB(F, ψ)

) = 1+ δn+1v,
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whence

ĥtop
(
(F ◦ ρ)τ)n+1 =

(
v + δ−(n+1)

)
htop(αs,ε)

n+1 =: ( f (δ))n+1.

Assume first that htop(αs,ε) > 0. Then the range of the function f : (0,∞) → R is(
v1/(n+1) htop(αs,ε),∞

)
. Since v < 1 and htop(αs,ε) ≤ c, we in particular find δ such

that ĥtop
(
(F ◦ρ)τ) = c. If htop(αs,ε) = 0, Proposition 7.2 follows from the following

result.

Lemma 7.4 We can assume that htop(αs,ε|MT(Fε,ψ)) > 0.

Proof Assume that htop(αs,ε|MT(Fε,ψ)) = 0. By Theorem 6.2 in [76] there exists a
contact form α′s,ε on MT(Fε, ψ) that is C1-close to αs,ε and equal to αs,ε near the
boundary, and whose Reeb flow has a generic 1-elliptic periodic orbit. Hence this flow
contains a hyperbolic basic set, and therefore htop(α′s,ε) > 0. Further, theC1-closeness
of αs,ε and α′s,ε implies that all the 1-forms

(1− s)αs,ε + sα′s,ε, s ∈ [0, 1],

are contact forms. Gray’s stability theorem therefore shows that there exists a diffeo-
morphism ζ of MT(Fε, ψ) that is the identity near the boundary such that the kernel
of ζ ∗α′s,ε is ξ . The contact form on (M, ξ) that agrees with αs,ε on M\MT(Fε, ψ)

and with ζ ∗α′s,ε on MT(Fε, ψ) is the contact form we were looking for.
Newhouse’s full Theorem 6.2 starts with the C1-closing lemma, and holds in all

dimensions.Wedonot need to appeal to the closing lemma in our situation, andweonly
need the easier 3-dimensional result: Assume that dim M = 3. By (6.8) we can choose
a flow-invariant neighbourhoodU ⊂ MT(Fε, ψ) of the boundary of MT(Fε, ψ) such
that all orbits in U are closed. Let γ be one of these orbits that is not on the boundary
ofMT(Fε, ψ), and choose aflow-invariant openneighbourhood N (γ )whose closure is
also disjoint from the boundary ofMT(Fε, ψ). Since N (γ ) is foliated by closed orbits,
γ is elliptic. Using the Birkhoff normal form theorem and the KAM theorem, one can
C1-perturb αs,ε to a contact form α′s,ε that agrees with αs,ε outside N (γ ) and whose
Reeb flow has a transverse homoclinic connection near γ , see [97]. This Reeb flow
therefore contains a horse-shoe and thus has positive topological entropy. As above we
can isotope α′s,ε without changing it outside N (γ ) to a contact form α′′s,ε for (M3, ξ).
Proceeding from this contact form with positive topological entropy, our inductive
construction in Sect. 6.2 shows that σε on M2n+1 also has positive topological entropy.
Hence this also holds true for αs,ε on the boundary of MT(Fε, ψ) and therefore, by
the monotonicity of topological entropy, also on MT(Fε, ψ). ��

8 Collapsing the growth rate of symplectic invariants

Theorem 1.1 on the collapse of topological entropy of Reeb flows implies the collapse
of the growth rate of two symplectic invariants: symplectic homology and wrapped
Floer homology.
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8.1 Liouville domains and fillings

Recall that a Liouville domain is a compact exact symplecticmanifoldW = (W ,ω,λ)

with boundary 
 = ∂W and a primitive λ of ω such that αW = λ|
 is a contact form
on 
. The Liouville 1-form λ also induces the contact structure ξW = ker αW on 
.
The Liouville domainW is called an exact symplectic filling for the contact form αW ,
and we say that the contact form αW is exactly filled by W .

A standard construction (see for example [11, Section 2.2.1]) shows that if a contact
form α on a contact manifold (
, ξ) is exactly filled by a Liouville domain Wα , then
we can construct for any other contact form α′ on (
, ξ) a Liouville domain Wα′ that
fills α′. It therefore makes sense to say that a contact manifold is fillable by Liouville
domains.

8.2 Symplectic homology and collapse of its exponential growth

LetWα be aLiouville domain filling the contact formα on the contactmanifold (
, ξ).
The symplectic homology SH(Wα) is a homology theory associated to Wα . While
there are various versions of symplectic homology, we here consider the one originally
developed by Viterbo [94].

Geometrically, one can think of the chain complex associated to SH(Wα) as the
Z2-vector space generated by the periodic orbits of the Reeb flow of α and by the
critical points of a C2-small non-positive Morse–Smale function f : Wα → R such
that f −1(0) = 
 is a regular energy level. The differential of SH(Wα) counts Floer
cylinders connecting generators. We refer the reader to [24, 78] for details.

There is a filtration of SH(Wα) by the action of its generators. For the Reeb orbits
the action equals the period. For each real number a > 0 let SH<a(Wα) be the
homology of the subcomplex generated by the Reeb orbits of action < a and the
critical points of f . The inclusion of this subcomplex induces the homomorphism of
Z2-vector spaces

�a
α : SH<a(Wα)→ SH(Wα).

We define the exponential growth rate of SH(Wα) by

�(SH(Wα)) := lim sup
a→+∞

log
(
rank (�a

α)
)

a
.

The following remarkable result is due to Meiwes [74].

Theorem If Wα is a Liouville domain filling a contact form α on (
, ξ), then

htop(φα) ≥ �(SH(Wα)).

Together with Theorem 1.1 we obtain the following result.
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Corollary 8.1 Let (
, ξ) be a contact manifold fillable by Liouville domains. Then for
every ε > 0 there exists a contact form α with volα(
) = 1 such that

�(SH(Wα)) ≤ ε,

for any Liouville filling Wα of α.

It follows that one cannot, in general, recover the volume of a contact form α from
the exponential growth rate of SH(Wα) of a Liouville filling Wα . To obtain a better
geometric formulation of the corollary, we notice that if Wα = (W 2n

α ,ωα,λα) is a
Liouville filling of α, then the symplectic volume

∫
Wα

(ωα)
n equals the contact volume

of volα(
). Corollary 8.1 thus says that every Liouville fillable contact manifold
admits fillings by Liouville domains of symplectic volume 1 and arbitrarily small
growth of symplectic homology.

In the opposite direction, one can ask if for a fixed contact manifold (
, ξ) there
exists a constant K
,ξ such that

�(SH(W)) ≤ K
,ξ

for every Liouville domain W that fills some normalized contact form on (
, ξ). A
partial negative answer to this question is given by the following result. Recall that the
spherization of a closed manifold Q is the contact manifold (S∗Q, ξcan ) whose Reeb
flows comprise the co-geodesic flows of Riemannian metrics on Q.

Lemma 8.2 Let Qk be the closed orientable surface of genus k ≥ 2. Then for every real
number c ≥ 2π

√
2(k − 1) there exists a contact form α of volume 1 on (S∗Qk, ξcan )

and a Liouville domain Wα filling α such that

�(SH(Wα)) = c.

Proof It follows from [45, Theorem A] that for any real number c ≥ 2π
√
2(k − 1)

there exists a negatively curved Riemannian metric g with area 1/(2π) such that the
topological entropy of the geodesic flow φg is equal to c. Let α be the contact form on
(S∗Qk, ξcan ) whose Reeb flow is the co-geodesic flow of g. Then volα(S∗Qk) = 1
and htop(φα) = htop(φg) = c.

Let Wα = D∗(g) ⊂ (T ∗Qk, λcan ) be the unit co-disk bundle associated to the
Riemannian metric g, where λcan is the Liouville form on the cotangent bundle T ∗Qk .
Then Wα is a Liouville domain filling α.

Since the Riemannian metric g is negatively curved, a theorem of Margulis [71]
shows that

htop(φα) = lim
t→+∞

log
(
Pt (φα)

)

t
,

where Pt (φα) denotes the number of periodic orbits of the flow φα of length < t ,
see also [25]. Since all periodic Reeb orbits have Morse index zero and are non-
contractible, there are no Floer cylinders starting or ending at these orbits. Hence there
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is a bijection between the Reeb orbits of action < a and the generators of SHa(Wα),
up to a finite error coming from the finitely many critical points of the function f . It
follows that

�(SH(Wα)) = lim
t→+∞

log
(
Pt (φα)

)

t

see [7, 67] for details. Combining these two equalities we get

�(SH(Wα)) = htop(φα) = c,

while as noted above volα(S∗Qk) = 1. ��

8.3 Wrapped Floer homology and collapse of its exponential growth

In a similar way we obtain a collapse result for the exponential growth of another
symplectic invariant called wrapped Floer homology. The wrapped Floer homo-
logyWH(W , L) is an invariant associated to a Liouville domainW and an asymptoti-
cally conical exact Lagrangian submanifold L of W . One of several references giving
the precise definition of WH(W , L) is [11].

With α the contact form on the boundary of a Liouville domain Wα , one can think
of the chain complex associated to WH(Wα, L) as the Z2-vector space generated by
the Reeb chords of α that start and end on ∂L , and by the intersection points of L
and a C2-small perturbation of L . The differential of WH(Wα, L) counts Floer strips
connecting generators.

As in the case of symplectic homology there is a filtration of WH(Wα, L) by the
action of the generators, and again the action of Reeb chords is equal to their time.
For each real number a > 0 let WH<a(Wα, L) be the homology of the subcomplex
generated byReeb chords and intersection points of action< a. Again there are natural
homomorphisms

�a
α : WH<a(Wα, L)→WH(Wα, L),

and we define the exponential growth rate of WH(Wα, L) by

�(WH(Wα, L)) := lim sup
a→+∞

log
(
rank (�a

α)
)

a
.

The following result was obtained in [11].

