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Abstract

We classify finite subgroups G C PGL4(C) such that P3 is not G-birational to conic
bundles and del Pezzo fibrations, and explicitly describe all G-Mori fibre spaces that
are G-birational to IP? for these subgroups.
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1 Introduction

Finite subgroups in PGL4(C) have been classified by Blichfeldt [4], who has split
them into the following four classes: intransitive groups, transitive groups, imprimitive
groups, primitive groups. In geometric language, these classes can be described as
follows:

(D intransitive groups are group that fix a point or leave a line invariant,
(II) transitive groups are groups that are not intransitive,
(III) imprimitive groups are transitive groups that
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— either leave a union of two skew lines invariant,
— or have an orbit of length 4 (monomial subgroups),

(IV) primitive groups are transitive groups that are not imprimitive.

Note that PGL4(C) contains finitely many primitive finite subgroups up to conjugation.

Now, let us fix a finite subgroup G C PGL4(C). The main aim of this paper is
to study G-birational transformations of P3 into other G-Mori fibre spaces. If P3 is
not G-birational to any other G-Mori fibre space, then IP? is said to be G-birationally
rigid. It has been proven in [13, 14, 16] that

P3 is G-birationally rigid <= G is primitive, G % s and G % &s.

For instance, if G is an imprimitive subgroup such that P3 contains a G-orbit of
length 4, then P3 is not G-birationally rigid. In fact, this follows from

Example 1.1 ([16,44]) Suppose that G is imprimitive, IP? does not contain G-invariant
unions of two skew lines, and P? contains a G-orbit 34 of length 4. Let M be the linear
system that consists of sextic surfaces in P> singular along each line passing through
two points in X4. Then M defines a G-rational map ¥ : P35> PB. Let Xou = im(y).
Then
(i) the induced map P3 --» X»4 is G-birational,
(i) Xp4 = P! x P! x P!/(z) for an involution 7 that fixes 8 points [3, § 6.3.2],
(iii) the Fano threefold X»4 is a G-Mori fiber space over a point.

Following [2], we define P3 to be G-solid if P3 is not G-birational to conic bundles
and del Pezzo fibrations. In this case, all G-Mori fibre spaces that are G-birational to P3
are terminal Fano threefolds—they form a set Pg (P3), which we call the G-pliability
[20]. For example, if P3 is G-solid, then Pg(P?) = {P?} <= P3 is G-birationally
rigid.

It natural to ask when is P? G-solid? If P3 is G-solid, it follows from [15, 16] that

(1) the subgroup G is transitive,

(2) P3 does not contain G-invariant unions of two skew lines,

(3) neither G = s nor G = Ss.
In fact, these conditions guarantee that P° is G-solid provided that |G| is suffi-
ciently large. Namely, if G is transitive, P*> has no G-invariant unions of two skew
lines, and |G| > 21734 then it follows from [9, 16] that P? is G-solid, 3 contains
aunique G-orbit of length 4, and Pg (]P’3) = {IE”3, X4}, where X»4 is the Fano threefold
from Example 1.1.

The goal of this paper is to prove the following result:

Main Theorem Let G be an imprimitive finite subgroup in PGL4(C) such that P? does
not have G-invariant unions of two skew lines, and G is not conjugated to

o the subgroup Gag3 = ;L%.Qu = [,l,i X W3 of order 48 generated by

-1 0 0 O 1 0 0 O 00 1 0 0 i 0 O
0 1 0 O 0 -1 0 O 1 0 0 0 1 0 0 01},
0o 0 -1t o)J’fo o -1 of’fo 1 0o ofJ’fo0 0 0 —i}’
0 0 0 1 0 0 0 1 0 0 0 1 0 01 O
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o the subgroup Goe 72 = ;L%.Qu = [l,i X g of order 96 generated by

-1 0 0 0 1 0 0 0 1 0 0 O 0 0 1 O 07 0 O
0 1 0 O 0 -1 0 O 01 0 O 1 0 0 O 1 0 0 0],
o o1 of’fo o 1 of’fo o -1 of’fo 1 o0 of’fo o o i}’
0 0 0 1 0O 0 0 1 0 0 0 1 0 0 0 1 00 1 0

o the subgroup G§24,160 = u% X A4 of order 324 generated by

2mi 1

(=1

e300 0 MOO (1)(1) 8 g 00 1 0N /0 -1 0 0
0 1.0 0] o 3 0 0f i ‘1000’1000.
0 0 1 0 0 0 1 0 00 ¢e3 0 0 1.0 0 0 0 0 -1
0 0 0 1 0o 0 0 1 00 0 1 0 0 0 1 o 0 1 0

Then P3 is G-solid, and Pc (]P3) = {]P’3, Xoa}, where X4 is the threefold from Exam-
ple 1.1.

In this paper, the notation G, 5 or G;’ , means that the GAP ID of these groups is
[a,b].

If G is conjugate to one of the subgroups Gz 3, Gog 72, G/324,160, then P is not
G-solid:

Example 1.2 Suppose that G is one of the groups Gag 3, Goe 72, G/324,160' Let

€={(1+e%)x1d+eT.xg+x3 =xy +e3 xf—(l—l—e 3 )xf:O}CIPﬁ,
where

2if G = Gag30r G = Gog 72,
3if G = G 160-

Then € is a smooth irreducible G-invariant curve, and there exists G-equivariant

diagram
X
N
P3 P!

where ¥ is the blow up of the curve €, and « is a G-Mori fibre space, which is a fibration
into surfaces of degree d.

Corollary 1.3 (cf. [16, Theorem 1.1]) Let G be an arbitrary finite subgroup in
PGL4(C). Then P3 is G-solid if and only if the following conditions are satisfied:

(a) G does not fix a point,
(b) G does not leave a pair of two skew lines invariant,
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(c) G is not isomorphic to s or Gs,
(d) G is not conjugate to Gag 3, Goe. 72 OF G/324’160.

This corollary describes all finite subgroups G C PGL4(C) such that the projective
space IP3 is not G-birational to conic bundles and del Pezzo fibrations. For the projective
plane P2, a similar problem has been solved in [48].

For the group G’3247 160> We prove the following result.

Theorem 1.4 Suppose that G = G’324’160. Then P3, the threefold X»4 from Exam-

ple 1.1, and the G-Mori fibre space k: X — P from Example 1.2 are the only
G-Mori fiber spaces that are G-birational to the projective space P>,

We expect that a similar resultholds alsoin the case when G = G4g 30r G = Gog 72.
We plan to prove this in a sequel to this paper together with Igor Krylov by combining
our technique with the methods developed in [18, 38, 47].

Remark 1.5 Our technique is not applicable in the case when the group G is intransitive.
In this case, the G-equivariant birational geometry of P> has been studied in [37] using
the very powerful new technique recently developed in [30, 35, 36].

Using Main Theorem and Theorem 1.4, one can construct examples of non-
conjugate isomorphic finite subgroups in Bir(P3). Let us present three such examples.

Example 1.6 Let G324,160 be the subgroup in PGL4(C) generated by

2mi

o9 0 0N /1 0 0 0 /1 O 0 O /00 10, /01 0 0
0 1 0 o] [o & o of |0 1 o] 11 0 0o of [t 0o 0o o
o o 1 ol lo o 1 offo o & ofl'lo 1 0 o0o]]o o o1
o oo 1/ \o o o1/ \oo o 1) \ooo1)\oo 10

Then G324,160 = G’324 160° P3 is G324.160-s0lid by Main Theorem, but P? is not
G’324’ 160-S0lid. Hence, the subgroups G324,160 and G’324’ 160 are not conjugate in
Bir(P?).

Example 1.7 Let Goe 227 be the subgroup in PGL4(C) generated by

-1 0 0 O 1 0 0 O 0 0 0 1 01 0 O
0 1 0 O 0 -1 0 O 1 0 0 O 1 0 0 O
0O 0 -1 o)’fo o -1 of)’jo 1 0 Oof)’jo o 1 O}
0 0 0 1 0 0 0 1 0 010 0 0 0 1
and let G’%’227 be the subgroup in PGL4(C) generated by

-1 0 0 O\ /1 0 0 0y (/0 0 0 =1\ (0 1 0 0
0o 1 0 O 0 -1 0 O 1 0 0 O 1 0 0 O
o 0 -1t of’fo o -1 oj)’fo 1 0 o J’f0 0 -1 O
0O 0 0 1 0 O 0 1 0O 01 O 0O 0 0 1
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Then Gog 227 = G{)6’227 = IL% x G4, and these two subgroups are not conjugate in
PGL4(C), because P3 contains three Gog,227-0rbits of length 4 and only one G’96’227—
orbit of length 4. Thus, applying Main Theorem, we see that Ggg 227 and G’%’227 are
not conjugate in Bir(P3).

Example 1.8 Let Gag 50 = u% XAy = yfz‘ X ps3 be the subgroup in PGL4(C) gener-
ated by

-1 0 0 O 1 0 0 0 0 0 1 0 01 0 O
0O 1 0 O 0 -1 0 O 1 0 0 O 1 0 0 O
o 0 -1 o01’f0 0 -1 OO0 1 O OO0 O O 1
0 0 0 1 0 0 0 1 0 0 0 1 0 01 0

Let Q) = {xg + xlz + x% + x% =0} C P3. Then Q; is G 43, 50-invariant, which
gives a faithful action of the group Gag so on Q1 x P!, that induces an embedding
n: Gag 50 — Bir(]P’S). Since P is G 43 50-s0lid, the subgroups Gag 50 and 7(G4s, 50)
are not conjugate in Bir(P3).

In this paper, we also find the generators of the group Bir® (P?) for every imprimitive
finite subgroup G C PGL4(C) such that P? is G-solid. In particular, we show that this
group s finite provided that G is not conjugate to G4g 50 or Gog 227 (see Corollary 7.14).
On the other hand, if G = Gug 50 or G = Gog.227, then Bir® (P?) is infinite by
Corollary 7.15. In these two cases, the group Bir® (P3) is generated by the standard
Cremona involution

[x0 : x1 1 x2 1 x3] = [X1X2X3 I X0X2X3 : X0X1X3 : XoX1X2]

and the finite subgroup G576 8654 = (A4 X A4) X u% generated by

-1 0 0 O 0 0 0 1 01 0 O 1 1 1 1
0 1 0 O 1 0 0 O 1 0 0 O 1 I -1 -1
o 01 o0)°f0 1. 0 O)J°t0 o1 o’y 1 -1 1 -1
0 0 0 1 0 01 0 0 0 0 1 -1 1 1 -1

Let us describe the structure of this paper. We will prove Main Theorem in Sect. 7. In
Sect. 2, we will describe basic properties of finite monomial subgroups in PGL4(C).
In Sects.3, 4 and 5, we will study G-equivariant geometry of the projective space
IP3, where G is a finite subgroup in PGL4(C) that satisfies all conditions of Main
Theorem. In Sect. 6, we will study G-equivariant geometry of the threefold X»4 from
Example 1.1.

2 Irreducible monomial subgroups of degree four

Let G be a finite transitive subgroup in PGL4(C) such that IP3 has a G-orbit of length 4,
and let P, P>, P3, P4 be the four points of this G-orbit. Choosing appropriate coor-
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dinates, we may assume that
Pi=[1:0:0:0,P,=10:1:0:0],P3s=[0:0:1:0],P,=1[0:0:0:1].

Then the G-action on the set {P;, P», P3, P4} induces a group homomorphism
v: G — G4. Denote by T the kernel of the homomorphism v. Suppose, in addi-
tion, that the following two conditions are satisfied:

e G does not have fixed points in P3,
e G does not leave a union of two skew lines in P? invariant.

Then T is not trivial, and either the homomorphism v is surjective, or its image is 4.
Let T be the torus in PGL4(C) that consists of the elements given by the diagonal
matrices whose last entry is 1. In the following, we will always abbreviate

aa 0 0 O

(a1, @, a3) = 0 a 0 O
1,42, d3 0 0 a3 0O
0O 0 0 1

Note that we have ' C T. Let G be the normalizer of the torus T in the group PGL4(C).
Then the subset { P, P>, P3, P4} is G-invariant, which gives an epimorphism Y': G —
4. Since we have G C G, we obtain the following exact sequences of groups:

i

Note that G = T x G4, where we identify &4 with the subgroup in G generated by

imv) ——1

Q<—Q

Sy 1.

0 0 0 1 01 0 O
.= 1 0 0 O and o — 1 0 0 O
01 0 O 0 0 1 0
0 0 1 0 0 0 0 1

The induced G-action on T gives the injective homomorphism
64 E2G/T — Aut(T),

and the corresponding action of the group &4 = (r,0) on T can be described as
follows:

a az 1
Ti(a,a,a3) —> | —, —,— |,
ay ayp ai

o: (a1, a,a3) —> (az, ai, az).

W Birkhauser
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Clearly, if im(v) = G4, then T is t-invariant and o -invariant.
Let & be an element in 7 of maximal order n > 1. Then the order of every element
in the group T divides n, hence T C MZ- Here, we identify Mf, with the subgroup

(@ LD, (1L g0, D, (1,1, 8)) C T,

2mi

where ¢, = e n .

Lemma 2.1 (cf.[25],[23, Theorem4.7], [9, Corollary 7.3]) Suppose thatim(v) = Gag.
Then one of the following assertions holds:

() T =pp;
2) nisevenand T = [1,,% X s
(3) nisdivisible by 4 and T = y,% X pn.

Proof We have h = (¢4, ¢f, ¢¢) for coprime non-negative integers a, b, c. Applying
cyclic permutation of order 3 to &, we see that (¢?, ¢¢, ¢%) and (¢¢, ¢¢, ¢P) are con-

tained in 7. Hence, the group T contains (¢, g“f , g“,%/ ) for some non-negative integers
B and y. Then

-1
(t@ogh e @ e D) =Gt th e,
Thus, we get T (&, &n, ,%) = (1, ¢&,, §n_1) e T and so (1, g“n_], ¢n) € T. Then

G s & - (LG ) - @7 L) = (L, 1,0h e T,

Now, we let T/ = {((¢,, 1, g“n_l), (1, &y, {n_l), 1,1, {,‘,‘ ). Then the subgroup T’ is
G4-invariant. Moreover, we have T/ C T C ;Lfl. Furthermore, we have the following
possibilities:

(1) Ifnisodd, then 7/ = p>, hence T = T' = p;.

(2) If n is divisible by 2 but not by 4, then T’ = [L% X po.

(3) If n is divisible by 4, then 77 = u2 x o
In the case (2), if there exists t € T \ T’, then we have (¢, T') = [L?L, hence we are

done. Therefore, we may assume that we are in the case (3). As above, if there exists
t € T\ T’, then either (¢, T’>§[L%X’L% or (t,T') = . O

Corollary 2.2 Suppose thatim(v) = G4, T = [L,31 andn is odd. Then G is conjugated to
the subgroup generated by

0 0 0 1 01 0 0

1 0 0 0 1 0 00
(g‘nvl’l)V(lv {l’lv 1)5(1717 {l’l)v O 1 0 O k] 0 O 1 0 )

00 1 0 0 0 0 1

) Birkhauser
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or G is conjugated to the subgroup generated by

0 0 0 -1 01 0 O
I 0 0 O 1 0 0 O
(é‘n:lvl)v(l! é‘nal)’(l’ly é‘l’l)’ 0 1 0 O ’ 0 0 _1 0
00 1 0 0 0 0 1

In both cases, we have G = T x S4.

