Skip to main content
Log in

Thickening of the diagonal and interleaving distance

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Given a topological space X, a thickening kernel is a monoidal presheaf on \(({{\mathbb {R}}}_{\ge 0},+)\) with values in the monoidal category of derived kernels on X. A bi-thickening kernel is defined on \(({{\mathbb {R}}},+)\). To such a thickening kernel, one naturally associates an interleaving distance on the derived category of sheaves on X. We prove that a thickening kernel exists and is unique as soon as it is defined on an interval containing 0, allowing us to construct (bi-)thickenings in two different situations. First, when X is a “good” metric space, starting with small usual thickenings of the diagonal. The associated interleaving distance satisfies the stability property and Lipschitz kernels give rise to Lipschitz maps. Second, by using (Guillermou et al. in Duke Math J 161:201–245, 2012), when X is a manifold and one is given a non-positive Hamiltonian isotopy on the cotangent bundle. In case X is a complete Riemannian manifold having a strictly positive convexity radius, we prove that it is a good metric space and that the two bi-thickening kernels of the diagonal, one associated with the distance, the other with the geodesic flow, coincide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asano, Tomohiro, Ike, Yuichi: Persistence-like distance on Tamarkin’s category and symplectic displacement energy. J. Symplectic Geom. 18(3), 613–649 (2017). arXiv:1712.06847

    Article  MathSciNet  MATH  Google Scholar 

  2. Berger, M.: Some Relations between Volume, Injectivity Radius, and Convexity Radius in Riemannian Manifolds, Differential Geometry and Relativity. In: Cahen, M., Flato, M. (eds.) Mathematical Physics and Applied Mathematics, vol. 3. Springer, Dordrecht (1976)

    Google Scholar 

  3. Berkouk, Nicolas, Ginot, Grégory.: A derived isometry theorem for sheaves. Adv. Math. 394, 108033 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berkouk, N., Petit, F.: Ephemeral persistence modules and distance comparison. Algebr. Geom. Topol. 21(1), 247–277 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bjerkevik, Håvard Bakke., Botnan, Magnus Bakke, Kerber, Michael: Computing the interleaving distance is NP-hard. Found. Comput. Math. 20, 1237–1271 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blumberg, A.J., Lesnick, M.: Universality of the homotopy interleaving distance, available at arXiv:1705.01690

  7. Bubenik, Peter, de Silva, Vin, Scott, Jonathan: Metrics for generalized persistence modules. Found. Comput. Math. 15, 1501–1531 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chavel, I.: Riemannian Geometry: A Modern Introduction. Cambridge Studies in Advanced Mathematics, 2nd edn. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  9. Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L.J., Oudot, S.Y.: Proximity of persistence modules and their diagrams, SCG ’09: Proceedings of the 25th Annual Symposium on Computational Geometry, pp. 237–246. New York (2009)

  10. Crawley-Boevey, W.: Decomposition of pointwise finite-dimensional persistence modules. J. Algebra Appl. 14, 1550066 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cruz, J.: Metric limits in a category with a flow (2019). Available at arxiv:1901.04828

  12. Curry, J.: Sheaves, Cosheaves and Applications, Ph.D. Thesis, University of Pennsylvania (2014)

  13. Do Carmo, M.: Riemannian Geometry. Birkauser, Basel (1992)

    Book  MATH  Google Scholar 

  14. de Silva, V., Munch, E., Stefanou, A.: Theory of interleavings on categories with a flow. Theory Appl. Categ. 33(21), 583–607 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Eliashberg, Yakov, Kim, Sang Seon, Polterovich, Leonid: Geometry of contact transformations and domains: orderability versus squeezing. Geom. Topol. 10, 1635–1747 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guillermou, S.: Sheaves and symplectic geometry of cotangent bundles, Astérisque (2023), available at arXiv:1905.07341

  17. Guillermou, S., Kashiwara, M., Schapira, P.: Sheaf quantization of Hamiltonian isotopies and applications to nondisplaceability problems. Duke Math. J. 161, 201–245 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Grundlehren der Math. Wiss, vol. 274. Springer-Verlag, New York (1985)

    MATH  Google Scholar 

  19. Kassel, Christian: Quantum Groups. Graduate Texts in Mathematics, vol. 155. Springer-Verlag, New York (1995)

    MATH  Google Scholar 

  20. Kashiwara, M., Schapira, P.: Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschaften, vol. 292. Springer-Verlag, Berlin (1990)

    Google Scholar 

  21. Kashiwara, Masaki, Schapira, Pierre: Categories and sheaves, Grundlehren der Mathematischen Wissenschaften, vol. 332. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  22. Kashiwara, Masaki, Schapira, Pierre: Persistent homology and microlocal sheaf theory. J. Appl. Comput. Topol. 2, 83–113 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lesnick, M.: Multidimensional Interleavings and Applications to Topological Inference, Ph.D. Thesis, (2012)

  24. Lesnick, Michael: The theory of the interleaving distance on multidimensional persistence modules. Found. Comput. Math. 15, 613–650 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Oxford Graduate Texts in Mathematics, Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  26. Paternain, Gabriel: Geodesic Flows. Birkhäuser, Basel (1999)

    Book  MATH  Google Scholar 

  27. Petit, F, Schapira, P, Waas, L: A property of the interleaving distance for sheaves (2021), available at arXiv:2108.13018

  28. Rosen, D., Zhang, J.: Relative growth rate and contact Banach–Mazur distance, available at arXiv:2001.05094

  29. Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudo-differential equations, Hyperfunctions and pseudo-differential equations (Proc. Conf., Katata, 1971; dedicated to the memory of André Martineau), Vol. 287, pp. 265–529. Springer, Berlin, Lecture Notes in Math. (1973)

  30. Schapira, P.: Constructible sheaves and functions up to infinity (2023) available at arXiv:2012.09652

  31. Tamarkin, D.: Algebraic and analytic microlocal analysis, Microlocal conditions for non-displaceability. In: proceedings in Mathematics & Statistics, 2012 & 2013, Vol. 269, pp. 99–223. Springer. Available at arXiv:0809.1584

  32. Zhang, J.: Quantitative Tamarkin Category. CRM Short Courses, Springer International Publishing, New York (2020)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The author F.P. warmly thanks Vincent Pecastaing and Yannick Voglaire for fruitful comments. The author P.S warmly thanks Benoît Jubin for the same reason. Both authors warmly thank Stéphane Guillermou for extremely valuable remarks and also for his proof of Lemma 3.2.2 which considerably simplifies an earlier proof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Petit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

F.P. was supported by the IdEx Université de Paris, ANR-18-IDEX-0001 and by the French Agence Nationale de la Recherche through the project reference ANR-22-CPJ1-0047-01.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petit, F., Schapira, P. Thickening of the diagonal and interleaving distance. Sel. Math. New Ser. 29, 70 (2023). https://doi.org/10.1007/s00029-023-00875-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-023-00875-6

Keywords

Mathematics Subject Classification

Navigation