Theorem Let Wα be a Liouville domain filling a contact form α on (
, ξ), and let L
be an asymptotically conical exact Lagrangian submanifold ofWα whose intersection
with ∂Wα is a sphere.1 Then

htop(φα) ≥ �(WH(Wα), L).

1 The assumption that L ∩ Wm2α is a sphere has been removed in [47] using the techniques introduced
in [31]. This can also be achieved with the methods developed by Meiwes in [74].
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Together with Theorem 1.1 we obtain

Corollary 8.3 Let (
, ξ) be a contact manifold fillable by Liouville domains. Then for
every ε > 0 there exists a contact form α with volα(
) = 1 such that

�(WH(Wα, L)) ≤ ε,

for any Liouville filling Wα of α and any asymptotically conical Lagrangian
submanifold L of Wα whose intersection with ∂Wα is a sphere.

Classical examples of pairs (Wα, L) are the unit co-disk bundles D∗(g) over a
closed Riemannian manifold Q, with L a co-disk D∗q(g) over a point q ∈ Q. Here is
the analogue of Lemma 8.2.

Lemma 8.4 Let Qk be the closed orientable surface of genus k ≥ 2. Then for every real
number c ≥ 2π

√
2(k − 1) there exists a Riemannian metric g on Qk of area 1/(2π)

such that

�(WH(D∗(g), D∗q(g)) = c.

Proof As in the proof of Lemma 8.2 we appeal to [45] and take a negatively curved
Riemannian metric g on Qk of area 1/(2π) whose geodesic flow has topological
entropy

htop(g) = c.

Since g is negatively curved, Manning’s inequality in Theorem A.2 is an equality,

htop(g) = hvol(g).

On the other hand, it is clear that

hvol(g) = lim
t→∞

logCt (φg, q)

t
∀ q ∈ Qk,

where Ct (φg, q) denotes the number of geodesics from q to q of length < t . Further-
more, since the Morse indices of all geodesics vanish, we have as for the symplectic
homology that

�(WH(D∗(g), D∗q(g)) = lim
t→∞

log
(
Ct (φg, q)

)

t
.

These four identities prove the lemma. ��
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Appendix A. Volume entropy and Manning’s inequality for Finsler
metrics

In this appendix we first give an elementary proof of Manning’s inequality for regular
Finsler geodesic flows. We then use Yomdin’s theorem to prove a generalization of
Manning’s inequality to arbitrary C∞-smooth flows on compact fiber bundles whose
fibers are of dimension one less than the base.

A.1. The volume entropy of a Finsler metric

Let F be a Finsler metric on the closed n-dimensional connected manifold Q: F is a
continuous real function on the tangent bundle T Q which is positive away from the
zero section, fiberwise positively one-homogeneous and fiberwise convex. The Finsler
metric F induces the length functional

�F (γ ) :=
∫ b

a
F(γ̇ (t)) dt

on the space of Lipschitz curves γ : [a, b] → Q and the function dF : Q × Q →
[0,+∞),

dF (x, y) := inf {�F (γ ) | γ : [0, 1] → Q Lipschitz curve with γ (0) = x, γ (1) = y} .

By the Arzelà–Ascoli theorem, the above infimum is actually a minimum: There is a
Lipschitz curve γ from x to y such that �F (γ ) = dF (x, y). The function dF is positive
away from the diagonal and satisfies the triangle inequality

dF (x, z) ≤ dF (x, y)+ dF (y, z) ∀ x, y, z ∈ Q.

http://creativecommons.org/licenses/by/4.0/
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In general, dF is not symmetric because we are not assuming F to be reversible, i.e. to
satisfy F(−v) = F(v) for every v ∈ T Q. By the compactness of Q, the irreversibility
ratio of F , i.e. the number

θ := max
v∈T Q
F(v)=1

F(−v) ∈ [1,+∞),

is well-defined and we have

dF (y, x) ≤ θ dF (x, y) ∀ x, y ∈ Q. (A.1)

The Finsler metric F lifts to a Finsler metric F̃ on the universal cover Q̃ of Q. We
denote by �F̃ and dF̃ the induced length functional and asymmetric distance on Q̃.
Note that the lifted Finsler metric has the same irreversibility ratio θ and (A.1) holds
also for the lifted asymmetric distance dF̃ . The closed forward R-ball centered at
x ∈ Q̃ is the set

Bx (F̃, R) := {y ∈ Q̃ | dF̃ (x, y) ≤ R},

which is easily seen to be compact also when Q̃ is not compact. The compactness of
the forward balls and the Arzelà–Ascoli theorem imply the existence of a Lipschitz
curve γ of F̃-length �F̃ (γ ) = dF̃ (x, y) joining two arbitrary points x and y on Q̃.
This in turn implies the following characterization of forward balls:

Bx (F̃, R) =
{
γ (R) | γ : [0, R] → Q̃ Lipschitz curve with γ (0) = x and F̃ ◦ γ̇ ≤ 1 a.e.

}
. (A.2)

We fix an arbitrary Riemannian metric on Q, lift it to Q̃, and denote by Vol the
induced volume (i.e. n-dimensional Hausdorff measure) of Borel subsets of Q̃. The
volume entropy of F is the number

hvol(F) := lim
R→∞

1

R
logVol

(
Bx (F̃, R)

) ∈ [0,+∞). (A.3)

Proposition A.1 The limit (A.3) exists, is finite, and is independent of the point x ∈ Q̃
and of the choice of the Riemannian metric on Q.

Proof The independence of the choice of the Riemannian metric on Q is clear because
by the compactness of Q the volume Vol′ induced by another Riemannian metric
satisfies

1

c
Vol ≤ Vol′ ≤ c Vol

for a suitable positive number c. Given x ∈ Q̃ and R ≥ 0 we abbreviate

Bx (R) := Bx (F̃, R) and Vx (R) := Vol(Bx (R)).
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Choose a closed fundamental domain N in Q̃ and set

a := max
{
dF̃ (y, z) | y, z ∈ N

}
.

By the triangle inequality we have

Bx ′(R) ⊂ Bx (R + a) ∀ R ≥ 0, ∀ x, x ′ ∈ N ,

and hence

Vx ′(R) ≤ Vx (R + a) ∀ R ≥ 0, ∀ x, x ′ ∈ N . (A.4)

Let τ be a deck transformation of Q̃. Since τ preserves the F̃-length of oriented curves,

Bτ(z)(R) = τ(Bz(R)) ∀ R ≥ 0, ∀ z ∈ Q̃.

Since τ also preserves Vol, we have

Vτ(z)(R) = Vz(R) ∀ R ≥ 0, ∀ z ∈ Q̃.

Applying this to deck transformations that bring points into N we can upgrade the
inequalities (A.4) to

Vx ′(R) ≤ Vx (R + a) ∀ R ≥ 0, ∀ x, x ′ ∈ Q̃. (A.5)

This implies that the limit (A.3) is independent of x , if it exists. Set

v := inf
z∈Q̃

Vz(1) = min
z∈N Vz(1) > 0.

Fix R > 0, and let Y be a maximal subset of Bx (R) such that the balls By(1), y ∈ Y ,
are pairwise disjoint. If z belongs to By(1) for some y ∈ Y then

dF̃ (x, z) ≤ dF̃ (x, y)+ dF̃ (y, z) ≤ R + 1.

Therefore,

⋃
y∈Y

By(1) ⊂ Bx (R + 1),

and from the fact that the balls on the left-hand side are pairwise disjoint and from the
definition of v we obtain

(card Y ) v ≤
∑
y∈Y

Vy(1) ≤ Vx (R + 1)
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and so

card Y ≤ 1

v
Vx (R + 1). (A.6)

From themaximality property of Y we deduce that for every z ∈ Bx (R) there is a point
y ∈ Y such that Bz(1) intersects By(1). If w is a point in this non-empty intersection,
we find

dF̃ (y, z) ≤ dF̃ (y, w)+ dF̃ (w, z) ≤ dF̃ (y, w)+ θ dF̃ (z, w) ≤ 1+ θ,

where θ is the irreversibility ratio of F and we have used (A.1). This proves the
inclusion

Bx (R) ⊂
⋃
y∈Y

By(1+ θ). (A.7)

Let S ≥ 0 and z ∈ Bx (R+ S). By (A.2), z = γ (R+ S)where γ : [0, R+ S] → Q̃ is a
Lipschitz curve satisfying γ (0) = x and F̃ ◦ γ̇ ≤ 1 a.e.. Then γ (R) belongs to Bx (R),
and from the above inclusion we find y ∈ Y such that dF̃ (y, γ (R)) ≤ 1 + θ . With
this,

dF̃ (y, z) = dF̃ (y, γ (R + S)) ≤ dF̃ (y, γ (R))+ dF̃ (γ (R), γ (R + S)) ≤ 1+ θ + S,

and hence (A.7) can be upgraded to

Bx (R + S) ⊂
⋃
y∈Y

By(S + 1+ θ) ∀ S ≥ 0.

From this, together with (A.6) and (A.4), we obtain

Vx (R + S) ≤ (card Y ) Vy(S + 1+ θ) ≤ 1

v
Vx (R + 1) Vx (S + 1+ θ + a) ∀ S ≥ 0.

Abbreviating b := 1+ θ + a, this implies

Vx (R + S) ≤ 1

v
Vx (R + b) Vx (S + b) ∀ R, S ≥ 0.

Taking logarithms, we find

log Vx (R + S) ≤ log Vx (R + b)+ log Vx (S + b)− log v ∀ R, S > 0.