Proof Let A and B be some elements in the group G suchthatv(A) = randv(B) = 0.
If A* = B2 = (AB)? = 1, then (A, B) = G4, hence G = T x G4. We have

0 0 0 1 0 b 0 0
a0 0 0 e 0 0 0
A=10 o o ol ™B=|g o » o
0 0 a3 0 0 0 0 1

where each a; and b; are non-zero complex numbers. Conjugating G by an appropriate
element of the torus T, we can assume that a; = ap = a3 = 1.
Since t* =02 = ('L’U)3 = 1, we see that B2 € T and (AB)3 e T, which gives

biby =¢Y,
2 B
b3 =6n>»
by _ .y
bib; — on

for some some numbers «, 8, y in {0, ...n — 1}. Hence, replacing B with

é‘l’l s ’ ;I‘l

—6a+B+2y —2a—p-2y _B
8 6, ) BeG,

we may assume that B> = 1. Here, we consider division by 8 and 2 as division
modulo n. In particular, we see that G = T x G4 as claimed.

Now, we observe that b1by, = 1, b% =1, bg = b1b3. Then solving this system of
equation, we obtain the following eight cases:
In case (i), we are done. In cases (ii), (iii) and (iv), we can conjugate G to get the first
group in the assertion of the lemma using (—1,1, —1), (—i, —1,1), (i, —1, —i),
respectively. Similarly, in cases (v), (vi), (vii), (viii), we can conjugate G to get the sec-
ond group using

V22 V2 V2 V2o V2 V2 V2i
(2 Y2 R Ay (VR
2 2 2 2 2 2 2 2
( ﬁ+ﬂi_ﬁ+ﬁi) <J§ V2i V2 ﬁi>
- A _’l’ A A 9 X~ _’l’ A T T A b
2 2 2 2 2 2 2 2
respectively. This completes the proof. O

W Birkhauser
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by by b3
) 1 1 1
(ii) -1 -1 1
(iii) i i i
(iv) i i 1
) -+ — -1
i) 32 P2y -1
(v F 7 -

Now, we describe the possibilities for the subgroup 7 in the case when im(v) = 4.
Keeping in mind our identification &4 = (7, o), we see that 24 = (p, ¢) for

00 1 0 01 0 0
1 0 0 0 1 0 0 0
P=1o 1 0 ol ®™<s=]0 0 0 1
00 0 1 001 0

Then p and ¢ acts on T as follows:

p: (a1, a2,a3) — (az, a3, ay),

ary aj 1
G (alvaZaa:‘;) ? T T T )
as as as

Clearly, our subgroup T is p-invariant and ¢-invariant. Using this, we get

Lemma 2.3 (cf. [9, Corollary 7.3]) Supposeim(v) = 4. One of the following holds:

() T = pul
2) nisevenand T = [L% X s

(3) nisdivisible by 4 and T = [Lﬁ X pn.
Proof Arguing as in the proof of Lemma 2.1, we may assume that (&, ;f , g“,l/ ) € T for
some non-negative integers § and y, where n > 1 is the largest order of all elements
in 7', and ¢, is a primitive n-th root of unity. Then
(NN R (N I A R (SN A R (N A D N (A N i Y
So, we have
—p— —p—1y\—1
(0 gl 6 PN - ep@un gl 6 Ph) T =@ gl D eT
and

1
(@D (pe el 0)™) =g eheT.

) Birkhauser
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If B = 2k for k € Z>p, then

G 6 P (g2 D = G 1 g D e T,
Thereby, we see that (1, &, ¢, Dand (1, 1, ;“,f ) are both contained in 7. Now, arguing

as in the end of the proof of Lemma 2.1, we obtain the required result.
Likewise, if 8 = 2k + 1, then

(;ru Cnﬁ’ é‘n_ﬂ_l) : (15 Cn_zv é‘y%)k = (;’na Cl’la ;n_z) € T

Hence, we have

O Ear 6 ) - (LG 26D = @ LG D eT
and we are done similarly to the previous case. O
Arguing as in the proofs of Lemmas 2.1 and 2.3, we obtain the following result:

Lemma 2.4 The group G is conjugated in PGL4(C) to a subgroup (T, A, B) C
PGL4(C), where A and B are elements in PGL4(C) described as follows:

o ifim(v) = Gy, then

and B =

co—o
oo o
- oo
o o ofs,
coa o
S o oR
o> oo
- o o o

for some complex numbers a and b such that (az, a?, bz) eT;
e ifim(v) = Uy, then

and B =

O = O O

0
0
0
1

co~=o
co o~
co - o
[cNeNaNS
N =R=N=
o8 oo

for some complex numbers a and b such that (az, b,1)eTand (b,b,1)eT.
Proof First, we suppose that im(v) = G4. Let A and B be elements in the group G

such that v(A) = 7 and v(B) = o. Conjugating G by elements of T, we may assume
that

and B =

co~ o
o —o o
—-— o oo
oo o0
oo o
S o oR
o oo
===

W Birkhauser
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for some non-zero complex numbers a, b and c. Then B? = (a?,a?,b*) e T and

(AB)? = (1, g, 1) eT.

Now, using the G4-action on T, we see that (1, 1, 2) € T. Then, replacing A —

(1,1, bc)A we obtain the required assertion in the case when im(v) = G4.

Now, we suppose that im(v) = 24. As above, let A and B be some elements in G
such that v(A) = p and v(B) = ¢. Conjugating G by elements in T, we may assume
that

001 0 0 a 00
100 0 b 0 0 0
A=1o0 ¢ 0 ol ™B=1p 0 0 «
00 0 1 00 1 0

for some non-zero numbers a, b and c. Then A3 = (c,c,c) € T, B> = (b,b, 1) € T
and

2
3 a
(AB)? = (1, 4 1) eT.
bc
Now, using the 24-action on 7', we get (1,1, %) € T. Then, after replacing A +—
(1,1, %)A, we obtain the required assertion.

m}

Corollary 2.5 In the assumption and notations of Lemma 2.4, let G' = (T, A, B), and
let ¢ be the standard Cremona involution given by

[x0 :x1 :x2 : x3] = [X1X2X3 : X0X2X3 : X0X1X3 : X0X1X2].

Then 1G't = G', so 1Gt is conjugated to G in PGL4(C).

Proof Observe that (T« = T. Thus, to complete the proof, it is enough to show that
tAt and (Bt are both contained in G'. If im(v) = 2y, then tAt = A € G’ and

1 1 1
1Bl = (;, ﬁ, a_z)B’

so that it is enough to show that (az, b2, a2) € T. In this case, it follows from
Lemma 2.4 that (az, b,1) € T and (b,b, 1) € T, so that, using the A4-action on
T described earlier, we see that (b, 1, a2), (1, b, b) and (b, 1, b) are contained in T as
well, which gives

(@, b?,a*) = (b, 1,a*) (@, b, N(1,b,b)(b, 1,b) ' €T

) Birkhauser



71 Page 12 of 84 I. Cheltsov, A. Sarikyan

which is exactly what we want. So, we may assume that im(v) = G4. Then (Bt =
B € G’. Hence, to complete the proof, it is enough to show that tA: € G'. But

b2
(AL = <—4, 1, 1)A,
a

so it is enough to show that (Z—;, 1,1) € T. But we have (a?,a%,b?) € T by

Lemma 2.4. Thus, using the G4-action on 7, we see that (1, z—z, a%) e T and
(bz, a?, az) e T, so that

b* 1
—2)(b2,a2,a2) €T,

2 12 1y _ o”
(bﬂb’l)_(17a2’a

and, using the Gg-action on T, we get (bz, l,bz) € T. On the other hand, it
follows from the proof of Lemma 2.1 that T contains (&g, 1, ¢, 1), which implies
that (b%, 1, b72) e T. Likewise, we get (a2, 1,a%) € T,so (1,a2,a*) € T. Then

(1, 1,a*h?) = (@, a* M) (@2 1,a*)(1,a %, a*) e T,

which implies that

4
(1, 1, 2_2) = (1, 1,a*PH)B?, 1,62, 1,07 e T.

. . . 4 .
Now, using the G4-action on 7 one more time, we see that (%, 1, 1) € T as required.

O

Corollary 2.6 There exist non-zero complex numbers Ay, Ay and A3 such that |Gt = G,
where ( is the Cremona involution given by

[x0 :x1 :x2 1 x3] = [A1X1X2X3 @ AoXxpX2X3 © A3X0X1X3 : X0X1X2].

In the remaining part of the section, we classify all such groups G whenn € {2, 3}.
In this case, there exist precisely twelve possibilities for the group G up to conjugation,
which can be described as follows.

(1) Let Gag 50 = p3 x Ay = p3 x pj be the group generated by

(—1,1,-1), (1, =1, -1),

oS O = O
o= O O
SO O =
- o O O
[N e =)
S o o
- o O O
S = O O
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(2) Let G4g3 = M%.Qu = [Li X 3 be the group generated by

0 0 1 0 0 i¢i 0 O
1 0 0 O 1 0 0 O
(=LL=0).(L=L=DA5 1 g of|o 0 0 —i
0 0 0 1 0O 0 1 0
(3) Let Goe,70 = u% XAy = u‘z‘ X g be the group generated by
0 0 1 0 0O 1 0 O
1 0 0 O 1 0 0 O
(_17111)1(13_111)9(1917_1)9 0 1 0 0 ) 0 0 O 1
0 0 0 1 0 0 1 0
(4) Let Gog72 = ’L%.Qu = [,Li X g be the group generated by
0 0 1 O 0O i 0 O
1 0 0 O 1 0 0 O
(_171’1)5(19_1’1)1(1917_1)3 O l 0 0 ) O O 0 i
0 0 0 1 0 0 1 0
(5) Let Gog207 = /,L% x Gy = ,ufz1 x &3 be the group generated by
0 0 0 1 01 0 O
1 0 0 O 1 0 0 O
(=1L 1 =1). (1 =1, =), 01 0 0]’l0o 0 1 O
0 0 1 O 0O 0 0 1
(6) Let G/%’227 = p,% x G4 be the group generated by
0 0 0 -1 o1 0 0
1 0 0 O 1 0 0 O
(=1.1,=1). (1, =1, ~1), 01 0 o]'lo 0o -1 0
0 0 1 O 00 0 1
(7) Let G192,955 = u% x Gy = u‘z‘ x D1> be the group generated by
0 0 0 1 01 0 O
1 0 0 O 1 0 0 O
(—1,1,1),(1,—1,1),(1,1,—1), o100l'lo o1 o
0O 0 1 0 0 0 0 1
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(8) Let G192,185 = [L%.64 = ;Li X (i3 X fuy) be the subgroup generated by

0
(L1, (=11 (L =), |
0

(= e -l

- o O O

SO O =~

(9) Let G324.160 = [Lg x 24 be the group generated by

(C3’ 1’ ]‘)7 (]" ;3’ 1)’ (17 ]" 4‘3)’

[N el =)

O = O O

SO O =

I

0
0
0
1

(10) Let G’324’160 = ;Lg x 24 be the group generated by

(4-3’ 1’ ]‘)7 (17 4-3’ 1)’ (1’ 17 4-3)7

(=N el )
S = O O

[Nl

- o O O

(11) Let Ge4s,704 = ;L% x G4 be the group generated by

(§‘3’ 17 1)7 (]" CS’ 1)’ (17 ]" ;3)’

SO = O

O = O O

- o O O

1
0
ol
0

(12) Let G/648’704 = [L% x G4 be the group generated by

0
-1
0
0

(C3’ 1’ 1)’ (]‘7 C3’ 1)’ (1’ ]‘7 C3)’

0
0
1
0

- o O O

1
0
ol
0

0
1
10
0

oS o = O
S O = O S O = O

S o= O

coco |l

S oo

—

SO O

S o O

[Nl

O = O O - o O O - o O O

O = O O

O =~ O O

S = O O
e e - o O O

- O O O

S OO

—1

We used Magma [5] to identify the GAP ID’s of these groups. For instance, to
identify the group Geag 704, We used the following Magma code provided to us by

Tim Dokchitser:

K:=CyclotomicField(3) ;
R<x>:=PolynomialRing (K) ;
w:=Roots (x"2+x+1,K) [1,1];
S:=[[[0,1,0,01,[1,0,0,01,
[[0,0,0,11,[1,0,0,07,
[[w,0,0,0],[0,1,0,07,
[[1,0,0,0],[0,w,0,07,
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(r,o0,0,01,110,1,0,01,00,0,w,01,[0,0,0,1111;
G:=sub<GL(4,K) | [GL(4,K) |[M: M in S]>;
D:=[M: M in Center(G) | IsScalar(M)];
GP:=quo<G|D>;
IdentifyGroup (GP) ;

We want to show that if n € {2,3}, then G is conjugated to a subgroup
among Gas 50, G483, G96,70, G96,72, G96,227, Gog 207- G192,955, G192,185, G324,160s
/ /
G324,1600 G648.704> Gy 704-

Lemma 2.7 Supposen =2, T = [L% and im(v) = 4. Then the subgroup G is con-
Jjugated to one of the subgroups Gag 50 or G4g 3.

Proof Arguingasinthe proofof Lemma2.3,weseethat7 = ((—1, 1, —1), (1, —1, —1)).
Let A and B be some elements in the group G such that v(A) = p and v(B) = g.
Then

0 0 a3 0 0 b 0 0
la 0 0 o0 |0 0 o0
A=10 & o ol ™B=|y o o 1|’

0 0 0 1 0 0 b3 O

where all ¢; and b; are some non-zero complex numbers. Conjugating G by an appro-
priate element of the torus T, we may assume that a; = a; = 1 and b3 = by. Then
a3 = 1, because AdeT.

Since B> € T and (AB)? € T, we get by = *1 and b} = b3. If by = 1, then
by = bz = %1, which gives G = Gyg 50. Likewise, if b, = —1, then by = b3 = +i,
hence G = Gug3. O

Lemma 2.8 Supposen =2, T = [L% and im(v) = Uy4. Then the subgroup G is con-
jugated to one of the subgroups Gog 70 or Gog 72.

Proof The proof is essentially the same as the proof of Lemma 2.7. O

Lemma 2.9 Supposen =2, T = [L% andim(v) = Sg4. Then the group G is conjugated
to one of the subgroups Gog 227 OF G§6,227'

Proof Arguing asinthe proof of Lemma?2.3,weseethat7 = ((—1, 1, —1), (1, —1, —1)).
Let A and B be some elements in G such that v(A) = 7 and v(B) = o. Then, arguing
as in the proof of Corollary 2.2, we can assume that

00 0 1 0 b 0 0
|1t 00 o0 by 0 0 0
A=10 1 0 of™B=10 0 » o

00 1 0 0 0 0 1
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for some non-zero complex numbers by, b, and b3. Since B% € T and (AB)3 eT,
we get

b3 = bybs,
b =1,
biby = £1.

This gives bg = 1. If by is a primitive eighth root of unity, we get b = :Fb% and
b3 = F1, which gives (b3, b3, b2) "' G (b3, b3, ba) = Glyg 5p7. If b3 = 1, then G is
conjugate to Ggg 227- O

The subgroups Gog 227 and G/96,227 are not conjugated in PGL4(C), because P3
contains three Gog 227-orbits of length 4 and only one 6567227-0rbit of length 4.

Lemma 2.10 Supposen =2, T = [Lg and im(v) = Gy4. Then the group G is conju-
gated to one of the subgroups G192.955 or G192,185.

Proof Arguing as in the proof of Lemma 2.9, we may assume that

G=(-1,1,1,1,-1,1),(1,1,-1), A, B),

where
00 0 1 0 b 0 0
|1t 000 by 0 0 0
A=1o 1 0 of|™B=|0o 0o 5 o
00 1 0 0 0 0 1

for some non-zero complex numbers by, by, bz such that b1b, = +1, b% = =+1,
b% = &b b3. This equations give us bg = 1. Now, arguing as in the end of the proof of
Lemma 2.9, we see that the subgroup G is conjugated either to G192 955 or to G 192,185

O

Lemma 2.11 Supposen =3, T = u,% and im(v) = 4. Then the group G is conju-
gated to one of the subgroups G324,160 OF G’324’160.

Proof Arguing as in the proof of Lemma 2.7, we may assume that

G=(&,1,1,0,8,1),0,1,8), A, B)

for

and B =

oo —o
o~ oo
cCo O -
===
co S o
oo oR
— o oo
o oo
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where r, a and b are some non-zero complex numbers. Then

F 0 0 0 b 0 0 0 1 0 0 0
s o r 00 - |ob 0o s_|o 4 00
A=1lo 0+ o' =lo o1 o=y T 1 o
00 0 1 00 0 1 0 0 0 1

Since A3 € T, B> € T, (AB)} € T, we getr = ¢¥ and b = g“f for some «
and B in {0, 1, 2}. Replacing A — (1,1, {;“)A and B — (1, 4'3_‘3, 1) B, we may
assume that r = 1 and » = 1. Then a = gg’ for y € {0,1,2,3,4,5}. Replacing
B — (4'3‘3, 1, (_,‘,S)B for some § € {0, 1, 2}, we may assume a € {£1, {¢}. If a = 1,
then G = G324.160. If a # 1, then G = G/324,160' |

It follows from Example 1.2 that the subgroups G324, 160 and G/324’ 160 are not
conjugate, because P3 does not contain G324, 160-1nvariant pencils of cubic surfaces.

Ifn=3T= [L% and im(v) = Gy, it follows from Corollary 2.2 that G is conju-
gated to one of the subgroups Geag 704 Or G/648’704. Note that these subgroups are not
conjugated, because the group Ge4s 704 leaves invariant the Fermat cubic surface, but
one can check that there exists no G’648’7O4-invariant cubic surface in P3.

3 Equivariant geometry of projective space: group of order 48

Let G be the subgroup in PGL4(C) generated by

-1 0 0 0 -1 0 0 0 00 1 0 01 0 0
0 1 0 0 0 -1 0 0 1 000 1 0 00
M=10o o -1 o' o o 1 of'*= o1 0 0o'B=0o 0 0 1
0 0 0 1 0 0 0 I 0 0 0 1 00 1 0O

andletH = ;1,‘21 be the normal subgroup of the group G generated by M, N, B, ABA>.
Then G is the subgroup G4g 50 = u‘é X p that has been introduced in Sect. 2.

Remark 3.1 The subgroup lattice of G is described in [21]. Let us present this descrip-
tion. The subgroup H is the unique subgroup in G that is isomorphic to [lé. Itis normal.
Similarly, the group G contains 16 subgroups that are isomorphic to g3, which are
all conjugated by the Sylow theorem. Up to conjugation, the group G contains 5
subgroups isomorphic to u,, which are all contained in the subgroup H, hence 15
subgroups in total. Finally, up to conjugation, the group G contains exactly 5, 5, 15
subgroups that are isomorphic to 2y, [L;, u%, respectively. Their generators can be
described as follows:

Now, let us the action of G on smooth curves of small genus.
Lemma 3.2 ([7, 50]) Let C be a smooth curve of genus g < 19.

(1) IfH acts faithfully on C, then g > 5 and C is not hyperelliptic.
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Ay (A, B, ABA%), (A, M, N), (A, ABA2N, BMN), (A, ABA’M, BN), (A, ABAZMN, BM)
I (ABAZ%, B, N), (ABA2, BN, M), (ABA%, BM, MN), (ABA%, BM, N), (B, M, N)
u3 (M, N), (B, N), (B, M), (B, MN), (BN, M), (BN, MN),

(BM,N), (B, ABA?), (ABA%, BMN), (ABA2, BM), (ABA%, BN),

(

ABA2N, BM), (ABA2N, BMN), (ABA?’M, BN), (ABA2MN, BM)

(2) Suppose that G acts faithfully on C. Then the G-orbits in C are of lengths 16,
24, 48. Let aj¢ and azs be the number of G-orbits in C of length 16 and 24,
respectively. Then g € {9, 13, 17}, and the possible values of a\¢ and axs are
given in the table

g 9 13 13 13 17 17 17
ae 2 0 0 3 1 1 4
a4 2 1 5 1 0 4 0

Proof By [16, Lemma 2.3], the group H cannot act faithfully on rational or elliptic
curve. Moreover, if H acts faithfully on C and the curve C is hyperelliptic, then
the canonical morphism C — P! is H-equivariant, which is impossible, since neither
u* nor u% can act faithfully on a rational curve. Thus, assertion (1) follows from [39].

Suppose G acts faithfully on C. Then g > 5 by (1), and g # 5 by [40, Proposition
3], since G does not contain elements of order 4. Thus, we conclude that g > 5.

By Remark 3.1, the G-orbits in C are of lengths 16, 24, 48, because the stabilizer
in the group G of a point in C is cyclic. Let c=cC /G, and let ¢ be the genus of
the curve C. Then 2g —2 =48(2¢ — 2) + 32a16 + 24as4 by the Hurwitz’s formula.
This implies (2). m]

Let Q) = {xg + )cl2 + x% + x32 = 0}. Then Q; is the unique G-invariant quadric in
P3. Let
Q) = {x§+x12 =X22 +x32}, Q3 = {xg —x12 =x% —x32}, Q4 = {xg —xlz =x32 —x%},

Qs = {xox2 + x1x3 =0}, Q6 = {x0x3 + x1x2 =0}, Q7 = {xox1 + x2x3 =0},

Qg = {xox2 = x1x3}, Qo = {xox3 = x1x2}, Q9 = {xox1 = x2x3}.

Then Q1, Q2, Q3, Q4, Qs, Op, 97, Qg, Qg, Qo are all H-invariant quadric surfaces
in P3. Observe that these quadric surfaces are smooth, and H acts faithfully on each
of them. These are the ten fundamental quadrics in [31].

Lemma 3.3 Let S be an H-invariant quadric surface in 3. Set

effective H-invariant Q-divisor D ~g —Ks

ap(S) = sup {A eQ

the pair (S, AD) is log canonical for every }
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i.e. the number ay(S) is the a-invariant of the surface S [12, 51]. Then ay(S) = 1.

Proof Fix anisomorphism § = P! x P!. Observe that S does not have H-fixed points,
and the surface S does not contain H-invariant curves of degree (1, 0), (0, 1) or (1, 1).
Indeed, this follows from the fact that P3 does not contain H-fixed points, and it
contains neither H-invariant lines nor H-invariant planes.

Note that | — Kg| has H-invariant curves, these are the restrictions of other H-
invariant quadric surfaces in P3 on S. This shows that a(S) < 1.

Suppose that arg(S) < 1. Then S contains an H-invariant effective Q-divisor D
such that D ~g —Kg, and (S, AD) is not log canonical for some rational number
A < 1. Since the surface S does not contains H-invariant curves of degree (1, 0), (0, 1)
or (1, 1), the locus NKklt(S, AD) is zero-dimensional. Applying the Kollar—Shokurov
connectedness theorem [34, Corollary 5.49], we see that NkIt(S, A D) is a point, which
must be H-fixed. But S does not contain H-fixed points. Contradiction. O

Observe also that G acts naturally on the set
{Q1. @, Q3. Q4. Os. Q6. Q7. Qg. Qo Q0]

and it splits this set into four G-orbits: {Q1}, {Q2, O3, Qa}, {Qs, Qp, Q7}, {Qs, o,
Qio}-

Remark 3.4 Any two distinct H-invariant quadrics in P3 intersect by a quadruple of
lines. By [16, Lemma 2.17], this gives 30 lines, which can be characterized as follows:
for every line among these 30 lines, there is an element g € H such that g pointwise
fixes this line. These lines contains all G-orbits of length 24. See Remark 3.11 for
more details.

Let us describe G-orbits in P3. All G-orbits of length 24 are described in Remark 3.4.
To describe the remaining G-orbits in P3, we let

T4 =Orbg([1:0:0:0]),
T, =Orbg([1:1:1:—1]),
5 = Orbg([1:1:1:1]),
212=Orb(;([0:0:1 )
i, =Orbg([0:0:i :1]),
1y =0rbg(li :i:1:1]),
=1 =Orbg([—i :i:1:1]),
S16 = Orbg ([— 1+«/§i:—1—x/§i:2:0]),
Se = Orbg ([—1 — v/3i : =1 ++/3i : 2: 0]),

216 = Orbg([l c1:1: t]) forr € C\ {1}
Then %4, =), =, Ti2, T,, T,, T/3, Ti6, )¢ are G-orbits of length 4, 4, 4, 12,
12, 12, 12, 16, 16, respectively. Similarly, 2{6 is a G-orbit of length 16 for every
t e C\ {£1}.
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Lemma 3.5 Let X be a G-orbit in P? such that |Z| < 24. Then

e cither X is one of the G-orbits X4, X}, T, X12, B{5, 15, Z5, Z16, Tl
e or ¥ = E’iﬁforsomet e C\ {1}

Proof Let I" be the stabilizer of a point in ¥. Then |I'| > 2. But P? has no H-
fixed points, so that I" is isomorphic to 24, ;L%, [,L% or ;13 by Remark 3.1. Then | 2| €
{4,6,12, 16}.

Ifr = u%, then ' C H, hence P? contains an H-orbit of length 2, which is
impossible, since P3 does not contains H-invariant lines. Hence, [ is isomorphic to
one of the following three groups: 24, [L%, 3. Then |X| € {4, 12, 16}.

Suppose that I' = p3. By Remark 3.1, we may assume that I' = (A). Then the I'"-
fixed points in P3 are the following

[1—+3i:14++3i:2:0],[1++3i:1-+/3:2:0],[0:0:0:1],[1:1:1:7]

for any ¢ € C. Since the stabilizers of the points [0 : 0 : 0 : 1], [1 : 1 : 1 : 1],
[1:1:1:—1]are larger than I', either X is one of the orbits g, 216, or Y = 256
for some t € C \ {£1}.

Now, suppose that ' = 4. By Remark 3.1, the group G contains exactly five
subgroups isomorphic to 24 up to conjugation. Three of these groups are (A, B),
(A, NB), (MA, B). If T is one of these subgroups, then X is one of the G-orbits
X4, X}, XJ, respectively. The remaining subgroups conjugated to 24 are the groups
(A, MB)and (ABA, BN M). One can check that both of them do not have fixed points
in P3.

Finally, we suppose that ' = [,L%. By Remark 3.1, the group G contains 15
subgroups isomorphic to u% up to conjugation. Five subgroups among them are
normal—they are contained in the subgroups of G isomorphic to 2{4. The fixed points
of three of them are contained in the subset ¥4 U X} U X}, and the remaining two nor-
mal subgroups do not fix any point in P>—they leave invariant rulings of the quadric
Ql = IPI X Pl.

To complete the proof, we may assume that I" is not a normal subgroup of
the group G. Up to conjugation, there are ten such subgroups in G by Remark 3.1.
Four of them fix a point in the subset X1, U X1, U X}, U £{%. Up to conjugation, these
are the subgroups

(B,N),(BM, N),(ABA*, BMN),(ABA*M, BN)
respectively. If I' is one of them, then X is one of the G-orbits 212, X/,, Z,, 5.
The remaining 6 subgroups in G that are isomorphic to ;L% are described in
Remark 3.1. For instance, take the subgroup (B, MN) = [L%. This group does not fix

any point in P3, but this subgroup leaves invariant rulings of the quadric Qg = P! x P!,
To be precise, for every [a : b] € P!, the group (B, M N) leaves invariant the line

{axo 4+ bxz = ax; + bx, =0} C Q.
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Moreover, these are all (B, M N )-invariant lines in P3. Similarly, one can also check
that each of the remaining non-normal subgroups in G isomorphic to u% fixes no point
in P3, but it leaves invariant infinitely many lines that are contained in one of the H-
invariant quadrics Q», 93, Q1, Qs, Q¢, Q7, O3, Qo, Q0. This completes the proof
of the lemma. O

Let us describe the normalizer of the subgroup G in the group PGL4(C). To start
with, recall from Sect. 2 that G < Ggg 227 = //,‘2‘ x &3, where Gog 227 is generated by

M,N,A = ,B =

(= e}
- o O O
[=Rel e}
[Nl
(= e}
- o O O

1
0
0
0

[N e el

Similarly, we have G <Goe 70 and G <G 192,955, where Gog 70 = [Lg X g is generated
by

—

M,N,A B, L=

coco |l
co~o
o)
—oc oo

and Gi92,955 = (M, N, A", B, L) = ;LZ x Dy2. Let G 144,184 be the subgroup gener-
ated by

IS S
fr 1 -1 -
MN.ABR=Z| 0 ]

-1 1 1 -1

and let Gagg 10205 = (M, N, A’, B, R). Then G « Glaa1s4 = Ay x Ay and G <
G2gg,1025 = A4 L py.

Let Gsy6,3654 = (M, N, L, A, B',R). Then Gsye,8654 = p3 3 (13 x p3) =
Ay x Ay) X [L%.

Lemma 3.6 The group Gs76.8654 is the normalizer of the group G in PGL4(C).

Proof Let I' be the normalizer of the subgroup G in PGL4(C). Observe that G <
G576.8654- Thus, we have Gs76.8654 C I'. Let us show that I' C G576 8654-

Take any element g € T'. Since X4, X, X} are the only G-orbits of length four
in P3, we see that g must permutes these G-orbits. Therefore, swapping g with g o R
or g o R%, we may assume that 4 is g-invariant. So, composing g with a suitable
element in G197,955, we may assume that g fixes every point in >4. Then

n 0 0 0
lo n 0 o0
§=10 0 1 0
0 0 0 1
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for some non-zero complex numbers 71, #3, 13. Recall that Q is the unique G-invariant
quadric surface in P3, so that Q is g-invariant. This gives us t; = 1, r, = %1,
t3 = £1,sothat g € G192,955 C G576.8654- This shows that I' C G576 8654.

We can also argue as follows. Let 91 C PGL4(C) be the normalizer of the group
H= u4. Then it follows from [4, §123] or [45] that there exists an exact sequence of
groups

l—H-—MN— G — 1.