This inequality implies that the function

f : [0,+∞)→ R, f (R) := log Vx (R + 2b)− log v,
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is subadditive, i.e. f (R+ S) ≤ f (R)+ f (S) for every R, S ≥ 0. Therefore, f (R)/R
converges to its infimum for R →∞, which is a non-negative finite number because
f is monotonically increasing. From the identity

log Vx (R)

R
=

(
f (R − 2b)

R − 2b
+ log v

R − 2b

)
· R − 2b

R

we deduce that the limit (A.3) exists and is a non-negative finite number. Proposi-
tion A.1 is proven. ��

A.2. The topological entropy

We shall use the following definition of the topological entropy htop(φ) of a continuous
flow φt on a compact metrizable space X : Choose a metric d which generates the
topology of X . For T > 0 define a new metric dT on X by

dT (x, x
′) = max

0≤t≤T d
(
φt (x), φt (x ′)

)
. (A.8)

For δ > 0, a subset Y of X is called (T , δ)-separated if dT (y, y′) ≥ δ for all y �= y′
in Y . Abbreviate

ν(T , δ) := maximum cardinality of a (T , δ)-separated subset ofX .

Then the function δ �→ ν(T , δ) is monotonically decreasing for every T > 0, and one
possible definition of htop(φ) is

htop(φ) := lim
δ→0

lim sup
T→∞

1

T
log ν(T , δ)

= sup
δ>0

lim sup
T→∞

1

T
log ν(T , δ) ∈ [0,+∞]. (A.9)

This number represents the exponential growth rate of the number of orbit segments
that can be distinguished with arbitrary fine but finite precision. As the notation sug-
gests, one obtains the same number if one starts with another metric which generates
the topology of X . We refer to [60, §3.1] and [95, §7] for this fact and for much infor-
mation on topological entropy. We here only mention that for a Lipschitz-continuous
flow on a compact manifold, htop(φ) is finite, see [60, Theorem 3.2.9].

A.3. Manning’s inequality

We now assume the Finsler metric F to be regular: F is of class C2 away from the
zero section and the second fiberwise differential of F2 is positive definite at every
non-zero tangent vector. Under these assumptions, the Euler–Lagrange equations for
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the energy functional

EF (γ ) := 1

2

∫ 1

0
F(γ̇ (t))2 dt

define a well-posed second order Cauchy problem on Q. Solutions of this Cauchy
problem are C2-curves defined on the whole R and are called Finsler F-geodesics.
The function F ◦ γ̇ is constant for every Finsler F-geodesic γ . After an orientation
preserving reparametrization making F ◦ γ̇ constant, any minimizer γ of �F among
Lipschitz curves from x to y is an arc of a Finsler F-geodesic.

The Cauchy problem for Finsler F-geodesics defines a C1-flow φt on the unit
sphere bundle

SQ := {v ∈ T Q | F(v) = 1}.

Denoting by π : SQ → Q the footpoint projection, γ (t) := π ◦ φt (v) is the unique
Finsler F-geodesic starting at π(v) with velocity v for t = 0, and φt (v) = γ̇ (t).

We denote by htop(F) the topological entropy of the flow φt defined above. Man-
ning’s celebrated inequality from [69] states that for any Riemannian metric F = √g
on the closed manifold Q, the topological entropy is bounded from below by the
volume growth,

htop(g) ≥ hvol(g),

where we are writing the argument of both htop and hvol as g instead of
√
g, as this is

the standard notation when dealing with Riemannian geodesic flows. It is well-known
that this inequality persists to hold for Finsler metrics:

Theorem A.2 Let F be a regular Finsler metric on a closed connected manifold Q.
Then the topological entropy of the Finsler geodesic flow of F is at least the volume
entropy of F:

htop(F) ≥ hvol(F).

The above theorem is stated for instance in [16, Theorem 15] as well as [44, The-
orem 6.1] and [93, Remarque 3.3]. Since there does not seem to be a proof in the
literature, we give one here, by a straightforward adaptation of Manning’s proof.

Wewill use the following standard property of functions having exponential growth:

Lemma A.3 Assume that the function f : (0,+∞)→ (0,+∞) satisfies

lim
R→+∞

1

R
log f (R) = h
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for some h ∈ (0,+∞). Then for every ε > 0 and every δ > 0 there exists a sequence
(Rn) ⊂ (0,+∞) tending to +∞ such that

lim
n→∞

f (Rn + δ)− f (Rn)

e(h−ε)Rn
= +∞.

Proof The assumption on f is equivalent to

f (R) = eR(h+σ(R)) ∀ R > 0, (A.10)

where the function R �→ σ(R) tends to zero for R →+∞. We claim that

L := lim sup
R→+∞

R
(
σ(R + δ)− σ(R)

)

belongs to [0,+∞]. Indeed, if by contradiction L is negative or−∞, then we can find
R0 > 0 and μ > 0 such that

R
(
σ(R + δ)− σ(R)

) ≤ −μ ∀ R ≥ R0.

This inequality can be rewritten as

σ(R + δ) ≤ σ(R)− μ

R
∀ R ≥ R0,

which implies

σ(R0 + nδ) ≤ σ(R0)−
n−1∑
k=0

μ

R0 + kδ
∀ n ∈ N.

But then the divergence of the harmonic series implies that σ(R0+ nδ) tends to−∞,
contradicting the fact that this sequence is infinitesimal.

Let (Rn) be a sequence of positive numbers that diverges to +∞ and such that

lim
n→∞ Rn

(
σ(Rn + δ)− σ(Rn)

) = L.

Then we have

lim
n→∞ eRn

(
σ(Rn+δ)−σ(Rn)

)
= eL , (A.11)

wherewe are using the notation e+∞ := +∞ in the case L = +∞. The identity (A.10)
and a simple algebraic manipulation produce the identity

f (Rn + δ)− f (Rn)

e(h−ε)Rn = eRn
(
ε+σ(Rn )

) (
eδ

(
h+σ(Rn+δ)

)
eRn

(
σ(Rn+δ)−σ(Rn)

)
− 1

)
. (A.12)
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By (A.11) and the fact that σ(Rn + δ) is infinitesimal, the expression in brackets on
the right-hand side of this identity tends to

eδheL − 1,

which belongs to (0,+∞] because δh > 0 and L ∈ [0,+∞]. This, together with the
positivity of ε and the fact that σ(Rn) is infinitesimal, implies that the right-hand side
of (A.12) tends to +∞. ��
Proof of TheoremA.2 We can assume that h := hvol(F) > 0. Fix ε ∈ (0, h). We must
show that

htop(F) ≥ h − ε.

We use the following notation from the proof of Proposition A.1: Given x in the
universal cover Q̃ of Q and R ≥ 0, Bx (R) := Bx (R, F̃) denotes the closed forward
ball of radius R centered at x in Q̃, see (A.2), and Vx (R) := Vol(Bx (R)) denotes its
volume with respect to a Riemannian metric on Q which has been lifted to Q̃.

Fix x0 ∈ Q̃. By Proposition A.1, there exists R0(ε) such that

e(h+ε)R ≥ Vx0(R) ≥ e(h−ε)R ∀ R ≥ R0(ε). (A.13)

Fix some δ > 0. By Lemma A.3, we find a diverging sequence of positive numbers
(Rn) ⊂ [R0(ε),+∞) that satisfies

Vx0(Rn + δ/2)− Vx0(Rn) ≥ e(h−ε)Rn ∀ n ∈ N. (A.14)

The F-distance function dF̃ on Q̃ is not necessarily symmetric, because we are not
assuming F to be reversible, but we can symmetrize it and obtain the genuine distance
function

d̃ : Q̃ × Q̃ → [0,+∞), d̃(x, y) := dF̃ (x, y)+ dF̃ (y, x).

If θ ∈ [1,+∞) denotes the irreversibility ratio of F , then we have

d̃(x, y) ≤ (1+ θ) dF̃ (x, y) ∀ x, y ∈ Q̃. (A.15)

For every n ∈ N, we take a maximal subset Xn of the annulus Bx0(Rn + δ/2) \
Bx0(Rn) such that

d̃(x, x ′) > (2θ + 1) δ ∀ x, x ′ ∈ Xn, x �= x ′. (A.16)

Since Xn is maximal, for every point z ∈ Bx0(Rn+δ/2)\Bx0(Rn) there exists x ∈ Xn

such that d̃(x, z) ≤ (2θ + 1) δ. A fortiori, dF̃ (x, z) ≤ (2θ + 1)δ and hence

Bx0(Rn + δ/2) \ Bx0(Rn) ⊂
⋃
x∈Xn

Bx
(
δ(2θ + 1)

)
.
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If we set

w := sup
z∈Q̃

Vz
(
δ(2θ + 1)

)
> 0,

we therefore find

Vx0(Rn + δ/2)− Vx0(Rn) = Vol
(
Bx0(Rn + δ/2) \ Bx0(Rn)

) ≤ (card Xn) w

and hence, by (A.14),

card Xn ≥ 1

w
e(h−ε)Rn . (A.17)

Given x ∈ Xn , we denote by

γx : [0, dF̃ (x0, x)] → Q̃

an F-geodesic segment from x0 to x realizing the minimal distance dF̃ (x0, x) and
such that F̃ ◦ γ̇x = 1. Since Xn ⊂ Bx0(Rn + δ/2)\Bx0(Rn), we have

Rn ≤ dF̃ (x0, x) ≤ Rn + δ

2
. (A.18)

Now comes the crux of the proof: Consider the subset

Yn := {γ̇x (0) | x ∈ Xn} ⊂ Sx0 Q̃

of the F-unit sphere Sx0 Q̃ ⊂ Tx0 Q̃, See Fig11. Choose any metric d̃S on SQ̃ such
that the footpoint projection π̃ : SQ̃ → Q̃ is distance decreasing:

d̃S
(
v, v′

) ≥ d̃
(
π̃(v), π̃(v′)

) ∀ v, v′ ∈ SQ̃.

For instance, one can take d̃S
(
v, v′

) := d̃
(
π̃(v), π̃(v′)

) + d
(
v, v′), where d is any

metric on SQ̃.

Lemma A.4 The set Yn is (Rn, δ)-separated for the Finsler geodesic flow φ̃t of F on
the metric space (SQ̃, d̃S), and card Yn = card Xn.