But H is a normal subgroup in G, Gy 70, G96,227, G192,955, G144,184. G288,1025,
G576.8654, and the images of these groups in G¢ are isomorphic to ps3, g, S3, D12,
M3 X (3, 03 2 Mo, [L% X [L%. Using this, it is not difficult to see that Gs76 8654 1S
the normalizer of the group G. O

Let ﬁ, 6, 696,227 and G 144,184 be the subgroups in GL4(C) defined as follows:

H=(M,N,B, ABA?),

G=(M,N,A,B),
Gos,27 = (M, N, A', B'),
G144184—<M N,A, B, R)

where we consider M, N, A, B, A’, B/, R as elements of GL4(C). These groups
are mapped to the groups H, G, Goe 227 and Gi44,184 via the natural projection
GL4(C) — PGL4(C), and their GAP ID’s are [32,49], [96,204], [192,1493] and
[288,860], respectively.

Note that the groups ]ﬁl 5 696,227, and G 144,184 act naturally linearly on
HOP3, Ops(1)). The corresponding linear representations are irreducible and can
be identified by GAP.

Lemma3.7 Let V be the vector subspace in HO(P3, Op3(4)) consisting of all H-
invariants. Then the vector space V is five-dimensional. Furthermore, it contains all
one-dimensional subrepresentations in the vector space H O3, Op3 (4)) of the groups
G G96 227 and G144 184. Moreover, the following assertions hold:

(1) asa G-representation, the vector space V splits as a sum of 3 trivial represen-
tations and 2 non-isomorphic one-dimensional non-trivial representations;
(ii) asa 596,227—representati0n the spaceV splits as a sum of 3 trivial representations
and 1 two-dimensional irreducible representations;
(iii) as a 6144,184-representation the space V splits as a sum of 5 distinct non-
isomorphic one-dimensional representations.

Proof We used GAP to verify all assertions. O

By Lemma 3.7, P3 contains exactly five G44,184-invariant quartic surfaces [16,
(2.20)]. To describe their defining equations, let
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fi = x5+ 27+ x5+ 43,

fo = 2(xgxf + 2523 + 2523 +x1x3 + xiaF +x3x3)
— (x§ + 2t + 23 +x3) + 8/Bixox1x0x3,

= Z(xgxlz + xéx% + xéx% + xlzx% + x%x% + x%x%)
— (x§ + 2 + 3 +x3) — 8/Bixgxx0x3,

fa= (=14 V3D (5523 — xgaF — xiag + x{ag)
— 2(xgx% — x%x% - xlzx% + x%x%)

fs=(-1—- \/gi)(xgxz xéx% xlzx% —i—x%xg)
= 2(xgaf — xgd — xixF +x3x3),

andlet Sy = {f2 = 0}, S5 = (fs = 0}, S4 = { /s = 0}, S5 = {f5 = 0. Then

e 201, 82, 83, S4, S5 are G144,184-invariant quartic surfaces;
e the surfaces S», §3, S4, S5 are irreducible;
e one has Sing(S>) = Sing(S3) = 12 and Sing(S4) = Sing(S5) = T4 U X, U X},

By [16, Lemma 3.12], singularities of the surfaces S, S3, S4, S5 are ordinary double
points.

The polynomials f1 , f> and f3 generate a three-dimensional vector space that
contains all G-invariant elements in H° (P3, Op3 (4)). Consider the following basis of
this space:

X0X1X2X3, xgxlz + xgx% + x%x% + x12x22 + x12x32 + x%x%, xé + xi‘ + xé‘ + xé‘.

Using this basis, let us define the net My consisting of quartic surfaces in P3 given
by

axoxix2x3 + b(xgxlz + xéx% + x%x% + x%x% + x12x32 + x%x%)
+c(x8+x?+x§+x§) =0, 3.8)

for[a:b:c] e P2. Then every surface in the net My is G-invariant and Gog 227-
invariant. For [a : b : ¢] = [1 : 0 : 0], we get the surface

= {xpx1x2x3 = 0} € My4.
Similarly, for [a : b : c] =[-8 : —2 : 1], we get another reducible surface
T' = {(x0 + x1 + x2 — x3)(x0 + X1 — X2 4 x3)(x0 — X1 + X2 + x3)(x0 — X1 —x2 — x3) = 0}.
Likewise, for [a : b : c] = [8 : —2 : 1], we get the reducible surface
T" = {(x0 + x1 + x2 + x3)(x0 — X1 — X2 + x3) (x0 + X1 — X2 — X3)(x0 — X1 + x2 — x3) = 0}.
Finally, for [a : b : ¢] = [0 : 2 : 1], we get the non-reduced surface 2Q; € M.
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Lemma 3.9 The following assertion holds:

(1) the base locus of the net My is the set 16 U 216,

(ii) the only reducible surfaces in My are T, T', T", 29,
(iii) every irreducible surface in My has at most isolated ordinary double points,
@iv) if S is a surface given by (3.8), then S is singular if and only if

c(b+2c)(b—2c)(a+2b—4c)(a—2b+4c)(a— 6D
—4¢)(a + 6b + 4c)(a*c + 4b> — 12b%c + 16¢%) = 0,

(v) if S is an irreducible singular surface given by (3.8), then

o cither a*c + 4b> — 12b%c + 16¢3 # 0, and Sing(S) is described in Table 1,
o ora’c+4b3 —12b%c+16¢3 = 0, and Sing(S) = ! fort € C\{£1, £/3i}
which is uniquely determined by [a : b : c¢] = 263 +6t:—12—1:1].

Proof Assertion (i) is easy to check. Assertion (ii) follows from Remark 3.5 and the
fact that Q; is the only G-invariant quadric surface in P>,

Assertion (iv) has been proved in [45], see [6, Proposition 3.1], [22, Theo-
rem 10.3.18], [24, Proposition 2.1], [27, Lemma 2.21].

To prove assertions (iii) and (v), let S be an irreducible quartic surface given by
(3.8). If S has non-isolated singularities, the one-dimensional locus of Sing(S) is
either a line, or a (possibly singular) conic, or a pair of skew lines, or a (possibly
singular) spatial cubic curve [53], which is impossible, because G is an imprimitive
subgroup in PGL4(C) that does not leave a pair of skew lines invariant, and P3 does
contain G-invariant smooth twisted cubic curves, since PGL,(C) does not contain
finite subgroups isomorphic to G. Thus, § is normal. Then S has at most two non-Du
Val singular points [52, Theorem 1], so S has Du Val singularities by Lemma 3.5, and
its minimal resolution is a K3 surface. Now using the fact that the rank of the Picard
group of a smooth K3 surface is at most 20 and applying Lemma 3.5 again, we see that
either S is smooth, or S has isolated ordinary double points, and one of the following
four cases holds:

Sing(S) is a G-orbit of length 4, 12 or 16,

Sing(S) is a union of a G-orbit of length 4 and a G-orbit of length 12,
Sing(S) is a union of two distinct G-orbits of length 4,

Sing(S) = 24U X, U X).

In particular, this proves (iii).
To prove (v), we take partial derivatives of the polynomial in (3.8), and observe that
the locus Sing(S) is given by

axixyx3 + (Zxox% + 2xox% + 2x0x32)b + 4x80 =0,
axoxax3 + (ngxl + 2x1x§ + 2x1x32)b + 4x13c =0,
axoxix3 + (2x§x2 + Zx%xz + 2x2x32)b + 4x§’c =0,

axoxi1xy + (2x§x3 + 2x12x3 + 2x§x3)b + 4x§c =0.
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In particular, substituting the coordinates of the G-orbits X4, & 4", > Z , we obtain three
equations ¢ = 0,a + 6b + 4c = 0, a — 6b — 4c = 0, respectively. Thus, we see that

e X4 € Sing(S) < c=0,
e X, € Sing(S) <= a+6b+4c=0,
e X € Sing(S) < a—6b—4c=0.

This gives Sing(S) # ¥4 U X} U X}, and the following assertions:

e Sing(S) =34 UX) < [a:b:0]=[6:1:0],
e Sing($) =S4 UX) <= [a:b:0]=[-6:1:0],
e Sing(§) =X,UX) < [a:b:c]=[0:-2:3].

Similarly, if Sing(S) = 216 fort € C\ {£1},thenc # 0,a+4+6b # O,
a —4 — 6b # 0, because none of the G-orbits X4, X, X} is contained in Sing(S).
Hence, if Sing(S) = i, then ¢ # 0 and

at + 21> + 4)b + 4¢c = 0,
det® + 6bt +a = 0.

Then Sing(S) = X{y < [a :b:cl =208 +6t: —1>—1:1]fort €
C\{=1, £+/3i}. Here, have r # +1 by assumption imposed on the G-orbit 2{6, and
we have ¢ # ++/3i, since otherwise we would have [a : b : ¢] = [0 : 2 : 1] and
S = 20y, but S is irreducible. Note that [a : b : ¢] = [2¢3 + 6t : —2—1: 1] is
arational parametrization of the singular irreducible cubic curve in ]P’g, b.c thatis given
by the equation a’c + 4b> — 12b%c + 16¢> = 0, and the resultant of the polynomials
at + (2t? + 4)b + 4c and 4ct> + 6bt + a is

—4(a’c +4b> — 12b%c + 16¢°)(a + 4c + 6b)(a — 4 — 6b).

This shows that Sing(S) = X!, <= a’c +4b3 — 12b%c + 16¢> = 0.

Finally, if a’c + 4b3 — 12b%¢ + 16¢3 # 0, then substituting coordinates of the
G-orbits X4, X), XJ, 12, X5, X1, B3, 16, ¢ into the defining equations of the
locus Sing(S), we obtain all possibilities for Sing(.S) described in Table 1. This proves
). m|

Corollary 3.10 Let S be an irreducible surface in Ma, and let 7 : S — Sbheits minimal
resolution of singularities. Then S is a K3 surface, the action of the group G lifts to S,
all G-orbits in S are of length 16, 24 or 48, and S contains exactly 6 orbits of length
16. In particular, if S contains a G-orbit of length < 16, then S is singular at this
G-orbit.

Proof All assertions follow from Lemma 3.9 and explicit computations, and the asser-

tion about G-orbits follows from [54, Theorem 3], since the G-action on S is symplectic
[29]. O
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Table 1 Singular locus of an irreducible quartic surface S C PP3 such that the surface S is given by (3.8)
with a2c 4 4b3 — 12b%¢ + 16¢3 # 0

Condition on [a : b : c] Additional conditions on [a : b : c] Sing(S)
c=0 [a:b:0]#[x£6:1:0],[£2:1:0] X4
[a:b:0]=[6:1:0] T4UT)
[a:b:0]=[-6:1:0] T4Uzy
[a:b:0]=[2:1:0] E4U2fé
[a:b:0]=[-2:1:0] T4U T,
c#0andb+2c=0 [a:b:c]#[£8:-2:1] 2
c#0andb—-2c=0 [a:b:c]l#[£16:2:1] 2/12
[a:b:cl=[16:2:1] THUZ)
[a:b:c]l=[-16:2:1] T, Uz
c#0anda+2b—4c=0 [a:b:c]#[4:0:1] 21/2
[a:b:cl=[4:0:1] =, Ux)
c#0anda —2b+4c=0 [a:b:cl#[-4:0:1] =0
[a:b:cl=[-4:0:1] zhusy
c#0anda —6b —4c=0 [a:b:c]#[0:—-2:3],[16:2:1],[4:0:1] 24’1
[a:b:c]=[0:-2:3] E:‘UEZ
c#0anda+6b+4c=0 [a:b:cl#[—16:2:1][-4:0:1],[0: =2 :3] EZ

Now, let us describe all G-irreducible curves in P? that are unions of at most 15
lines. Let Lo = Sing(7), Ly = Sing(7"), L{ = Sing(7"). Then L, Ly, Lf are
G-irreducible curves, and each of them is a union of six lines. We have

T4 = Sing(Ls),

Observe also that
Y2 25605/6 =£6ﬂ£g ZE%ﬂﬁg,

so that the surfaces 7, 7’, 7" form a configuration which is known as a desmic system,
see [42, § IV] and [43, § 3.19]. Note also that

£inQr =z,

Now, we let £4 be the G-irreducible curve in P*> whose irreducible component is
the line
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{2x0 4+ (1 + +/3i)x2 — (1 = V3i)x3 = 2x1 + (1 — v3i)x2 + (1 + v3i)x3 = 0},
let £, be the G-irreducible curve in IP3 whose irreducible component is the line
[2x0 4+ (1 = V/3i)x2 — (1 + V3i)x3 = 2x1 + (1 + v3i)x2 + (1 — V3i)x3 = 0},
let £} be the G-irreducible curve in P* whose irreducible component is the line
[2x0 — (1 = V/3i)x2 + (1 + V3i)x3 = 2x1 + (1 + v3i)x2 + (1 — V/3i)x3 = 0},
let £}}’ be the G-irreducible curve in IP? whose irreducible component is the line
{2x0 — (1 4+ v/3i)x2 + (1 — V/3i)xs = 2x1 + (1 — v/3D)x2 + (1 + +/3i)x3 = 0},
let £’ be the G-irreducible curve in IP? whose irreducible component is the line
{xo +ixy=x14+ix3 = O},
and let £} be the G-irreducible curve inin P? whose irreducible component is the line
{xo +ix3=x1+ixy = 0}.

Then Ly, £}, L)), L)' consist of 4 disjoint lines, £¢" and L¢” consist of 6 disjoint lines,

and all these six G-irreducible reducible curves are contained in the quadric Q;.

Remark 3.11 Since H contains all elements of order 2 in G, it follows from [16, § 2]
that all G-orbits of length 24 in the space IP? are contained in the union £ U LyULLU
Lg'ULE". Vice versa, if P isapointin £6ULg UL UL ULE", then either its G-orbit
has length 24, or the point P is contained in the union £, UXjUX/UXpUX,UX],.

Let us present the intersections of the curves Ly, [,21,

7 "
4 4 £67

1"eopnr i
6° 6”66 :

N z, cy oy oy cy

Ly L4 2 SPAL = 2 Langy

c, o z, 16 5 o cyncy
AL Si6 cl o cincy o

Yo 5 o oy cyncy 2

oo cincy  cracy o S, UT),Us]
o cancy g o o S,USLUSl

where the intersections L4 N L¢", L, N LE", LN LE', L) N LY are G-orbits of length

24,
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Lemma3.12 Let C be a G-irreducible curve in P? such that C is a union of d <
15 lines. Then either C is one of the curves L4, L}, LY, L)', Lo, Ly, Lg, L, Lg", or
C is a disjoint union of 12 lines, and there exists an H-invariant quadric surface that
contains at least four irreducible components of the curve C.

Proof Let £ be an irreducible component of the curve C, let I' = Stabg (£). Then
IT'| > 4. Since P? contains no H-invariant lines, one has I' = Q4 or ' = [L% or
r= u% by Remark 3.1. Therefore, we see that d € {4, 6, 12}.

By Remark 3.1, the group G contains five subgroups isomorphic to 24 up to con-
jugation. We explicitly described the generators of these subgroups in the proof of
Lemma 3.5. Three of them are stabilizers of a point in the G-orbits X4, Eg, EZ{ , and
none of them leaves a line in P? invariant, hence I is not one of them. If " is one of
the two remaining subgroups in G isomorphic to 214, then I' leaves invariant exactly
two lines in P3—these are either components of the curves £4 and L), or components
of the curves £} and L})’. Thus, if I' = 24, then C is one of the curves L4, L}, L},
£///.

4N ow, we suppose that I = u%. Up to conjugation, the group G contains exactly five
subgroups isomorphic to [L%. Their generators are explicitly described in Remark 3.1.
For instance, consider the subgroup (B, M, N). This subgroup leaves invariant exactly
two lines in P?—the lines {xo = x; = 0} and {x, = x3 = 0}, which are irreducible
components of the curve Lg. Therefore, if " is conjugated to (B, M, N), one has C =
Le. Similarly, if I" is conjugated to one of the remaining four subgroups isomorphic
to [L%, then C is one of the curves Ly, L¢, L or Lg".

Hence, we may assume that I’ = [,L% and d = 12. Arguing as in the proof of
Lemma 3.5, we see that I" fixes no points in P>, Up to conjugation, there are eight
possibilities for I', which are described in Remark 3.1. In each case, I"-invariant lines
span one of the quadric surfaces Q1, Q», 93, Q4, Qs, 9g, Q7, O3, Qo, Q10. Thus,
we conclude that

10
tcl o
i=1
Moreover, explicit computations show that the curve C is a disjoint union of 12 lines,

and either C C Qj, or one of the following three possibilities hold:

(1) C C Q2 U Q3 U Qy, and each quadric Qj, Q3, Q4 contains 4 components of

C;
(i) C C 95U Qg U 97, and each quadric Qs, Qg, Q7 contains 4 components of
C;
(i) C C Qg U Qg U Qjo, and each quadric Qg, Qg, Q19 contains 4 components
of C.
This completes the proof of the lemma. O

Now, let us prove one auxiliary results that will be used later.
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Lemma 3.13 Let Mg be the linear system that is generated by the sextic surfaces
391, Q1+ 8, Q1 + 53, {xg +x0 4 x84+ x5 = 0}.

Then M is three-dimensional, its base locus is Lg' U L{", and Mg|g, = L{' + L.
If S is a G-invariant sextic surface in 3, then S € MgorS = Q1+Ss0rS = Q1 +35s.

Proof All assertions about M are easy and can be checked using explicit compu-
tations. Arguing as in the proof of Lemma 3.7, we obtain the remaining assertion.
O

Now, let us describe all G-irreducible curves in P that consist of 4 irreducible con-
ics. Let Cé be the G-irreducible curve in P* whose irreducible component is the conic

{xo =x12 +x§ +)c32 = 0},
let C§ be the G-irreducible curve whose irreducible component is the conic
{x0 = 2x7 — (1 = V3i)x? — (1 + /3i)x} = 0},
and let Cé’ be the G-irreducible curve whose irreducible component is the conic
{x0 =2x} — (1 +V3)x3 — (1 — V3i)x2 = 0).

ThenC}, Cg and Cg' are union of 4 irreducible conics that are contained in the surface 7.
Moreover, one has Cé = 7 N Qy, which implies that Cé is connected. On the other
hand, the curves C% and Cg’ are disjoint unions of 4 conics.

Recall that R is a generator of the group G 44,184 defined earlier. Let

el = R(C). G}’ = R(GD). ¢}’ = R(CY).
and let
= (.G = (). = 1)

Then Cl’/, Cz’/, Cg " are contained in 7”, and the curves Cé’”, Cé’”, Cg " are contained

in 7”. One has Cé’/ =7'NQ; and Cé’” = 7" N Qy, so that both curves Cé’/ and Cé’”
are connected. On the other hand, the curves C; 4 Cg’ . Cé ua C;”// are disjoint unions

of 4 conics.

Lemma 3.14 Let C be a G-irreducible curve in P? that consists of at most 7 irreducible
conics. Then C is one of the curves CSI, C3, (3, Cl’/, CZ’/, Cg’/, CSI’//, Cg’//, Cg’”.

Proof Let I' be the stabilizer of an irreducible component of the G-irreducible curve
C, and let IT be the hyperplane in P3 that contains this irreducible component. Then
IT'| > 6, and the plane IT is I'-invariant. This implies that P> must contain a I'-fixed
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point, so that it follows from Remark 3.1 and Lemma 3.5 that ' = 24, and the plane I1
is an irreducible component of one of the surfaces 7, 7', 7”. Now, we can explicitly
find all I"-invariant conics in IT to obtain the required result. O

Corollary 3.15 Let C be a G-irreducible curve contained in T UT' U T" of degree
<3 }/5. Then C is one of the curves L¢, Lg, Lg, Cé, Cg, Cg’, Cé”, Cé’/, Cg’/, Cg’”, Cé’”,
Cy.

8

Proof Arguing as in the proof of Lemma 3.14, we obtain the required assertion. 0O
Now, we are ready to prove the following result:

Lemma 3.16 Let C be a reducible G-irreducible curve in the quadric Q1 of degree
< 15. Then either C is one of the G-irreducible curves La, L}, L}, L)', L¢', L, Cg,

Cé’/, Cé’”, or the curve C is a union of 12 disjoint lines.

Proof Let r be the number of irreducible components of the curve C, let Cy, ..., C,
be irreducible components of the curve C, let d be the degree of the curve C1, and let
I" be the stabilizer of the curve C in the group G. Then I is a subgroup in G of index
r < ld—S. By Lemmas 3.12 and 3.14, we may assume that d > 3, which gives r < 5,
so that it follows from Remark 3.1 that we have the following possibilities:

(1) r=3,T=Handd € {3,4, 5},
2)r=4,T=%24andd = 3.

In each case, the group I' acts faithfully on the curve Cj.

Let us consider the curve C; as a divisor of degree (a, b) in the quadric Q; =
P! x P!, where a and b are some positive integers such that a +b = d. Without loss of
generality, we may assume thata < b. If r = 3, then C is an irreducible H-invariant
curve and

(a,b) € {(1,2), (1,3),(1,4), (2,2), (2,3)},

which implies that the genus of the normalization of the curve Cj is at most 2, which
contradicts Lemma 3.2. Hence, we see that » # 3.

Thus, we have r = 4. Then I' = 204 and (a, b) = (1, 2), hence C; is a smooth
twisted cubic curve. Using GAP, one can check that Q; is the unique I'-invariant
quadric in P3, and P3 does not contain pencils of I'-invariant quadrics. Since all
quadrics passing through the curve C; form a net, we conclude that this net does not
contain Q1, otherwise we would have a pencil of quadrics surfaces passing through
the curve Cy. This is a contradiction, since C; C Qj by assumption. O

Now, we are ready to prove the following result:

Lemma 3.17 Let C be a reducible G-irreducible curve in P of degree d < 15 that is
not contained in Q1 UT UT' UT". Then d = 12, and either C is a union of twelve
lines, or the curve C is a union of four twisted cubic curves.
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Proof Since C is not contained in the quadric Q;, we see that Q; - C is a G-invariant
one-cycle in Q of degree 2d < 30. One the other hand, we know that all G-orbits in
the quadric Q; are of lengths 12, 16 and 24. Hence, one has

30 > 2d = 12a + 16b

for some non-negative integers a and b. Therefore, we conclude thatd € {6, 8, 12, 14}.

By Lemmas 3.12 and 3.14, we may assume that components of the curve C are
neither lines nor conics. Since G does not contain subgroups of index 2, we see that
d =12 and

e cither C is a union of four twisted cubic curves,
e or C is a union of three irreducible curves of degree 4.

Moreover, in the latter case, the subgroup H is the stabilizer in G of every irre-
ducible component of the curve C, because H is the only subgroup in G of index 3
by Remark 3.1. One the other hand, it follows from Lemma 3.2 that H cannot act
faithfully on a rational curve, and H cannot act faithfully on a smooth elliptic curve.
Hence, we conclude that irreducible components of the curve C cannot be curves in
IP? of degree 4, which implies that the curve C is a union of four twisted cubic curves
as claimed. O

From the proof of Lemma 3.12, we know that P? contains infinitely many G-
irreducible curves that are unions of twelve lines. Similarly, one can show that P3
contains infinitely many G-irreducible curves that are unions of four twisted cubics.

Example 3.18 Let L = {xo +ix; = x; +ix3 = 0}, let Py, = [i : s : si : 1] for
s € CU {oo}, and let I be the subgroup in G generated by ABA and BMN. Then L
is an irreducible component of the curve E’ﬁ”, P, € L,T" = 2y, and Orbr (Py) consists
of the six points

[—isc—icsc][isosic1],[1:iziscs],
[—is:—1cizs] [—sesic—iz1],[—izis:—1:5],

which are contained in six distinct irreducible components of the G-irreducible curve
L¢'. Suppose, in addition, that s 7 # + #i and s # 1%5 + 1_T“ﬁi. Then
Py ¢ L)' U L], and no four points in the I'-orbit Orbr (Ps) are coplanar. Let C be
the unique twisted cubic in IP3 that contains Orbr (Py), and let C1, be the G-irreducible
curve in P3 whose irreducible component is the curve Cs. Then Cy = {h) = hy =
h3 i QWheEE 4 i)s — i)a2 — 2is® + 2+ 20)s — Dxoxt + Qis® — 2+ 20)s — 2)x3x0 —
—(2 4+ (L4 )5 — Dxf + (=208 4+ 2+ 20)s + 2)xox1 + (7 + (1 +i)s —i)x3 +
—Q2is? + Q2 4 2i)s + 2x3x2 — (52 4+ (1 +i)s — i)x3,
hy = (=% = (14 i)s 4+ i)x3 + (2is? — 2 + 2i)s — 2)xox1 + (=2is> — (24 2i)s + 2)x2x0 +
+(% + (L +i)s — D)x} — is? 4+ 2+ 2i)s — Dxaxy + (s> + (1 +i)s —i)x3 +
—Qis? — (24 2i)s — 2)x3x2 — (2 4+ (1 +i)s — i)x3,
hy = (52 4+ (1 +i)s — i)xd + (2is® — (24 2i)s — 2)xox2 + (2is® + (2 + 2i)s — 2)x3x0 +
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2+ (1 +i)s — D)x} + (2is? + 2+ 2i)s — 2)x1x2 —
—Qis* = 24 2i)s — 2)x3x1 — (5% + (L +i)s — D)xF — (5% + (1 +i)s — i)x3.

The curve Cj, is aunion of four twisted cubic curves. For general choice of s € CU{o0},
these twisted curves are disjoint, but for some s € CU {oo} the cubics are not disjoint.
To be precise, the curve C}, is a disjoint union of four twisted cubic curves if and only
if

—1iﬁ+—1iﬁi 1i¢§_1i¢§i —1i¢§+1iﬁi}

s e {oo,O,:tl,:ti, ) ,
2 2 2 2 2 2

For instance, one has Sing(C{5) = £}, and C is given by

xé — 2ixpxy + 2ixzxg — xlz —2ix1x2 + x% — 2ixpx3 — x% =0,
xé — 2ixpx1 + 2ixpxy — x12 + 2ix1x3 — x% + 2ixyx3 + x% =0,

xé + 2ixgxy + 2ix3x9 + x12 + 2ix1xp — 2ix1Xx3 — x% — x% =0.

In this case, two irreducible component of the curve C{5 intersect by two points in
¥1,, and every irreducible component of the curve C{S contains four points in the G-
orbit X{,. Likewise, if s = %@ + #5
contain X4.

i, then all components of the curve C},

Let us present some irreducible G-invariant curves in Q.

Example 3.19 Recall that Q; is contained in the net My, so that My|g, is a pencil,
whose base locus is X6 U 216 by Lemma 3.9. Note that all curves in My|g, are
G-invariant. Moreover, using Remark 3.1 and Lemmas 3.2 and 3.14 one can show
that every curve in the pencil My|g, is reduced, and all reducible curves in My|g,
are

Tlg, =C. T'lg, =C5". T"lo, = Gy S2lo, = L4+ L] S3lg, = La+ L.

Since the arithmetic genus of irreducible curves in My|g, is 9, it follows from
Lemma 3.5 that all remaining curves in My|g, are smooth irreducible G-invariant
curves of genus 9.

Example 3.20 Observe that
(S3+ S|, = La + Ly +2L5 ~2L4 + 2L} = 255]g,,
(S24 Ss)lo, = La+ Ly +2L) ~ 2L, + 2L =2S4]0,.

(853 4+ S5)lg, =2L4 + EZ + ﬁZ/ ~ Zﬁﬁt + 2£Z = 284l90,,
(S2+ S4)lg, = 2E2 + EZ + EX/ ~2L4 + 2/321” =285]9,.

Using this, we can create 4 pencils on the quadric Q; that consist of G-invariant
curves. These are the pencils generated by £ + 2L} and L4 + 2L}, by L4 + 2L}
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and £ +2L),by 2L4 + L) and 2L, + L], by 2L}, + L} and 2L4 + L], respectively.
One can show that general curves in these four pencils are smooth irreducible G-
invariant curves of genus 21. Moreover, one can also check that each pencil contains
three irreducible singular curves whose singular loci are the G-orbits X/,, X7, £},
respectively. These curves have ordinary nodes as singularities, so their normalizations
have genus 9.

Now, we are ready to describe irreducible G-irreducible curves in Q1 of small
degree.

Lemma 3.21 Let C be an irreducible G-invariant curve in Q1 = P! x P! of degree
(a,b), where a and b are some non-negative integers. Suppose, in addition, that
a + b < 15. Then one of the following three possibilities holds:

e (a,b) = (4,4), and C is a smooth curve of genus 9,

e (a,b) = (4,8)or (a,b) = (8,4), and C is a smooth curve of genus 21,

e (a,b) = (4,8) or (a,b) = (8,4), and C is a singular curve with 12 ordinary
nodes, and the normalization of the curve C has genus 9.

Proof Without loss of generality, we may assume that £4 is a divisor in Q; of
degree (0, 4), so that EZ is a divisor of degree (4, 0). Observe also that the quadric Q;
is Gog,227-invariant, and group Goe 227 maps C to a curve of degree (b, a). Thus, we
may assume that a < b.

By Lemma 3.2, the curve C is irrational, it is not elliptic and it is not hyperelliptic,
so that we have a > 3. Moreover, if a is odd, then C - £4 = 4a is not divisible by 8,
which contradicts Lemma 3.5, because all G-orbits in the curve £4 have lengths 16, 24
or48. Hence, we see thata is even. Similarly, we see that b is also even, because C~£Z =
4b. Therefore, we conclude that (a, b) € {(4,4), (4, 6), (4, 8), (4, 10), (6, 6), (6, 8)}.

Let p,(C) be the arithmetic genus of the curve C. Then p,(C) =ab—a —b+1,
hence

(a, b, pa(O)) € {(4, 4,9), (4,6, 15), (4, 8,21), (4, 10, 27), (6, 6, 25), (6, 8, 35)}.

I;et 7:C — C be the normagzation of the curve C, let g be the genus of the curve
C. Then the G-action lifts to C, and it follows from Lemma 3.5 that

0< g =pa(C) — 120 — 168
for some integers @« > 0 and 8 > 0. If (a, b) = (4,4), then g = p,(C), hence C is
smooth. Similarly, if (a, b) = (4, 6), then we have g € {3, 15}, which is impossible
by Lemma 3.2. Likewise, if (a, b) = (4, 10) or (a, b) = (6, 8), then
g€ {3,7,11,15,19, 23,27, 35},

so that g € {23,27,35} by Lemma 3.2. Moreover, arguing as in the proof of
Lemma 3.2, we see that g ¢ {23, 27, 35}. Hence, we may assume that (a, b) = (4, 8)
or (a, b) = (6, 6).
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If (a,b) = (6,6), then the curve C is cut out on Q; by a G-invariant sextic
surface in P3, which gives C = Ly + L¢" by Lemma 3.13, which is absurd, since C
is irreducible.