Proof We first show that the surjective map Xn → Yn , x �→ γ̇x (0), that defines the
set Yn , is a bijection. Assume that x, x ′ ∈ Xn give the same point γ̇x (0) = γ̇x ′(0) of Yn .
We can assume that dF̃ (x0, x

′) ≤ dF̃ (x0, x). Then the fact that the vectors γ ′x (0) and
γ ′x ′(0) coincide implies that γx ′ is the restriction of γx to the interval [0, dF̃ (x0, x ′)].
The restriction of γx to the interval [dF̃ (x0, x ′), dF̃ (x0, x)] is a curve of F̃-length
dF̃ (x0, x)− dF̃ (x0, x

′) from x ′ to x , and by (A.18) we have
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Fig. 11 Manning’s construction

dF̃ (x, x
′) ≤ dF̃ (x0, x)− dF̃ (x0, x

′) ≤ δ

2
.

Therefore, (A.15) implies

d̃ (x ′, x) ≤ (θ + 1) dF̃ (x
′, x) ≤ 1

2
(θ + 1) δ.

Our choice (A.16) now implies that x = x ′.
By the definition of (Rn, δ)-separated, for the first assertion it suffices to show that

d̃S
(
φ̃Rn (y), φ̃Rn (y′)

) ≥ δ ∀ y �= y′ ∈ Yn .

Let x, x ′ be the points in Xn with y = γ̇x (0) and y′ = γ̇x ′(0). Then x = γx (dF̃ (x0, x))
and π̃

(
φ̃Rn (y)

) = γx (Rn), and so, by (A.18) again,

dF̃
(
π̃(φ̃Rn (y)), x

) = dF̃ (x0, x)− Rn ≤ δ

2
.

In the same way, dF̃
(
π̃(φ̃Rn (y′)), x ′

) ≤ δ/2. Together with (A.16), we can now
estimate

(2θ + 1) δ ≤ d̃ (x, x ′) ≤ d̃
(
x, π̃(φ̃Rn (y))

)+ d̃
(
π̃(φ̃Rn (y)), π̃(φ̃Rn (y′))

)
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+d̃ (
π̃(φ̃Rn (y′)), x ′

)

≤ d̃
(
π̃(φ̃Rn (y)), π̃(φ̃Rn (y′))

)+ (θ + 1)δ.

Hence

d̃S
(
φ̃Rn (y), φ̃Rn (y′)

) ≥ d̃
(
π̃(φ̃Rn (y)), π̃(φ̃Rn (y′))

) ≥ θ δ ≥ δ.

The proof of Lemma A.4 is complete. ��
We now consider the projection prS : SQ̃ → SQ induced by the covering map

pr : Q̃ → Q andwe look at the set prS(Yn). SinceYn ⊂ Sx0 Q̃, we have card prS(Yn) =
card Yn , and so by the previous lemma and by (A.17),

card prS(Yn) ≥
1

w
e(h−ε)Rn . (A.19)

As for Q̃, we symmetrize the asymmetric distance dF on Q and obtain the genuine
metric

d(x, y) := dF (x, y)+ dF (y, x),

and we choose a metric dS on SQ such that the projection π : (SQ, dS) → (Q, d)
is distance decreasing. Note that the covering map pr : (

Q̃, d̃
) → (Q, d) is a local

isometry. Therefore, there exists δ1 > 0 such that for all z, z′ ∈ Q̃ with d̃ (z, z′) ≤ δ1
we have d

(
pr(z), pr(z′)

) = d̃(z, z′).

Lemma A.5 For every δ > 0 smaller than δ1 the set prS(Yn) is (Rn, δ)-separated for
the Finsler geodesic flow φt of F on the metric space (SQ, dS).

Proof Let v = prS(y) and v′ = prS(y
′) be two different points of prS(Yn). Recall

from the previous proof that d̃
(
π̃(φ̃Rn (y)), π̃(φ̃Rn (y′))

) ≥ δ. This does not imply
that the same lower bound holds for d

(
π(φRn (v)), π(φRn (v′))

)
, because pr is only a

local isometry.
Since d̃

(
π̃(φ̃Rn (y)), π̃(φ̃Rn (y′))

) ≥ δ, we can look at

tδ := min
{
t ∈ [0, Rn] | d̃

(
π̃(φ̃t (y)), π̃(φ̃t (y′))

) = δ
}
.

Since prS ◦ φ̃t = φt ◦ prS and pr ◦ π̃ = π ◦ prS , we have pr ◦ π̃ ◦ φ̃t = π ◦ φt ◦ prS .
Hence, by the fact that δ < δ1 and by the local isometry property of pr,

δ = d̃
(
π̃(φ̃tδ (y)), π̃(φ̃tδ (y′))

) = d
(
pr ◦ π̃ ◦ φ̃tδ (y), pr ◦ π̃ ◦ φ̃tδ (y′)

)

= d
(
π(φtδ (v)), π(φtδ (v′))

)
.

For the dynamical metric (dS)Rn on SQ defined in (A.8) we therefore find

(dS)Rn (v, v
′) ≥ dS

(
(φtδ (v), φtδ (v′)

)
) ≥ d

(
π(φtδ (v)), π(φtδ (v′))

) = δ.
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Hence prS(Yn) is (Rn, δ)-separated. ��
Using a δ0 < δ1 as in Lemma A.5, the sequence Rn → ∞ satisfying (A.14) for

δ = δ0, and the estimate (A.19), and noting that w = supz∈Q̃ Vz(δ0(2θ + 1)) depends
only on δ0 but not on Rn , we can conclude:

htop(φ
t ) = sup

δ>0
lim sup
T→∞

1

T
log ν(T , δ)

≥ lim sup
T→∞

1

T
log ν(T , δ0)

≥ lim sup
Rn→∞

1

Rn
log

(
card prS(Yn)

)

≥ h − ε,

as we wished to show. ��
Remark A.6 Manning’s inequality htop(g) ≥ hvol(g) for Riemannian geodesic flows
has several improvements:

(1) LetMg ⊂ SQ be the set of minimal vectors, namely those vectors v for which the
lifts to Q̃ of the geodesic determined by v are shortest paths between any of their
points. The set Mg is invariant under the geodesic flow. Then htop(φg|Mg ) ≥
hvol(g), see [60, Theorem 9.6.7] and [55, Theorem 1.1]. This follows from a
modification of Manning’s proof of htop(g) ≥ hvol(g), and the same modification
of our proof above shows that this stronger inequality generalizes to regular Finsler
geodesic flows:

htop(φF |MF ) ≥ hvol(F).

(2) Manning also showed in [69] that htop(g) = hvol(g) if g has non-positive sectional
curvature. This hypothesis was weakened by Freire andMañé [51], who only need
to assume that the geodesic flow has no conjugate points. Manning’s equality
extends to Finsler geodesic flows if F has non-positive flag curvature, see [16,
Theorem 15]. On the other hand, it is not known if the improvement of Freire–
Mañé extends to Finsler geodesic flows. We thank Thomas Barthelmé for pointing
out this open problem.

A.4. A proof via Yomdin’s theorem

Given a C1 flow φt on a closed manifold M , define the volume growth of φ by

v(φ) := sup
S

lim sup
T→∞

1

T
logH(φT (S)).

Here the supremum is taken over all compact smooth submanifolds S of M of any
dimension andH(S)denotes theRiemannianvolumeof the submanifold Swith respect
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to the restriction of a fixedRiemannianmetric onM or, equivalently, the k-dimensional
Hausdorff measureHk(S) of S in the metric space M , where k = dim S. The Rieman-
nian metric is not specified, since v(φ) does not depend on its choice. Yomdin proved
in [96] that if the flow φ : R× M → M is smooth, i.e. C∞, then

htop(φ) ≥ v(φ). (A.20)

Actually, equality holds in (A.20), since by a result of Newhouse [77], htop(φ) ≤
v(φ) for C1+ε flows. Hence the volume growth v(φ) is another way to think of the
topological entropy of smooth flows.

Gabriel Paternain noticed in [80, p. 72] that Yomdin’s theorem yields a quick proof
of Mannings’ inequality for smooth Riemannian geodesic flows. We conclude this
appendix by showing that a variant of his argument applies to general smooth flows
on the total space of a fiber bundle and in particular implies Theorem A.2 in the case
of smooth Finsler metrics.

Consider the following setting: φt is an arbitrary smooth flow on the total space E
of a smooth fiber bundle

π : E → Q

over the closed n-dimensional manifold Q with typical fiber a closed manifold of
dimension k < n. The universal cover of Q is denoted by

pr : Q̃ → Q,

and the pull-back bundle of E by the map pr is denoted by

π̃ : Ẽ → Q̃.

Therefore, we have the commutative diagram of smooth maps

Ẽ

π̃
��

prE �� E

π

��
Q̃

pr �� Q

where prE is a covering map. We choose Riemannian metrics on Q, Q̃, E and Ẽ
such that the horizontal maps are local isometries and the vertical projections are
Riemannian submersions. The d-dimensional Hausdorff measures induced by these
metrics are denoted Hd . The flow φt on E lifts to a smooth flow φ̃t on Ẽ such that

prE ◦ φ̃t = φt ◦ prE .

We shall prove the following result:
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Proposition A.7 For any x̃0 in Q̃ let Ẽx̃0 := π̃−1(̃x0) be the fiber of Ẽ at x̃0 and
Ex0 := π−1(x0) the fiber of E at x0 := π̃ (̃x0). Then

lim sup
T→∞

1

T
logHk+1(π̃(φ̃([0, T ] × Ẽx̃0))

)

≤ max

{
0, lim sup

T→∞
1

T
logHk(φT (Ex0)

)}
, (A.21)

where on the left-hand side we are using the convention log 0 := −∞.