Therefore, we have (a, b) = (4, 8). If C is smooth, then we are done. If C is
singular, then it follows from g = 21 — 12« — 168 and Lemma 3.2 that g = 9, which
implies that the curve C has 12 ordinary nodes as required. O

Now, we deal with irreducible G-invariant curves in P3 that are not contained in

Q1.

Lemma 3.22 Let C be an irreducible G-invariant curve in P3 of degree d < 15 such
that the curve C is not contained in Q1. Then C is smooth, d = 12, its genus is 9, 13
or 17, the curve C is contained in a surface in My that has at most ordinary double
points, and the curve C does not contain G-orbits 4, X}, X}, X2, },, X5, 5.

Proof 1f C is smooth, then C does not contain X4, X, ¥}, £12, X1,, X1,, /5, because
stabilizers in G of smooth points in C are cyclic groups [26, Lemma 2.7].

Recall from Lemma 3.5 that G-orbits in the quadric Q; are of length 12, 16, 24,
48, and the G-orbits of length 12 in Q; are X{,, X{,, X{5. On the other hand, if C
contains one of these G-orbits of length 12, then C must be singular at it. Thus, we
conclude that

2d = Q1 -C =24a+ 16b

for some non-negative integers a and b. Hence, either d = 8 or d = 12.
Let P and Q be two general points in C, and let S be a surface in the net My that
passes through P and Q. Then C C S, since otherwise we would have

48 >4d = S - C > |Orbg(P)| + |Orbg (Q)| = 96,

because G-orbits of the points P and Q are of length 48.

Observe that S is irreducible by Lemma 3.9, since C is not contained in Qy, 7,
7', T". Thus, it follows from Lemma 3.9 that S has at most isolated ordinary double
points.

Let 7: S — S be the minimal resolution of singularities of the G-invariant sur-
face S. Then § is a smooth K3 surface, and the action of the group G lifts to the surface
S.Let Hbea general hyperplane section of the surface S, let H = 7*(H), let C be
the proper traLlsfonn of the curve C on the surface S, let p, (C) be the arithmetic genus
of the curve C, and let g be the genus of the normalization of the curve C. Then

N2
> (H-C)" _ ~, ~
362 3 =5 20 =2p(0) =222 -2

by the Hodge index theorem, hence g < pa(5) < 19. Then ¢ € {9, 13, 17} by
Lemma 3.2. But it follows from Corollary 3.10 that G-orbits in S are of length 16, 24
or 48. Then

19> pa(C) = g + 16a +24b > 9
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for some non-negative integers a and b. This implies that pa(E) = g, hence Cis
smooth. Hence, we have Sing(C) C Sing(S).

If d = 8, then the Hodge index theorem gives ¢ = 9 and 64 = (H C)2 H2C2
4C?, so that C ~Q 2H, which implies that C ~ 2H, because the group Plc(S) is
torsion free. Hence, if d = 8, then C is contained in the smooth locus of the surface
S, and C ~ 2H. On the other hand, the restriction map

HO(P?, Op3(2)) — HO(S, Os(2H))

is a surjective map of G -representations. Therefore, if d = §,then wehave C = SNQy,
which is impossible by our assumption. Hence, we see that d # 8.

To complete the proof, we must show that C is smooth. Suppose that it is not smooth.
Then the surface S is also singular, because Sing(C) C Sing(S). By Lemma 3.9, we
have the following possibilities:

(i) either Sing(S) is a G-orbit of length 16,
(ii) or Sing(S) is a G-orbit of length 12,
(iii) or Sing(S) is a G-orbit of length 4,
(iv) or Sing(S) is a union of a G-orbit of length 12 and a G-orbit of length 4,
(v) or Sing(S) is a union of a G-orbit of length 12 and a G-orbit of length 4,
(vi) or Sing(S) is a union of two G-orbits of length 4.

Moreover, if C contains a G-orbit of length 4 or 12, then C is singular at this orbit,
because stabilizers in G of smooth points in C are cyclic.

Let Eq, ..., E; be G-irreducible -exceptional curves. Then E, ..., Ey are dis-
joint unions of (—2)-curves, and w(Ey), ..., w(Ey) are G-orbits in Sing(S). One has
k

C~om*(C) =Y mE;
i=1

for some non-negative rational numbers m1, ..., my such that 2my, . .., 2my are inte-
gers. Note that m; > 0 if and only if C contains the G-orbits 7w (E;). Moreover, one
has

1
m; = 3 if and only if C is smooth at the points of the G-orbits 7 (E;).

Therefore, if w(E;) C Sing(C), then m; > 1. Furthermore, if all my, ..., my are
integers, then the curve C is a Cartier divisor on the surface S.
Without loss of generality, we may assume that 7w (E7) C Sing(C). Then

c? C2+Zm2E2 c? - 2Zm2|n(E){ —2m?|m(En)| < C* —2|m(E)|.
i=1 i=1

Applying Hodge index theorem to S, we get C> < 36, hence 2g — 2 = C? <
36 — 2|7 (E)|.
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Thus, if 7(E1) is a G-orbit of length 12 or 16, then 2g — 2 = C? < 12, so that
g < 7, which is impossible by Lemma 3.2. Hence, we see that w (E1) is a G-orbits of
length 4.

Write E; = Ell + E12 + E13 + E;‘, where Ell, Ef, El3 and Ef are disjoint (—2)-
curves. Let I" be the stabilizer in G of the curve E|. Then I' = 24, and the group
I acts faithfully on the curve E } by Corollary 3.10, so that the smallest I'-orbit in
Ef = P! is of length 4. Hence, the intersection C N E } consists of at least 4 points,

which implies that
k
4<|CNE}<C-Ef = (n*(C) —Zm,-Ei) El =2m;,

sothatm; > 2. Then2g —2 = C? < 36 — 2m?|m(E))| = 36 — 8m? < 4, so that
g < 3, which is impossible by Lemma 3.2. O

Unfortunately, we do not know whether P3 contains irreducible smooth G-invariant
curves of degree 12 and genus 9 or 17. On the other hand, we know that P3 contains
infinitely many irreducible smooth G-invariant curves of degree 12 and genus 13.

Example 3.23 By [16, Theorem 3.22], P? contains four irreducible G 144,184-Invariant
smooth curves of degree 12 and genus 13. These four curves can be constructed as
follows. Observe that S>|o, = L, + L, S3l0, = L4+ L], Salg, = L + L]} and
Ss|g, = L4+ L}'. Hence, none of the intersections S» N S4, S> N S5, S3N S4, S3N S5
is an irreducible curve. Moreover, it follows from [16, Lemma 3.19] that

So NSy = Ea—i—@ln,
Sy NS5 = ,CZ/ + /l/év
S50 i = L + €.
S3N S5 = L4+ <o,

where €1, €),, €,, &7} are distinct smooth irreducible curves of degree 12 and
genus 13. Now, we can use the same idea to construct infinitely many irreducible
G-invariant smooth curves of degree 12 and genus 13. For instance, if A is a general
complex number, then

IAfl+ f3=f5 =0}

splits as a union of the G-invariant reducible curve £4 and a smooth G-invariant
irreducible curve of degree 12 and genus 13.

Irreducible G-invariant curves of degree 12 from Example 3.23 are cut out by
sextics. We think that this should be true for every G-invariant irreducible curve in P3
of degree 12 which is not contained in Q1. But we are unable to show this ®. Instead,
we prove
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Lemma 3.24 Let C be an irreducible G-invariant curve of degree 12 in P3 that is not
contained in Q1, and let D be a linear subsystem in |Op3 (6)| that consists of surfaces
passing through the curve C. Then D is non-empty, D does not have fixed components,
the curve C is the only curve that is contained in the base locus of the linear system
D. Moreover, if D and D’ are general surfaces in D, then (D - D')¢ = 1.

Proof 1t follows from Lemma 3.22 that the curve C is smooth, and its genus is 9,
13 or 17. Moreover, it follows from Lemma 3.22 that the curve C is contained in
an irreducible quartic surface in § € My that has at most ordinary double points.
Then S + Q € D for every quadric @ € |Op3(2)|. Thus, the base locus of D is
contained in S.

Let Z¢ be the ideal sheaf of the curve C. The surfaces in D are cut out by
the global sections in H O(O]pz (6) ® Z¢). On the other hand, we have the following
exact sequence:

0 — HO(Op:(6) ® Ic) —> H(Ops(6)) — H(Ops (6)] )
Thus, using the Riemann—Roch theorem and Serre duality, we see that
h0(Ops (6) ® Ic) = h°(Op3(6)) — h°(Ops (6) | .) = 84 — h°(Op3(6)| ) = 11 + g,

where g is the genus of the curve C. Therefore, the dimension of D is at least 10 + g.
Then the dimension of the linear system D]y is at least g, because hO(O]Pﬁ 2)) = 10.

Let Mg be the linear system introduced in Lemma 3.13. By Lemma 3.13, this
linear system is three-dimensional, every surface in Mg is G-invariant, and Mg | o=
L+ L, so that the base locus of the linear system Mg is a union of the curves
L¢" and L”. We claim that Mg contains a possibly reducible surface such that it
passes through C, but S is not its irreducible component. Indeed, let P and Q be two
sufficiently general points in the curve C, and let Sg and Sg be two distinct surfaces
in M that both pass through P and Q. If C ¢ Sg, then

72 =S5 C = |Orbg(P)| + |Orbg (Q)| = 96,

which is absurd. Therefore, we conclude that C C Se. Similarly, we see that C C
Se N Sé. On the other hand, the quartic surface S is not contained in Sg N Sé, because
otherwise we would have S¢ = Sé = S+ Qj, since Q) is the only G-invariant quadric
surface in P3. Hence, either S ¢ Sg or S ¢ Sg. Without loss of generality, we may
assume that S is not an irreducible component of the surface Sg.

We see that Sg| s = C+ Z for some G-invariant curve Z. Observe that deg(Z) = 12.
If Z is not G-irreducible, then it follows from Corollary 3.15 and Lemmas 3.17 and
3.22 that at least one irreducible component of the curve Z is contained in the quadric
Q1, because the curves Lg, E%, Eg are not contained in S. On the other hand, we know
that

S6|Q1 — £/6// +LUH,
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and neither £’ nor £¢” are contained in S. Hence, we conclude that Z is G-irreducible.
A priori, we may have Z = C.

Since S¢ C D, the base locus of the linear system D is contained in S¢S = CUZ.
If Z is contained in the base locus of the linear system D, then we have D|g = C + Z,
so that D| is a zero-dimensional linear system. On the other hand, we already proved
earlier that the dimension of D|g is at least g > 13. This shows that C is the only
curve contained in the base locus of the linear system D.

Likewise, we see that D|s # 2C. Thus, for a general surface D € D, one has
(D - S)c = 1. This implies the final assertion of the lemma, since S + Q € D for
every Q € |Op3(2)]. O

Let us conclude this section with one rather technical result.

Proposition 3.25 Let C be a G-irreducible curve in P3 that is different from L, Ly,
L¢, and let D be a linear subsystem in |Ops (n)| that has no fixed components, where
n € Z=o. Then multc (D) < §. Moreover; one has multg6 (D) + multgﬁ/ (D) < 3.

Proof First, let us prove the last assertion. To do this, we let

Ly = {xo+x2 =x —x3 =0},
L) ={xo— x2 = x; + x3 =0},
L ={xo+x3 = x1 + x2 =0},
L) ={xo—x3 =x; —x = 0}.

Then the lines L, L), L}, L} are disjoint. Moreover, the lines L and L), are two
irreducible components of the curve L, but L and L} are two irreducible components

of the curve L. On the other hand, the lines L), L, LY, L] are contained in Q, =

{xg + x12 — x% — x32 = 0}. Thus, if D is a general surface in D, then

D|g, =miLy +myLy +m{L{ +mjL3 +E,
where m', m), m{, m’ are such that m/ > multg6 (D), m}y, > multg6 (D), m| >
mult cy (D) and m’z’ > mult cy (D), and E is an effective divisor on Q, whose support

does not contain the lines L}, L), L, L7. Now, let £ be a general line in Q that
intersects L. Then

n=4«- D|Q2 =m)+mh+m|+m)+€-8> 2mult (D) + 2multzy (D),

so that mult »/ (D) 4+ mult cy D) < % as claimed.

Now, let Dy and D; be two general surfaces in the system D. Then D; - Dy =
8C + 2, where § is a non-negative integer, and €2 is an effective one-cycle such that
C ¢ Supp(£2). One has § > multZC(D). But the degree of the cycle Dy - D, is n?.
Then 8deg(C) < n?, which gives the required inequality if deg(C) > 16. So, we may
assume that deg(C) < 15.

Now, we suppose that the curve C is contained in the G-invariant quadric sur-
face Q. Let £1 and £, be general curves in the surface Q; of degrees (0, 1) and (1, 0),
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respectively. Then £; and £, are not contained in the base locus of the linear system D,
and it follows from Lemmas 3.16 and 3.21 that £; - C > 4orf;-C > 4.1f¢; - C > 4,
we get

n=D- -4 > multc(D)|C Ney = multc( )(C L) = 4multc( )

for sufficiently general surface D € D, hence multc (D) = multc (D) < % asrequired.
Similarly, we obtain the required inequality when ¢, - C > 4.

Thus, to complete the proof of the lemma, we may assume that C ¢ Qj.

Now, we suppose that irreducible components of the curve C are lines. Then it
follows from Lemma 3.12 that C is a union of 12 disjoint lines. Moreover, Lemma 3.12
also implies that there is an H-invariant quadric that contains at least four components
of the curve C. Thus, arguing as in the case C C Qj, we obtain the required inequality.

Now, suppose that irreducible components of the curve C are conics. By
Lemma 3.14, the curve C is one of the curves C%, Cg, Cé”, C;”/, Cé’”, Cg””, because
Cé uCyg L/ Cl " C Q1. Observe that G 44,134 transitively permutes the curves Cg, Cé '
C; ", and it transmvely permutes the curves C3, C; ’, Cq’ 3/ Therefore, we may assume
that C = C8 or C = C8 But the group Gog 227 swaps the curves Cs and C§ hence
we may assume that C = C3 Recall that C3 is the G-irreducible curve in P’ whose
irreducible component is the conic

{x0 = 2x} — (1 +V/3i)x3 — (1 —~/3i)x] = 0} c P3.
Its remaining three irreducible components intersect the plane {xo = 0} in the points

[0:\/§—i:2:0],[0:—\/§+i:210],
0:0:4/34+i:2,[0:0:—+3—i:2],
[0:0:4/3—i:2],[0:0:—/3+i:2

None of these six points is contained in the conic {xg = 2)612 — (1 +3i )x% - (-

V3i )x32 = 0}. Let Z be a general conic in the plane {xo = 0} C IP? that contains
the points

[0:v3—i:2:01,[0: —~34+i:2:0,[0:0:34+i:2],[0:0:—+3—i:2].

Then |Z N C| = 8, and Z is not contained in the base locus of the linear system
D, so that

2n =D - Z > mult¢(D)|C N Z| = 8multc (D) = 8multc (D),
where as above D is a general surface in D. This gives us the required inequality.
Therefore, to complete the proof of the proposition, we may assume that irreducible

components of the curve C are neither lines nor conics. Hence, using Corollary 3.15
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and both Lemmas 3.17 and 3.22, we see that either C is a union of four twisted cubic
curves, or C is a smooth irreducible curve of degree 12, and its genus is 9, 13 or 17.
Now, we suppose that C is a smooth irreducible curve of degree 12 and genus
g € {9,13}. Let p: X — IP’3 be the blow up of the smooth curve C, let Ec be
the g-exceptional divisor, let D be the proper transform on X of the linear system D,
let D; and D, be general surfaces in the system D. Using Lemma 3.24, we see that
l*(Op3(6)) — Ec| is not empty, this linear system does not have fixed components,
and it also does not have base curves except possibly for the fibers of the natural
projections Ec — C. Therefore, we conclude that the divisor ¢*(Op3 (6)) — E¢ is

nef. Thus, if multc (D) > %, then

0< (¢*(0P3 ©)) — EC> - Dy - D> = (2g — 26)multZ (D) — 24nmultc (D) + 6n° < 0,

which is absurd. Thus, if C is an irreducible smooth curve, then g # 9 or g # 13.

Hence, to complete the proof, we may assume that either C is a smooth irreducible
curve of degree 12 and genus 17, or the curve C is a union of four twisted cubic curves.
In the former case, it follows from Lemma 3.22 that C is contained in an irreducible
surface in the net My. In fact, arguing as in the proof of Lemma 3.22, we conclude
that the curve C is contained in an irreducible surface S € My in both cases, and it
follows from Lemma 3.9 that S has at most ordinary double points.

By the Hodge index theorem, we have C 2 < 36 on the surface S. If C is irreducible,
then it follows from Lemmas 3.9 and 3.22 that either C N Sing(S) = &, or S has 16
ordinary double points, and Sing(S) C C. Thus, if C is irreducible, the adjunction
formula gives

36 > Cr=32+

|C N Sing(S)| | 32if C N Sing($) =
2 ~ | 40if € N Sing(S) # @,

so that C N Sing(S) = @ and C? = 32.

Arguing as in the proof of Lemma 3.24, we see that there exists a G-invariant
sextic surface Sg € |Op3 (6)| such that C C S, but S is not a component of the sextic
surface Sg. Then S¢|s = C + Z for some G-invariant curve Z of degree 12. Moreover,
arguing as in the proof of Lemma 3.24, we see that Z is G-irreducible. On §, we have
C-Z=72-C*since 72 = (C+Z)-C = C*+ C- Z. Similarly, we see that
Cc? =72

Let H be a hyperplane section of the surface S, and let D be a general surface in D.
Then nH ~qg D|, = mC + €Z + A for some effective divisor A on the surface
S whose support does not contain C and Z, where m and € are some non-negative
rational numbers. Then m > multc (D). So, it is enough to show that m < 7. Suppose
thatm > 7.

First, let us exclude the case when C is irreducible. In this case, the curve C is con-
tained in the smooth locus of the surface S, and C? = 32 on the surface S, so that it
follows from the Riemann—Roch theorem and Serre duality that
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2
" (Os4H — C)) — h' (Os(4H — C)) =2 + w =2,
which implies that |4 H — C| is a pencil. Since all curves in this pencil have degree four,
the pencil [4H — C| has no fixed curves, since otherwise the union of all its fixed
curves would be a G-invariant curve in S of degree less than 4, which contradicts
Corollary 3.15 and Lemmas 3.17 and 3.22. In particular, we see that the divisor4 H —C
is nef, hence

dn=nH-4H —C)=m@dH —C)-C+ec@dH —-C)-Z
+@H - C)-A>m@H —C) - C = 16m,

so that m < %, which is a contradiction.

Hence, we see that C is a union of four twisted cubics. Denote them by C1, Ca, Cs,
C4.Onthe surface S, we have C2 C2 C% = Cf = —24|C1NSing(S)|/2, because
G acts transitively on the set {C 1, C2, C3, C4}. This action gives a homomorphism
v: G — G4, whose image im(v) is isomorphic to one of the following groups: fi4,
u%, Dg, 4, G4. Now, using Remark 3.1 and Lemma 3.2, we conclude that im(v) =
A4, so that ker(v) = [L%. Then G acts two-transitively on {Cy, Ca, C3, C4}, hence
Ci-Cj=Cy-Cyfori # j.Then

C? = 12(Cy - C2) +4CF.

If CNSing(S) = @, then C1-C, is an even integer, because C1NC> is ker (v)-invariant,
but the group ker(v) acts faithfully on the curve Cy, and its orbits have length 2 or 4.
Similarly, we see that C - C» is an integer in the case when C N Sing(S) # &, because
singular points of the surfaces S are at most ordinary double points.

Observe that m + € < ” ,because 4n = nH?* = 12m+e)+ H-A > 12(m + €).
But

2n=H-Z=mC-Z+€Z*+Z-A>mC-Z+eZ>
=mC-Z+eC*="72m + (¢ — m)C>.

Thus, if C% < 0, then 121 > 72m > 18n, which is absurd. Hence, we have C% > 0.
Then

72— C?
120> m(72 = C2) +€C> > m(72 — C?) > %,

which gives C2 > 24. Thus, if CNSing(S) = @, then24 < C* = 12(C;-C»)—8 < 36,
which is impossible, because C1 - C» is an even integer. Hence, we have C NSing(S) #
.

Observe that Stabg (C1) = 24, this group acts faithfully on the curve Cy, and its
orbits in the curve C; are of length 4, 6 and 12. Moreover, the twisted cubic curve
C contains exactly two Stabg (C1)-orbits of length 4, and it has a unique Stabg (C1)-
orbit of length 6. But |C N Sing(S)| < 9, because the subset Sing(S) C IP3 is cut out
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by cubic hypersurfaces. Thus, we conclude that one of the following three cases are
possible:

e C7 =0and C; N Sing(S) is a Stabg (C1)-orbit of length 4;
° C12 = 1 and C1 N Sing(S) is the unique Stabg (C1)-orbit of length 6;
° C12 = 2 and C; N Sing(S) is the union of two Stabg (Cy)-orbits of length 4.

But we know that 24 < C? = 12(Cy-C2)+4C7 < 36,hence 6 < 3(C;-C2)+C? <9,
where C; - C» is an integer. Hence, we see that C| - C»; = 2, and either C 12 =1lor
C? = 2. Therefore, we conclude that either C2 = 28 and C12 =1,0r C?> = 32 and
Ci =2

Let 7: 8 — S be the minimal resolution of singularities, let E be the sum of
exceptional curves of the morphism 7, let C be the proper transform of the curve C
on the surface S let C 1 Cz, C3, C4 be the proper transforms on S of the curves C 1,
C2, C3, C4, respectively. Then S is a smooth K3 surface, and the action of the group G
lifts to the surface S. Arguing as above, we get C? = 12(C1 Cz) — 8, where c l- Cz
is an even non-negative integer.

Suppose that the set Sing(S) is formed by one G-orbit. Then E is a G-
irreducible curve. Let P be a singular point of the quartic surface S, and let k be
the number of irreducible components of the curve C that pass through the point P.
Then

C ~g *(C) —

because irreducible components of the curve C are smooth. Therefore, since all irre-
ducible components of the curve E are (—2)-curves, we get

C? = C?

where C? = 28 or C? = 32. For instance, if |Sing(S)| = 16, then C2 + 8 =
8k2 4+ 12(C; - C»), so that either 9 = 2k2+3(C1 .Cy) or 10 = 2k2+3(C; - C), which
leads to a contradiction, since c 1- Cz is an even integer. Similarly, if |Sing(S)| = 12,
then

C?+8 =6k + 12(C; - C2),

which leads to a contradiction. Thus, it follows from Lemma 3.9 that |Sing(S)| = 4.

Let E p be the -exceptional curve that is mapped to the singular point P € Sing(S).
Then Stabp(G) = 24, and the group Stabp(G) acts faithfully on the exceptional
curve E p. Moreover, it is well known that the smallest Stabp(G)-orbitin Ep = ~ pl
has length 4 Therefore, since the subset Ep N C is Stab r(G)- 1nvar1ant we conclude
that |[Ep N C| > 4, so that all irreducible components of the curve c pass through P.
Then k = 4 and

k2
12(Cy - Co) —8=C>=C?— ?|Sing(S)| =C?—32,
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which implies that 12(C; - C2) + 24 = C2, which is impossible, since C2 = 28 or
C? = 32. Hence, we conclude that Sing(S) is not a single G-orbit.

By Lemma 3.9, Sing(S) is a union of a G-orbit of length 4 and a G-orbit of length 12.
Therefore, we conclude that £ = E{ + E;, where E| and E, are two G-irreducible
curves such that the image 7w (E) is a G-orbit of length 4, and 7 (E>) is a G-orbit of
length 12. Take two points Py € w(E) and P, € w(E»). Let k1 and k» be the number
of irreducible components of the curve C that pass through the points P; and P»,
respectively. Then

~ k1 ko
C~gna*(C)— —E| — —E,
o7 (0) S Bl -k
where k1 > 0 or k5 > 0. Then
12(Cy - C) — 8 = C* = C* — 2k} — 6k3.

If k1 = 0, we obtain a contradiction exactly as in the case |Sing(S)| = 12, hence
k1 > 0. Now, arguing as in the case |Sing(S)| = 4, we see that k; = 4, hence

12(Cy - Ca) + 24 + 6k3 = C? € {28, 32},

which is impossible, since C? is not divisible by 6. This completes the proof. O

4 Equivariant geometry of projective space: group of order 192

Let G be the subgroup in PGL4(C) generated by

1.0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 -1 0 0 01 0 0
M=109 o1 0’1o o 1 o['F=]o 0o -1 o
0 0 0 1 0 0 0 1 00 0 1
0 0 0 i 01 0 0
1 0 0 0 1 00 0
A=1lo 1 0 o|l'2=]o o i ol
00 1 0 00 0 1

Then G is the subgroup G 92,185 = p3.64 = pj X (k3 x py) introduced in Sect.2.
Let

Pi=[1:0:0:0,P,=[0:1:0:0],P3=[0:0:1:0],P4=1[0:0:0:1],
andlet ¥4 = P U P, U P3U Py.

Lemma 4.1 The subset 4 is the unique G-orbit in P? of length < 15.

) Birkhauser



71 Page 44 of 84 I. Cheltsov, A. Sarikyan

Proof Let ¥ be a G-orbit in P? of length < 15. Take a point P € X. Let Gp =
Stabg (P). Then |G p| > 16. Thus, using [21], we see that G p contains a subgroup I
that is isomorphic to one of the following groups: ;LZ, [L% X Ly OF iy X [L%.

Suppose that ' = [Li. According to [21], the subgroup I' is normal, and T is
the unique subgroup in G that is isomorphic to ui. Using this, we see that I" is
generated by

0 -1 0 0 00 0 i
22w i 0 0 0 302w a1 |0 0 =1 0
ABAZBL= |y o o 5| meA’BaTBLAT = T T
0 0 1 0 1 0 0 0

Using this, one can show that P3 does not contain I'-fixed points and I'-invariant lines.
Thus, this case is impossible.

Now, we suppose that I’ = IL% X py4. According to [21], there are exactly two
possibilities for the subgroup I' up to conjugation, which can be distinguished as
follows:

(1) either I" contains the normal subgroup (M, N, L) = IL§,
(2) or I contains a non-normal subgroup isomorphic to f;.

In the first case, we may assume that I" is generated by M, N, L and B, which implies
that the only I'-fixed points in P3 are the points P3 and P4, and the only I'-invariant
lines are the lines {xop = x; = 0} and {x, = x3 = 0}. Similarly, in the second case,
we may assume that I' contains the non-normal subgroup isomorphic to ;L% that is
generated by

—1 0 0 0 -1.0 0 0 00 i 0
o -1 00 o 1 0 of o [0 o0 0
MN=10 o 1 ol M=o o -1 of*=|1 00 0
0 0 0 1 0 0 0 1 0100

Observe that this subgroup does not fix any point in P?, and it leaves invariant exactly
two lines: the lines {xg = x» = 0} and {x; = x3 = 0}. In particular, the group I" does
not fix points in P3 either. Hence, if I" = [L% X Ly, then P € ¥4, hence ¥ = Xy4.

To complete the proof, we may assume that I' = u, X IL%. Using [21] again, we
see that the group I contains a non-normal subgroup that is isomorphic to . Hence,
arguing as in the previous case, we conclude that P € ¥4, hence ¥ = ¥4 as required.

O

Asin Sect. 3, let ¢;; be the line in IP? that contains P; and Pj,wherel <i < j <4
Similarly, we let L6 = €12+ €13+ L1443+ loa+ L34 and T = F| + F> + F3+ Fu,
where

Fi={xo=0}, F2 ={x1 =0}, F3={x =0}, Fy = {x3 =0}.

The main result of this section is the following
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Proposition 4.2 Let C be a G-irreducible (possibly reducible) curve in P? of degree <
15. Then C is one of the following seven G-irreducible curves:

(1) the reducible curve Lg,
(2) the reducible curve Cs C T that is a disjoint union of 4 conics

x0 = xj — x5 — x3 =0},

xz—x0+x1+x3 =0

2
xO_.xl —.XZ—

k]

—— —— —— ——

}
x| = x0+x2—x3 = }
}
}

X3

’

(3) the reducible curve 63 that is a disjoint union of 2 smooth quartic elliptic curves

{5 + (¢6 — 1)x3 + ¢6x3 = x{ + &ox3 + (1 — &6)x3 = 0},
5§ = ¢6x3 + (1 — 26)x3 = x§ + (1 — £6)x3 + ¢6x3 = 0},

where (g is a primitive sixth roon of unity,
(4) the reducible curve 67 that is a disjoint union of 3 smooth quartic elliptic curves

{xg + ﬁixf —x;=x7+ ﬁix% —x3 = 0},
{«/Eixg —x? —x32 = x(% + ﬁix% —x3 = 0},
{xg + x5 + V2ix? = V2ixd — x} —x%},

(5) the reducible curve €}, that is a disjoint union of 3 smooth quartic elliptic curves

{ \/_lxl xz—xl «/_lxz—x3—0}
{«/_lxo +x1 +x3 _xo «/—zx] —x2—0}
{x0+x2—\/_lx3=\/—lx0 +x1+x3},

(6) the irreducible smooth curve €15 of degree 12 and genus 17 that is given by the
following system of equations:

2+ Zﬁi)(x%xg - xgx% - xéx% — x%x%) + 3(x6‘ — x;‘ + xg - xg‘) =0,

2+ 2\/51')(36%3632 — xgx} — x3x3 — xix3) = 3(xg — x] — x3 +x3) =0,
2+ 2«/51’)(}612x32 — xgx3 + x3x3 4+ x3x3) +3(x§ +xf —x3 —x§) =0,
(7) the irreducible smooth curve &\, of degree 12 and genus 17 that is given by the
following system of equations:
2 - 2\/—i)(x12x§ — xgx} — x3x3 — x3x3) +3(x§ — x] +x3 —x§) =0,
2 - 2«/_1)(x2x3 — xgxlz —xgxzz - x1x3) - 3(x0 - xi‘ - x2 +x3) =0,

2 - 2\/§i)(x1x3 — x0x2 +x0x3 +x1x2) + 3()c0 +x1 — x2 — x3) =0.
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Corollary 4.3 Let C be a G-irreducible curve in P3 such that C is different from Ls,
and let D be a linear subsystem in |Ops(n)| that has no fixed components, where
n € Z=o. Then multc (D) < 7.