Postponing the proof, we specialize to the case k + 1 = n, and for x0 ∈ Q define
the volume entropy of φ by the left-hand side of (A.21):

hvol(φ; x0) := lim sup
T→∞

1

T
logHn(π̃(φ̃([0, T ] × Ẽx̃0))

)
. (A.22)

Note that the right-hand side indeed does not dependent on the lift x̃0 of x0 nor on the
Riemannian metric used to define the Hausforff measure. The set π̃(φ̃([0, T ] × Ẽx̃0))

is the set of points x̃ ∈ Q̃ for which the fiber Ẽx̃ can be reached in time ≤ T by
a φ̃-flow line starting at Ẽx̃0 . In the case of a Finsler geodesic flow, when E is an
Sn−1-bundle, this set is the forward ball Bx̃0(F̃, T ). Hence (A.22) generalizes (2.5).

The right-hand side of (A.21) is, by definition, a lower bound for the volume
growth v(φ) of φ. Together with Yomdin’s inequality (A.20) we obtain

hvol(φ; x0) ≤ v(φ) ≤ htop(φ).

We have shown the following result.

Theorem A.8 Assume that φ is a C∞-smooth flow on the compact fiber bundle E
over Q with fibers of dimension dim Q − 1. Then

htop(φ) ≥ hvol(φ; x) ∀ x ∈ Q.

In the case of Finsler geodesic flows, Theorem A.8 together with Proposition A.1
imply Theorem A.2. This proof is less satisfactory than the one in the previous para-
graphs, however: It needs the Finsler geodesic flow to be C∞-smooth and it is less
elementary, as it relies on Yomdin’s theorem whose proof is highly non-trivial. On the
other hand, this proof shows that the special features of Finsler geodesic flows which
are given by the underlying length functional and the triangle inequality are needed
only to guarantee that the limit defining the volume entropy exists and is independent
of the center of the balls, whereas for a general flow on the total space of a fiber bundle
the limit superior in definition (A.22) cannot be replaced by a limit and may depend
on the choice of x0. These special features of a Finsler geodesic flow are instead not
needed for proving that the volume entropy does not exceed the topological entropy.

Theorem A.8 in particular applies to Reeb flows on spherizations S∗Q and to
magnetic flows on SQ. In the latter situation, TheoremA.8 improves the first statement
in [26, Theorem D].



67 Page 82 of 99 A. Abbondandolo et al.

Proof of Proposition A.7 As it intertwines the flows φ̃t and φt , the projection prE maps
φ̃T (Ẽx̃0) bijectively to φ

T (Ex0) for every T , and since prE is a local isometry we have

Hk(φ̃T (Ẽx̃0)
) = Hk(φT (Ex0)

) ∀ T ∈ R. (A.23)

By the area formula, we have

Hk+1(φ̃([0, T ] × Ẽx̃0)
) ≤

∫

[0,T ]×Ẽx̃0

Jψ(t, ξ) dt dξ (A.24)

where Jψ(t, ξ) := det
(
dψ(t, ξ)T dψ(t, ξ)

) 1
2 is the Jacobian of the map

ψ : [0, T ] × Ẽx̃0 → Ẽ, ψ(t, ξ) := φ̃t (ξ),

and dξ denotes the Riemannian volume form on the compact manifold Ẽx̃0 . If X
denotes the vector field on Ẽ generating the flow φ̃t and ψ t is the map

ψ t : Ẽx̃0 → Ẽ, ψ t (ξ) := ψ(t, ξ),

we easily see that the symmetric linear endomorphism

dψ(t, ξ)T dψ(t, ξ) : R× Tξ Ẽx̃0 → R× Tξ Ẽx̃0

has the form

dψ(t, ξ)T dψ(t, ξ) =
( |X(ψ(t, ξ))|2 ∗

∗ dψ t (ξ)T dψ t (ξ)

)
.

By the Schur determinant identity, this implies the bound

Jψ(t, ξ) = det
(
dψ(t, ξ)T dψ(t, ξ)

) 1
2

≤ |X(ψ(t, ξ))| det(dψ t (ξ)T dψ t (ξ)
) 1
2 ≤ c Jψ t (ξ),

where c is the supremum norm of the vector field X , which is bounded being the lift
of a vector field on the compact manifold E . Together with (A.24) and using the area
formula for injective maps, we find

Hk+1(φ̃([0, T ] × Ẽx̃0)
) ≤ c

∫ T

0

∫

Ẽx̃0

Jψ t (ξ) dξ dt = c
∫ T

0
Hk(φ̃t (Ẽx̃0)

)
dt,

and hence

lim sup
T→∞

1

T
logHk+1(φ̃([0, T ] × Ẽx̃0)

) ≤ lim sup
T→∞

1

T
log

∫ T

0
Hk(φ̃t (Ẽx̃0)

)
dt .
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It is easy to see that if f is a positive function on [0,+∞) then

lim sup
T→∞

1

T
log

∫ T

0
f (t) dt ≤ max

{
0, lim sup

T→∞
1

T
log f (T )

}
,

see [80, Lemma 3.24.2], so using also (A.23) we obtain the bound

lim sup
T→∞

1

T
logHk+1(φ̃([0, T ] × Ẽx̃0)

) ≤ max

{
0, lim sup

T→∞
1

T
logHk(φT (Ex0)

)}
.

Thedesired bound (A.21) now follows from the fact that the projection π̃ is 1-Lipschitz,
by our choice of the Riemannian metrics. ��

Remark A.9 If one replaces the inequality (A.24) in the above proof by the equality

∫

Ẽ
H0(ψ−1({ξ}) dHk+1(ξ) =

∫

[0,T ]×Ẽx̃0

Jψ(t, ξ) dt dξ

which is given by the area formula, one gets the more precise bound

lim sup
T→∞

1

T
log

∫

Ẽ
H0(ψ−1({ξ}) dHk+1(ξ) ≤ max

{
0, lim sup

T→∞
1

T
logHk(φT (Ex0)

)}
.

For k + 1 = n, this inequality and the argument leading to Theorem A.8, applied
to Q instead of the universal cover Q̃, yield the bound

lim sup
T→∞

1

T
log

∫

Q
nT (x0, x) dHn(x) ≤ htop(φ), (A.25)

where nT (x0, x) denotes the number of φ-flow lines of time at most T from Ex0 to Ex .
For Finsler geodesic flows, nT (x0, x) is the number of F-geodesics arcs from x0 to x ,
and (A.25) is a Finsler generalization of [80, Corollary 3.28].

Appendix B. From Riemannian geodesic flows to Reeb flows

In this appendix we first recall from a historical and geometric perspective how Finsler
and Reeb flows are successive generalizations of Riemannian geodesic flows. We then
give for each of the four circles below at least two results on Riemannian geodesic
flows that stop to hold exactly at 1© or at 2© or at 3©, or extends all the way to Reeb
flows ( 4©).

4© {Reeb} 3©
� {irreversible Finsler} 2©

� {reversible Finsler} 1©
� {geodesic} (B.1)
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B.1. Reeb flows on spherizations as a generalization of Riemannian geodesic flows

Fix an n-dimensional manifold Q. Consider a smooth star field along Q: At every
point q ∈ Q there is a set Sq Q ⊂ TqQ that is the smooth boundary of a subset DqQ
of TqQ that is strictly starshaped with respect to the origin of TqQ, and Sq Q varies
smoothly with q. The star field {Sq Q}q∈Q can be used to define the length of oriented
curves in Q: For a smooth curve γ : [a, b] → Q with non-vanishing derivative, set

length(γ ) :=
∫ b

a
�(γ̇ (t)) dt

where �(γ̇ (t)) = s if 1
s γ̇ (t) ∈ Sγ (t)Q. The number length(γ ) does not change under

orientation preserving reparametrisations of γ . Given q, q ′ ∈ Q set

dS(q, q
′) := inf {length(γ )}

where the infimum is taken over all curves as above from q to q ′. The function dS is
non-degenerate in the sense that dS(q, q ′) = 0 if and only if q = q ′. Furthermore, dS
satisfies the ordered triangle inequality

dS(q, q
′′) ≤ dS(q, q

′)+ dS(q
′, q ′′) ∀ q, q ′, q ′′ ∈ Q.

The function dS is symmetric if and only if each star Sq Q is symmetric, that is−Sq Q =
Sq Q for all q ∈ Q. If each Sq Q is strictly convex, then there are unique shortest curves
between sufficiently nearby points, see e.g. [15, §6.3].

A star field {Sq Q} as above is called a Finsler structure if each DqQ is strictly
convex, and a Finsler structure is called reversible if each Sq Q is symmetric, and irre-
versible otherwise. A reversible Finsler structure is aRiemannian structure if each Sq Q
is an ellipsoid, i.e., the level set of an inner product on TqQ.

Riemannian structureswere introduced in 1854 byRiemann in his Habilitationsvor-
trag [84]. BothBerger [18, p. 708] andChern [30] pointed out thatwhat Riemann really
had in mind are Finsler structures. However, from his text2 and given that Riemann’s
main conceptual point was to do intrinsic measurements, that were all based on length
measurements, one may at least as well argue that what he meant is “reversible star
field geometry”, see also Spivak [92, p. 167 and p. 202]. In contrast to Riemannian
geometry, Finsler geometry developed only slowly, see [15], and “star field geometry”
developed only in the setting of Lorentzian and semi-Riemannian geometry (and their
Finsler generalizations), in which however the stars Sq Q are not compact.

If each DqQ is strictly convex, one can pass from T Q to T ∗Q by the Legendre
transform. In geometric terms, each convex body DqQ ⊂ TqQ is replaced by its dual

2 In Sect. II.1 of his text, page 259 of [84], he writes: “Unter diesen Annahmen wird das Linienelement
eine beliebige homogene Function ersten Grades der Grössen dx sein können, welche ungeändert bleibt,
wenn sämmtliche Grössen dx ihr Zeichen ändern”. He then readily specializes to the convex (Finsler)
case, mentioning just an example, and then restricts to Riemannian metrics, since “die Untersuchung dieser
allgemeinern Gattung würde zwar keine wesentlich andere Principien erfordern, aber ziemlich zeitraubend
sein”.
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Fig. 12 Stars in Tq Q and T ∗q Q

body

D∗q Q :=
{
(q, p) ∈ T ∗q Q | p(v) ≤ 1 for all v ∈ DqQ

}

in T ∗q Q. The dual body D∗q Q is strictly convex, or is symmetric, or is an ellipsoid, if
and only if DqQ has this property, cf. Fig. 12.

In more dynamical terms, we associate to the field of strictly convex disks {DqQ}
and its dual field {D∗q Q} the functions

F : T Q → R, F∗ : T ∗Q → R

that are homogenous of degree one in each fiber and satisfy

F−1(1) = SQ, (F∗)−1(1) = S∗Q.

The Legendre transform

L : T Q → T ∗Q, (q, v) �→
(
q, ∂v

( 1
2 F

2(q, v)
))

is a diffeomorphism that maps fibers to fibers and DqQ to D∗q Q. This diffeomorphism
conjugates the Finsler geodesic flow of F on SQ with the Hamiltonian flow of F∗
restricted to S∗Q,

L ◦ φt
F (q, v) = φt

F∗ ◦ L(q, v) ∀ t ∈ R, ∀ (q, v) ∈ SQ.

For strictly convex starfields, one can therefore freely switch between Finsler geodesic
flows on tangent bundles and co-Finsler geodesic flows on cotangent bundles.
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For non-convex star fields {Sq Q} along Q there is no Legendre transform.However,
a smooth star field {S∗q Q} in T ∗Q is the same thing as a Reeb flow on the spheriza-
tion S∗Q of Q, as we shall recall below. We conclude that while Riemann’s concept
of a star field geometry in T Q led to nothing, the same picture in T ∗Q describes the
main example of contact geometry and Reeb flows, a by now huge and thriving theory!
This is one more instance for the fact that it is always worthwhile and often crucial to
work in T ∗Q instead of T Q.

The flows φH on S∗(H) are Reeb flows. For every function H : T ∗Q → R that is
fiberwise homogenous of degree one and smooth and positive off the zero-section we
consider the regular hypersurface S∗(H) = H−1(1) in T ∗Q and the restriction φt

H
of the Hamiltonian flow of H to S∗(H). The flows φt

H live on different spaces. To
have a class of flows on one manifold, we consider the spherization, or positive pro-
jectivization, of the cotangent bundle

S∗Q := (
T ∗Q \ Q)

/ ∼ where (q, p) ∼ (q, sp) for s > 0.

While the 1-form λ = ∑
j p j dq j on T ∗Q does not descend to this quotient, the

kernel of λ does descend. The resulting hyperplane field ξcan is the canonical contact
structure on S∗Q. If for every function H as above we abbreviate λH = λ|S∗(H) and
ξH = ker(λH ), we have that (S∗(H), ξH ) is diffeomorphic to (S∗Q, ξcan ) under the
map (q, p) �→ [(q, p)].

We wish to show that the set of flows φt
H is in bijection with the set of Reeb flows

on (S∗Q, ξcan ). For this we first recall that φt
H is the Reeb flow of the contact form λH

on (S∗(H), ξH ), see [48, Lemma 4.2] for the short proof. To identify the Reeb flows
of the contact forms λH with the Reeb flows on (S∗Q, ξcan ), we fix a representative
(S∗(H0), ξH0) of (S

∗Q, ξcan ), and for an arbitrary H consider the diffeomorphism
�H : S∗(H)→ S∗(H0) given by fiberwise radial projection,

�H (q, p) =
(
q,

H(q, p)

H0(q, p)
p

)
.

A computation shows that the differential of �H takes the Reeb vector field of λH to
the Reeb vector field of H0

H λH0 . Therefore, the map �H conjugates the Reeb flows of

λH and of H0
H λH0 . In conclusion, each Reeb flow on (S∗Q, ξcan ) corresponds to the

Reeb flow of f λH0 on (S
∗(H0), ξH0) for a positive smooth function f on S∗(H0), and

this Reeb flow is conjugate to the Hamiltonian flow φt
H on S∗(H), where H = H0/ f̃

and f̃ is the extension of f to T ∗Q \ Q that is fiberwise homogenous of degree zero.
For a Hamiltonian H as above, the Holmes–Thompson volume is defined as

volHTH (Q) = 1

n!ωn

∫

D∗(H)

ωn,

and for a contact form α on S∗Q we defined the contact volume in Sect. 1.4 as

volα(S
∗Q) =

∫

S∗Q
α ∧ (dα)n−1.
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Under the above identification of (S∗(H), λH ) with (S∗Q, α) we obtain, using λH =
λ|S∗(H) and dλ = ω and Stokes’ theorem,

∫

S∗Q
α ∧ (dα)n−1 =

∫

S∗(H)

λH ∧ (dλH )
n−1 =

∫

D∗(H)

ωn .

Therefore,

volα(S
∗Q) = n!ωn volHTH (Q).

B.2. A few generalizations of Riemannian results to Finsler geodesic flows and
Reeb flows

Given a result in Riemannian geometry or dynamics, it is interesting to seewhether this
result extends to reversible or even irreversible Finslermetrics, or even toReebflows. In
this way it becomes clear to which geometry the Riemannian result belongs properly.
In this section we state a few such results from dynamics. For (non-)extensions of
results from Riemannian geometry, involving for instance curvatures and spectra, we
refer to [16, 17, 32, 93].

1© (i) Riemannian 2-tori without conjugate points are flat, [61], but there are many
reversible and irreversible Finsler 2-tori without conjugate points that are not flat [27,
§33].

(ii) There is (up to scaling) only one Riemannian metric on RP
2 all of whose

geodesics are simple closed and of the same length, [56], but there are many such
Finsler metrics on RP

2, among them reversible ones, see [91] and also [28].
2© (i) Every Riemannian 2-sphere carries infinitely many geometrically distinct

closed geodesics [14]. This result extends to reversible Finsler metrics [41], but not to
all Finsler metrics: Katok [63] gave a simple example of a Finsler metric on S2 with
only two geometrically distinct geodesics (where the reverse geodesic is counted, since
it has different period).

(ii) For reversible Finsler geodesic flows on S2 that are periodic all orbits have the
same period [57], but there exist irreversible periodic Finsler geodesic flows on S2

whose orbits have different minimal periods, [98, p. 143].
3© (i) For many compact manifolds Q (namely so-called essential ones and all

surfaces), there exists a constant C > 0 such that every normalized Finsler metric F
on Q has a closed geodesic of F-length at most C , cf. Sect. 1.6. This was shown
by Loewner, Pu, Croke, and Gromov in the Riemannian case and was extended to
the Finsler case by Álvarez Paiva–Balacheff–Tzanev [6]. The generalization of length
to closed orbits of Reeb flows is the period

∫
γ
α. It is shown in [2, 88] that every

spherization S∗Q of a compact manifold Q admits for every C > 0 a normalized
contact form α whose Reeb flow has periodic orbits, but none of period ≤ C .

(ii) Theorems 1.2 and 1.1 of this paper show that there is a positive lower bound for
the topological entropy of all normalized Finsler geodesic flows on compact surfaces
of genus at least two, but not for Reeb flows.
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4© (i) Most of the existence and multiplicity results for closed geodesics on com-
pact Riemannian manifolds Q extend to Reeb flows on spherizations. For instance, the
isomorphism in [4] implies that every Reeb flow on S∗Q has a closed orbit in every
component of the free loop space �Q. Also the Gromoll–Meyer theorem, according
to which every Riemannian metric has infinitely many prime closed geodesics pro-
vided that the Betti numbers of �Q are unbounded [58], extends to Reeb flows on
spherizations [73].

(ii) The exponential growth of the fundamental group of a compact manifold Q or
of the rank of the homology of the based loop space of a simply connected compact
manifold Q implies that the topological entropy of every Riemannian geodesic flow
on Q is positive, see [42] and [80, §5.3]. This result generalizes to all Reeb flows on
the spherization S∗Q, see [50, 68], and in fact to time-dependent Reeb flows, namely
contact isotopies that are everywhere transverse to the contact distribution ξ , see [36].

(iii) According to the Bott–Samelson theorem [23, 90], the cohomology ring of a
Riemannian manifold all of whose geodesics are simple closed and of equal length
must be generated by one element. Finer versions are proven in [19, Chapter 7]. All
these results hold true for Reeb flows on spherizations, even time-dependent ones, see
[37, 48].

Appendix C. Properties of the norm growth

Given a C1-diffeomorphism φ of a compact manifold M , we define the two real
numbers

�+(φ) := lim
n→+∞

1

n
log ‖dφn‖∞ ,

�(φ) := max
{
�+(φ), �+(φ−1)

}
.

Here ‖ · ‖∞ denotes the supremum norm induced by the operator norm on endo-
morphisms of T M that is determined by any Riemannian metric on M . The limit
defining �+ exists because the sequence (log ‖dφn‖∞) is subadditive. Clearly, �+
and � do not depend on the choice of the Riemannian metric on M .

For a C1-flow φ = {φt }t∈R, we set �+(φ) := �+(φ1) and �(φ) := �(φ1), or
equivalently

�+(φ) := lim
t→+∞

1

t
log ‖dφt‖∞ ,

�(φ) := lim
t→+∞

1

t
logmax

{‖dφt‖∞, ‖dφ−t‖∞
}
.

The following properties of�+ and� are analogous to those of the topological entropy,
cf. [60, Prop. 3.1.7], except for (5) (the topological entropy of a product is the sum
of the topological entropies of the factors). The proofs are somewhat easier, since in
contrast to the case of topological entropy, which is defined in metrical terms, we can
use differential calculus.
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Proposition C.1 Let φ be a C1-diffeomorphism of the compact manifold M. The norm
growths �+ and � have the following properties.

(1) (Conjugacy invariance) If ψ is another C1-diffeomorphism of M, then

�+(ψ−1φψ) = �+(φ), �(ψ−1φψ) = �(φ).

(2) (Monotonicity) If K is a compact submanifold of M that is invariant under φ,
then

�+(φ|K ) ≤ �+(φ), �(φ|K ) ≤ �(φ).

(3) (Decomposition) If M = ⋃m
i=1 Ki , where K1, . . . , Km are compact φ-invariant

submanifolds, then

�+(φ) = max
1≤i≤m �+(φ|Ki ), �(φ) = max

1≤i≤m �(φ|Ki ).

(4) (Elementary time change) �+(φm) = m �+(φ) for all m ∈ N and �(φm) =
|m|�(φ) for all m ∈ Z. For a flow,

�+
({φst }t∈R

) = s �+
({φt }t∈R

) ∀ s ≥ 0, �
({φst }t∈R

) = |s|�({φt }t∈R
) ∀ s ∈ R.

(5) (Product) If φ = φ1×φ2 on M1×M2, then �+(φ) = max {�+(φ1), �+(φ2)} and
�(φ) = max {�(φ1), �(φ2)}.

Proof Properties (2) and (4) are clear, and (1) follows from the chain rule.
For (3) it suffices to show that �+(φ) ≤ max1≤i≤m �+(φ|Ki ) in view of (2). For

each n ∈ N choose in ∈ {1, . . . ,m} such that

‖dφn‖∞ = ‖(dφ|Kin
)n‖∞.

There exists j ∈ {1, . . . ,m} such that in = j for infinitely many n. For such a j it
holds that �+(φ) = �+(φ j ). The result for � follows.

For (5), given norms ‖ · ‖1 on T M1 and ‖ · ‖2 on T M2, we choose the norm
‖(v1, v2)‖ = max{‖v1‖1, ‖v2‖2} on T M . With this choice,

‖dφn‖∞ = max
{‖dφn

1‖∞, ‖dφn
2‖∞

} ∀ n ∈ N.

The equality �+(φ) = max{�+(φ1), �+(φ2)} now follows by arguing as in the proof
of (3) for m = 2. The result for � follows. ��

The following result improves property (4) above. It is an analogue of the time
change estimate for the topological entropy in [79].

Proposition C.2 Let X be a smooth vector field on a compact manifold M, and let
f : M → R be a positive smooth function. Then

�+(φ f X ) ≤ ‖ f ‖∞ �+(φX ), �(φ f X ) ≤ ‖ f ‖∞ �(φX ).
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Proof Fix some positive number γ > �+(φX ). By the definition of �+(φX ) and the
continuity of t �→ ‖φt

X‖∞, there exists a positive number Cγ such that

‖dφt
X‖∞ ≤ Cγ e

γ t ∀ t ≥ 0. (C.1)

The smooth function F : R× M → R that is defined by

∂t F(t, p) = f (φt
f X (p)), F(0, p) = 0, ∀ (t, p) ∈ R× M,

is the time change function relating the two flows:

φt
f X (p) = φ

F(t,p)
X (p).

We have

F(t, p) ≤ ‖ f ‖∞ t ∀ (t, p) ∈ [0,+∞)× M,

and from (C.1) we find

∥∥dφF(t,p)
X (p)

∥∥ ≤ Cγ e
γ ‖ f ‖∞ t ∀ (t, p) ∈ [0,+∞)× M . (C.2)

Here and in the following equations, d denotes differentiation with respect to the
spatial variables. By differentiating the identity

∂t F(t, p) = f
(
φ
F(t,p)
X (p)

)
,

we obtain

∂t dF(t, p) = d f
(
φ
F(t,p)
X (p)

) ◦ dφF(t,p)
X (p)

+ d f
(
φ
F(t,p)
X (p)

)[
X(φF(t,p)

X (p))
]
dF(t, p)

= d f
(
φ
F(t,p)
X (p)

) ◦ dφF(t,p)
X (p)

+ d f
(
φt
f X (p)

)[
X(φt

f X (p))
]
dF(t, p)

= d f
(
φ
F(t,p)
X (p)

) ◦ dφF(t,p)
X (p)

+ 1

f (φt
f X (p))

d

dt
f (φt

f X (p)) dF(t, p).

(C.3)

Let v ∈ TpM be a vector of norm one and set

u(t) := dF(t, p)[v], α(t) := f (φt
f X (p)).

From (C.3) and (C.2) we find

u′(t)− α′(t)
α(t)

u(t) = d f
(
φ
F(t,p)
X (p)

) ◦ dφF(t,p)
X (p)[v]
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≤ Cγ ‖d f ‖∞ eγ ‖ f ‖∞ t ∀ t ≥ 0.

Multiplying both sides of this inequality by 1/α(t), which is bounded from above by
1/min f , we obtain

d

dt

u(t)

α(t)
≤ Cγ ‖d f ‖∞

α(t)
eγ ‖ f ‖∞ t ≤ Cγ ‖d f ‖∞

min f
eγ ‖ f ‖∞ t ∀ t ≥ 0.

Since u(0) = 0, integration on the interval [0, t] and multiplication by α(t), which is
bounded from above by ‖ f ‖∞, yields

u(t) ≤ α(t)
Cγ ‖d f ‖∞
min f

∫ t

0
eγ ‖ f ‖∞ s ds ≤ Cγ ‖d f ‖∞

γ min f
eγ ‖ f ‖∞ t ∀ t ≥ 0.

Recalling that u(t) = dF(t, p)[v] where v is an arbitrary unit tangent vector at p, we
have proven the bound

‖dF(t, p)‖ ≤ C ′γ eγ ‖ f ‖∞ t ∀ (t, p) ∈ [0,+∞)× M, (C.4)

where C ′γ = Cγ ‖d f ‖∞
γ min f . Thanks to the identity

dφt
f X (p) = dφF(t,p)

X (p)+ X
(
φ
F(t,p)
X (p)

)
dF(t, p),

(C.2) and (C.4) imply

‖dφt
f X‖∞ ≤

(
Cγ + ‖X‖∞C ′γ

)
eγ ‖ f ‖∞ t ∀ t ≥ 0,

and hence

�+(φ f X ) = lim
t→∞

1

t
log ‖dφt

f X‖∞ ≤ γ ‖ f ‖∞.

Since γ is an arbitrary number that is larger than �+(φX ), we deduce the desired
bound

�+(φ f X ) ≤ ‖ f ‖∞ �+(φX ).

The analogous bound for � immediately follows. ��

Appendix D. Dynamically trivial deformations of Finsler metrics

The aim of this section is to show that it is always possible to deform any given
regular Finsler metric on a closed manifold of dimension at least two into a new
Finsler metric which is not isometric to the original one but whose geodesic flow is
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nevertheless conjugate to the one of the original metric by a smooth time-preserving
conjugacy.

Let Q be a closed manifold and λ = ∑
j p j dq j be the canonical Liouville one-

form on T ∗Q. A diffeomorphism ϕ : T ∗Q → T ∗Q is a symplectomorphism, i.e.
preserves the symplectic form dλ, if and only if the one-form ϕ∗λ−λ is closed. When
this form is exact, ϕ is called an exact symplectomorphism.

Any diffeomorphism θ : Q → Q lifts to an exact symplectomorphism T ∗θ of T ∗Q
by setting

T ∗θ(q, p) := (
θ(q), dθ(q)−∗[p]),

where the symbol −∗ denotes the inverse of the adjoint. Indeed, T ∗θ preserves the
Liouville form λ. Actually, every diffeomorphism of T ∗Q preserving λ is the lift
of some diffeomorphism of Q, see for instance Proposition 2.1 and Homework 3.3
in [29].

Therefore, the diffeomorphism group of Q embeds naturally into the group of exact
symplectomorphisms of T ∗Q. The latter group is much larger, though. For instance,
any symplectomorphism ϕ : T ∗Q → T ∗Q which is compactly supported is exact:
The exactness of ϕ∗λ − λ is equivalent to the fact that this closed one-form has
vanishing integral on any closed curve in T ∗Q, and if ϕ is compactly supported this is
certainly true since every closed curve in T ∗Q is freely homotopic to a closed curve
taking values in the complement of any given compact subset of T ∗Q. Producing
non-trivial compactly supported symplectomorphisms of T ∗Q is very easy, as one
can integrate the vector field that is induced by a compactly supported Hamiltonian
function. Actually, the time-one map of any possibly time-dependent Hamiltonian
vector field with globally defined flow is exact even without assuming the support to
be compact. Indeed, denoting by Xt theHamiltonian vector field of the time-dependent
function Ht and by φt

H its flow, we compute with the help of Cartan’s identity

d

dt
(φt

H )
∗λ = (φt

H )
∗ (

ıXt dλ+ dıXtλ
) = (φt

H )
∗d

(
ıXtλ− Ht

)

and hence

(φ1
H )
∗λ− λ = d

∫ 1

0

(
ıXtλ− Ht

) ◦ φt
H dt .

If Q has non-trivial de-Rham cohomology in degree one, then any closed one-form η

on Q that is not exact induces a symplectomorphism

T ∗Q → T ∗Q, (q, p) �→ (q, p + η(q)),

which is symplectically isotopic to the identity but not exact.
Recall from Sect. B.1 that to a fiberwise starshaped hypersurface S ⊂ T ∗Q we

associate the Reeb flow φα of α := λ|S , namely the flow generated by the vector field
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Rα defined by

dα(Rα, ·) = 0, α(Rα) = 1.

Equivalently, φα is the restriction to S of the Hamiltonian flow on T ∗Q of the function
T ∗Q → R that is fiberwise positively homogeneous of degree 1 and equal to 1 on S.

The next result tells us that the Reeb dynamics on fiberwise starshaped hypersur-
faces does not change when we transform them by exact symplectomorphisms.

Proposition D.1 Let Q be a closed manifold, S a fiberwise starshaped hypersurface
of T ∗Q and ϕ : T ∗Q → T ∗Q an exact symplectomorphism such that S′ := ϕ(S) is
also fiberwise starshaped. Then there exists a diffeomorphism ψ : S → S′ such that

ψ∗ (λ|S′) = λ|S .

In particular, the diffeomorphism ψ is a smooth time-preserving conjugacy between
the Reeb flows of S and S′.

The above proposition is proven at the end of this appendix. We now discuss its
consequences concerning Finsler geodesic flows. Let F be a regular Finsler metric
on Q and denote by S∗(F) ⊂ T ∗Q the corresponding unit cotangent sphere bundle,
which we here consider as the domain of the geodesic flow of F . The push-forward
θ∗F of this Finsler metric by a diffeomorphism θ : Q → Q is another Finsler metric
on Q. By construction, the Finsler manifolds (Q, F) and (Q, θ∗F) are isometric, and
their geodesic flows are smoothly conjugate. Indeed, the cotangent lift T ∗θ restricts
to a diffeomorphism from S∗(F) to S∗(θ∗F) conjugating the two geodesic flows.
Diffeomorphisms of Q induce “metrically trivial deformations” of F .

Now consider a more general exact symplectomorphism ϕ : T ∗Q → T ∗Q. If ϕ
is C2-close to the identity, then the image of S∗(F) under ϕ is still fiberwise strictly
convex and hence can be seen as the unit cotangent sphere bundle of another Finsler
metric F ′:

ϕ(S∗(F)) = S∗(F ′).

The fact that ϕ is volume preserving implies that the Finsler metrics F and F ′ have
the same Holmes–Thompson volume. By Proposition D.1 above, the geodesic flows
of the Finsler metrics F and F ′ are conjugate by a smooth time-preserving conjugacy.
Therefore, the exact symplectomorphism ϕ induces a “dynamically trivial deforma-
tion” F ′ of F . However, F and F ′ need not be isometric. For instance, F could be a
Riemannian metric, meaning that S∗(F) is a field of centrally symmetric ellipsoids.
In the special case in which ϕ is the cotangent lift of a diffeomorphism of Q, ϕ maps
fibers into fibers and acts linearly on them, so ϕ(S∗(F)) is still a field of centrally
symmetric ellipsoids and the metric F ′ is still Riemannian. But for a more general
exact symplectomorphism ϕ, there is no reason why ϕ(S∗(F)) should still be a field
of ellipsoids, so the new Finsler metric F ′ is in general not Riemannian.

Let F again be an arbitrary regular Finsler metric on Q and let q be a point in Q.
By acting just by diffeomorphisms of Q, we obtain Finsler metrics F ′ on Q which
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are isometric to F and whose unit sphere S∗q (F ′) at q is the image of some S∗q ′(F)
by some linear isomorphism. Therefore, all the possible cotangent unit spheres at q
of Finsler metrics which are constructed in this way belong to the finite dimensional
family of sets

{
L(S∗q ′(F)) | q ′ ∈ Q, L : Tq ′Q → TqQ linear isomorphism

}
.

Instead, by acting by more general exact symplectomorphisms, we can get a new
Finsler metric F ′ whose geodesic flow is still conjugate to the one of F but such that
S∗q (F ′) is an arbitrary convex hypersurface which is sufficiently close to S∗q (F). When
S∗q (F ′) does not belong to the above finite dimensional family, the metric F ′ cannot
be isometric to F .

Let us prove this fact. Let S′q be a strictly convex hypersurface in T ∗q Q. Using a
cotangent local chart, we identify π−1(U ), where U is a neighborhood of q in Q and
π : T ∗Q → Q denotes the footpoint projection, with T ∗Rn = R

n × (Rn)∗ in such
a way that T ∗q Q is identified with {0} × (Rn)∗. Then both S∗q (F) and S′q are subsets
of {0} × (Rn)∗ ∼= (Rn)∗. Let ξ : (Rn)∗ → (Rn)∗ be a compactly supported smooth
vector field whose flow at time one maps S∗q (F) to S′q (one easily achieves this by a
radial vector field). Consider the Hamiltonian function

H(q, p) := χ(q) 〈ξ(p), q〉, (q, p) ∈ R
n × (Rn)∗,

where 〈·, ·〉 denotes the duality pairing and χ : R
n → R is a smooth compactly

supported function taking the value 1 near 0. This function extends to a compactly sup-
ported smooth function on T ∗Q and the corresponding Hamiltonian flow leaves T ∗q Q
invariant and restricts to the flow of ξ on it. Therefore, denoting by ϕ : T ∗Q → T ∗Q
the time-one map of this Hamiltonian flow, we obtain an exact symplectomorphism ϕ

such that ϕ(S∗q (F)) = S′q . If S′q is C3-close to S∗q (F), meaning that

S′q = {e f (p) p | p ∈ S∗q (F)}

for some C3-small function f on S∗q (F), then the vector field ξ can be chosen to be
C3-small, the Hamiltonian vector field of H isC2-small and hence ϕ isC2-close to the
identity. Under this closeness assumption, ϕ(S∗(F)) is fiberwise strictly convex and
hence is the unit cotangent sphere bundle of a Finsler metric F ′ such that S∗q (F ′) = S′q .

Note that if the Finsler metric F is reversible and S′q is centrally symmetric, then
the dynamically equivalent Finsler metric F ′ as above can be chosen to be reversible
by requiring ξ to be an odd map.

Summarizing: Given any regular (reversible) Finsler metric F , we obtain a large
family of non-isometric (reversible) Finsler metrics F ′ having the same Holmes–
Thompson volume and whose geodesic flows are smoothly conjugate to the one of F ;
F ′ can be chosen to be non-Riemannian even if F is Riemannian. The topological
entropy, the volume growth used in Appendix A.4, the norm growth fromAppendix C,
the length spectrum and all the dynamical invariants of F ′ coincide with those of F .
If one uses exact symplectomorphisms that are isotopic to the identity, then also the
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marked length spectrum is preserved, and if one starts with a reversible Finsler met-
ric F of negative flag curvature and deforms it to a reversible Finsler metric F ′ that
still has negative flag curvature, then also the volume entropy of F and F ′ agrees,
since for Finsler metrics of negative flag curvature the volume entropy is equal to the
topological entropy by the equality case in Manning’s theorem, see [16, Theorem 15].
One deformation to Finsler metrics with equal marked length spectrum and equal vol-
ume entropy was constructed in [32] for the Riemannian metrics of constant curvature
on hyperbolic surfaces. Our discussion here shows that this is a general phenomenon
and is a manifestation of the fact that a neighborhood of the identity on the group of
exact symplectomorphisms of T ∗Q can transform a Finsler metric in ways in which
diffeomorphisms of Q cannot.

Proof of Proposition D.1 The proof is given in [3, §8] for the case of convex hypersur-
faces in a Hilbert space. That proof is readily adapted to our situation. We give the
proof for the reader’s convenience.

Since the symplectomorphism ϕ is assumed to be exact, there exists a smooth
function h : T ∗Q → R such that

ϕ∗λ = λ+ dh.

We abbreviate α = λ|S and α′ = λ|S′ . The pull-back of α′ to S, that is the 1-form

(ϕ|S)∗(α′) = α + dh|S, (D.1)

is a contact form on S, and its Reeb vector field is

ϕ∗(Rα′) = Rα+dh|S .

Since α and α + dh|S have the same differential, we have

Rα+dh|S = f Rα (D.2)

for a nowhere vanishing function f on S. If Y = p ∂p denotes the canonical Liouville
vector field on T ∗Q, the identity ıY dλ = λ implies that for every x ∈ S the one-form
(ıRαdλ)(x), whose kernel is the tangent space Tx S, is negative on tangent vectors
which are pointing outwards, i.e. belong to the half-space containing Y (x). Similarly,
ıRα′dλ is negative on outward pointing vectors based at S′. By the identity

ϕ∗(ıRα′dλ) = ıϕ∗(Rα′ )ϕ
∗(dλ) = ıRα+dh|S dλ

and by the fact that the differential of ϕ maps outward pointing vectors based at S to
outward pointing vectors based at S′, we deduce that the above one-form is negative
on outward pointing vectors based at S. Since also ıRαdλ is negative on these vectors,
the function f appearing in (D.2) is everywhere positive.

By applying the 1-formα+dh|S to (D.2)we obtain 1 = f
(
1+dh(Rα)

)
. Therefore,

1+ t dh(Rα) > 0 ∀ t ∈ [0, 1]. (D.3)
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We now apply Moser’s homotopy method: We look for a smooth time-dependent
vector field Xt on S of the form Xt = χt Rα , where χt is a family of functions on S,
such that the flow ηt of Xt satisfies

η∗t (α + t dh) = α ∀ t ∈ [0, 1]. (D.4)

Since η∗0 α = α, this identity is equivalent to

d

dt

(
η∗t (α + t dh)

) = 0 ∀ t ∈ [0, 1]. (D.5)

Using Cartan’s identity we compute

d

dt

(
η∗t (α + t dh)

) = η∗t
(
LXt (α + t dh)+ dh

)

= η∗t
(
ıXt d(α + t dh)+ dıXt (α + t dh)+ dh

)
.

Since ıXt dα = χt ıRαdα = 0, it follows that (D.5) holds if and only if

dıXt (α + t dh)+ dh = 0. (D.6)

Since ıXt (α + t dh) = χt
(
1+ t dh(Rα)

)
, equation (D.6) is satisfied if we take

χt := − h|S
1+ t dh(Rα)

, t ∈ [0, 1].

By (D.3) the functions χt are well-defined.
In view of (D.1) and (D.4), the diffeomorphism ψ := ϕ ◦ η1 : S → S′ satisfies

ψ∗α′ = η∗1
(
ϕ∗α′

) = η∗1 (α + dh) = α,

as required. ��
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