Proof Arguing as in the proof of Proposition 3.25, we may assume that deg(C) < 15
Thus, we conclude that C is one of the G-irreducible curves described in Propo-
sition 4.2, which are different from L. Moreover, arguing as in the proof of
Proposition 3.25 again, we obtain the required inequality if C = Cg. Thus, we may
also assume that C # Cg. Then it follows from Proposition 4.2 that the curve C is
smooth, but it maybe reducible.

Letg: X — IP? be the blow up of the smooth curve C, let E¢ be the ¢- exceptional
divisor, let D be the proper transform on X of the linear system D, let D and D,
be two general surfaces in D. Then D; - D5 is an effective one- cycle. On the other
hand, it follows from Proposition 4.2 that the linear system |¢* (Ops (k)) — Ec| is base
point free for

_ 4ifC=%orC =Cpor C =),
| 6ifCc=%n0rC =%,

In particular, the divisor ¢*(Ops (k)) — Ec is nef. Then

0< (<P*(01p>3 (k) — Ec) . Dy

~ 2
D2 = (¢"(0m (0) — Ec) - (#*(Ops(m) — multc(D) Ec ) =
= (= E? — kdeg(C))multf. (D) — 2ndeg(C)multc (D) + kn?,

where
—32if C = %3,
E3=1{ —48ifC =% or C =%},,
—80if C = C€jpor C = ¢)y.
This implies that multc (D) < 4. O

Let us prove Proposition 4.2. Fix a G-irreducible curve C C P3. Write C =
C1+- - -+C,,where each C; is an irreducible curve in the space IP3, and r is the number
of irreducible components of the curve C. Let d be the degree of the curve C;. Then
deg(C) = rd. Suppose that d < 15. Let us show that C is one of the curves listed in
Proposition 4.2.

Lemma4.4 Ifd = 1, then C = L.
Proof The required assertion follows from the proof of Lemma 4.1. O

Hence, to complete the proof of Proposition 4.2, we may assume d > 2
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Lemma4.5 IfC C 7, then either C = Lg or C = Cs.
Proof Left to the reader. O

Therefore, we may assume that C ¢ 7. Then, using Lemma 4.1, we conclude that
no irreducible component of the curve C is contained in a plane. In particular, we
have d > 3. Since dr < 15, we have the following possibilities:

(1) r =1 and C = Cy is an irreducible curve,

(2) r = 2 and each C; is an irreducible curve of degree d € {3, 4,5, 6, 7},
(3) r =3 and each C; is an irreducible curve of degree d € {3, 4, 5},

(4) r = 4 and each C; is a smooth rational cubic curve.

Lemma 4.6 One hasr # 4.

Proof 1If r = 4, the stabilizer of the curve C is a group of order 48. According to [21],
any subgroup of the group G of order 48 is isomorphic either to 24 x pt4 or to [,Li X 3.
But none of these groups can act faithfully on a rational curve, since PGL,(C) does
not contain groups isomorphic to 4 x 4 or ;Li x p3. Hence, we conclude that r # 4.

O

Now, let us fix the subgroup I' C G that is generated by

00 0 i 0 -1 0 0 00 0 i
St o o0 o 2,0, |i 0 00| 3,02, .3 |00 -1 0
A=lo 1 o of ABABL=|y o o [ ABABLA=|s o o

00 1 0 0 0 1 0 1 0 0 0

Using [21], we conclude that I' = ;LZ X iy, and the GAP ID of the subgroup I' is
[64,34]. Note that P3 contain neither I'-fixed points nor I'-invariant lines by Lem-
mas 4.1 and 4.4. Moreover, according to [21], the group G contains 3 subgroups that
are isomorphic to I', and all of them are conjugated.

Lemma 4.7 Suppose that r = 3. Then either C = €12 or C = ¢€},.

Proof The subgroup I' is a stabilizer of Ci, C, or C3. Without loss of generality, we
may assume that C is I"-invariant. The group I" acts faithfully on Cj. This implies that
d # 3, because I' cannot leave invariant smooth rational cubic curve, since PGL, (C)
does not contain groups isomorphic to I".

Now, we claim that d # 5. Indeed, suppose that d = 5. Then the curve Cj is
smooth. Namely, if Cy is singular, then it contains at least 4 singular points, so that,
intersecting the curve C; with a plane passing through 3 of them, we conclude that
C is contained in this plane, which contradicts our assumption. Thus, we see that C
is smooth, so that its genus does not exceed 2 by [28, Theorem 6.4]. But the order of
the automorphism group of a smooth curve of genus 2 does not exceed 48, and, as we
already mentioned, the group I" cannot faithfully act on a rational curve. Thus, we see
that C; is a smooth elliptic curve. Then the I'-action on C gives an embedding

I — Aut(C], O]P3(1)|C1)-
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This is impossible, since the order of the group Aut(Cy, Op3(1)|c,) is not divisible by
64, because Aut(C, Op3(1)|c,) is an extension of the group M% by one of the following
cyclic groups: p,, g or py. Hence, we see that d # 5.

Thus, we see thatd = 4. As above, we see that C, C», C3 are smooth elliptic curves,
which implies that each of them is a complete intersection of two quadric surfaces
in IP3. Hence, there exists a I'-invariant pencil of quadric surfaces in P> whose base
locus is Cj. On the other hand, it is not hard to find all I"-invariant pencils of quadric
surfaces in P3. Namely, let T be the the subgroup in GL4(C) that is generated by
the matrices

0 0 0 i 0 -1 0 O 00 0 i
1 0 0 O i 0 0 0 0 0 -1 0
01 0 O)’j0 0o O i)J’jo0 i 0 O
0 0 1 0 0 0 1 0 1 0 0 O

Then I' is the image of the group T via the natural projection GL4(C) — PGL4(C),
and the GAP ID of the group T is [256,420]. Now, going through all irreducible 4-
dimensional representations of the group T'in GAP[49], and checking their symmetric
squares, we see that P? contains three I'-invariant pencils of quadrics. These pencils
are

() k(xo +V2ix} — x2 M(xl2 +V2ix3 — x3),
(i) )»(xO \/_lx1 — x2 ()cl2 — \/Eix% — x32),

(iii) Axoxz = pxqx3,

where [A : u] € P!, In case (iii), the base locus of the pencil is the union €15 U €14 U
€23 U £o4. In case (i), the base locus of the pencil is %)2. Finally, in case (ii), the base
locus is ¢7,. Hence, we conclude that either C = %), or ¢/,. O

To complete the proof of Proposition 4.2, we may assume that r # 3. Then
r € {1, 2}. Observe that the group G contains unique subgroup of index two—the
normal subgroup isomorphic to [L%.QM = u,ﬁ X ftg. This subgroup does not contain
I". Therefore, if r = 2, then I swaps the curves C1 and C». Thus, we see that C is
I'-irreducible.

Note that I" leaves invariant 7 and the Fermat quartic {xé +xi1 +x§ +x§t =0} c P,
These are not all I"-invariant quartic surfaces. Namely, the group I' leaves invariant
every surface in the pencil P given by

22 2.2 4
Mxixy — xgxf — xgx3 — x3x3) + u(xg — xf + x5 — x3) =0,

where [ : 1] € PL. One can show that these are all ["-invariant surfaces in P3.

Let P be a general point in C, let X p be its ['-orbit, and let S be a surface in P
that passes through P. Then | X p| = 64, which implies that C C S. Indeed, if C ¢ S,
then

60>4rd=S5-C > |Xp| =64,
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which is absurd, hence C C S. Let a and b be complex numbers such that S is given
by

a(xixs — xgx7 — X5x3 — x3x3) + b(xg — x{ +x3 —x§) = 0.

Note that the surface S is not G-invariant, because the only G-invariant quartic surfaces
are the surfaces 7" and {xé’ + xf + x§ + xé‘ = 0}. But C is G-invariant by assumption.
Thus, using the G-action, we see that C is contained in the subset in P? given by

a(xlzx% — xgx% — x%x% — x%x%) + b(xf)1 — x? + xg — xgl) =0,
a(x%x% — xgxlz — x%x% — x%x%) — b(xg — x? — xg + x§1) =0, 4.8)

61()612)632 — xéx% + x%x% + x12x22) + b(xf)1 + xf — x§ — x;‘) =0.

Lemma 4.9 Either 3a%> — 4ab + 4b*> = 0 ora + 2b = 0.

Proof Note that the subset (4.8) in P is zero-dimensional for a general choice of a
and b. To find all possible values of a and b such that (4.8) is not zero-dimensional,
one can consider the subscheme in P! x P3 defined over Q that is given by (4.8),
where a and b are considered as coordinates on P!. Using Magma, we see that this
subscheme is reduced and one-dimensional, and we also find all its irreducible (over
@) components.

Going through these irreducible components and checking which one is mapped
to a zero-dimensional subscheme of P! via the natural projection P! x P3 — P!, we
see that the subset (4.8) contains a curve if and only if either 3a> — 4ab + 4b> = 0 or
a+2b=0. O

If 3a2 — 4ab +4b? = 0, we may assume that b = 3 and a? — 4a + 12. In this case,
the subscheme in P3 given by (4.8) is a smooth irreducible curve of degree 12 and
genus 17. This can be checked using Magma. Now, taking two roots of the quadratic
a? — 4a + 12, we get the curves € and 6’12. One can check that these curves are
disjoint.

Finally, if « 4+ 2b = 0, the subscheme in P3 given by (4.8) splits as a disjoint union
of the I'-irreducible curves 63 and €. This completes the proof of the Proposition 4.2.

5 Equivariant geometry of projective space: large groups

Let us use assumptions and notations of Sect.2. Recall from Sect. 2 that
Pi=[1:0:0:0,P,=[0:1:0:0],P3=[0:0:1:0,P,=10:0:0:1],
and G is a finite subgroup in PGL4(C) such that the following conditions are satisfied:

(1) the group G does not have fixed points in P3,
(2) the group G does not leave a union of two skew lines in P3 invariant,
(3) the group G leaves invariant the subset { P, P>, P3, P4}.

) Birkhauser



71 Page 50 of 84 I. Cheltsov, A. Sarikyan

Recall from Sect.2 that v: G — &4 is the homomorphism induced by the G-action
on the set { P1, P>, P3, P4}, and T is the kernel of this homomorphism. Then 7 is not
trivial, and either the homomorphism v is surjective, or its image is 2(4. Suppose, in
addition, that the group G is not conjugate to any of the following eight subgroups:

/
G450, G4g,3, Go6,70, G96,72, G96,227, Gog 227, G192,955, G192,185-

Moreover, if G is conjugate to any subgroup among G324,160, G’3247160, G648,704 OF
G/648,704’ we will always assume that G is this subgroup.

Forevery 1 <i < j < 4,let ¢;; be the line in P3 that passes through P; and P;.
Let

=f{ro =0}, 2 ={x1 =0}, F3={x=0}, F4 ={x3 =0}

Let X4 = {Py, P>, P3, Py}, let Lo = L1o + €13 + L14 + €23 + log + L34, let T =
Fi+ F,+ F3+ Fa.

Lemma 5.1 Let & be a G-orbit in P3. Then

IT|ifX ¢ T,
11> 4n?if S C T\ Ls,
6nifX C Lg\ 24.

Proof The required assertion follows from the explicit description of the subgroup 7',
which has been given in the proofs of Lemmas 2.1 and 2.3. O

Let C be a G-irreducible curve in P3 of degree d < 15. Our goal is to classify all
possibilities for the curve C. Firstly, we show that C C 7.

Lemma 5.2 Suppose that C ¢ T. Then X4 ¢ C.

Proof We suppose that C contains 4. Let 0: X — P3 be the blow up of the G-
orbit X4, let G; be the o-exceptional surface that is mapped to the point P;, let I?,
be the proper transform on X of the plane Fj, let C be the proper transform on X of
the curve C, and let IZ] be the proper transform on X of the line ¢;;. Then the G-action
lifts to X, the curve C is G-invariant, and

Fy-C=(0"(F) = G1 = G2~ Ga)-€=d=3C-G <15-3C -Gy,

so that 1 < |CﬂG1| C- G <5.

The surface G is Stabg (P4)-invariant, and the induces Stabg (P4)-action on it is
faithful. Moreover, the surface G| = P? does not contain Stabg (Py4)-orbits of length
1,2, 4,5, and the only Stabg (P4)-orbit of length 3 is formed by the points G| N 612,
G N 613 and G| N K14 Thus, we conclude that |C N G1| =C- G1 = 3, and C
intersects the surface G transversally in the points G| N 612, G N £13 and G| N Zl4
Similarly, we see that the curve C intersects the surface G» transversally in the points
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Go N 7 12, Go N 623 and Gz N 624, and C intersects the surface G3 transversally in
the points G; N 313, G N £23 and G| N €34

N ote that F4 isa smooth del Pezzo surface of degree 6, and its ( 1) -curves are 212,
£13, 623, GiN F4, GoN F4, G3N F4 Note also that the curves E]z, 613 E23 are pa1rw1se
disjoint, and each of them contains at least two points of the intersection F4NC. This
gives

6 <IFsnCl<Fy-C=(0"(Fs) =G~ G2~ G3) - C=d=3C-G1=d-9<6

Thus, we conclude that d = 15, |I*~“4 NC | = F4 . 5=6, and C intersects F4 transversally
at the points G 02712, Gq 02713, Gy 0212, GoN 223, G3 0213, G ﬂZ23. In particular,
we see that the curve C is smooth at these six intersection points. Note also that
CNT =34 ~

Let P = Gy N{j3. Then T C Stabg(P), and T is not cyclic by Lemmas 2.1
and 2.3. In particular, we conclude that Stabg (P) is not cyclic. This implies that C
is reducible. Indeed, if C were irreducible, then Stabg (P) would act faithfully on
C, so it would act faithfully on C, which would imply that Stabg (P) is cyclic [26,
Lemma 2.7], because the curve C is smooth at the point P. Contradiction.

Let C = C; + --- + C,, where r is the number of irreducible components of
the curve C, and each C; is an irreducible curve. Since d = 15, one of the following
cases holds:

e r = 15 and each C; is a line;
e r = 5 and each C; is a cubic curve;
e r = 3 and each C; is a quintic curve.

Let k be the number of irreducible components of the curve C that passes through Py,
and let / be the numbers of points in X, that are contained in Cy. Then

4k =rl,

sothatr = k = 3 and ! = 4, i.e. C is a union of three irreducible quintic curves
C1, C2, C3, and each of these quintic curves contains X4. In particular, these curves
are not planar. Moreover, since C- G = 3, we conclude that Cy, C,, C3 are smooth
at Pq, so that these curves are smooth at the points of the G-orbit X4.

The group Stabg (C1) acts faithfully on Cy,s0 T ¢ Stabg (Cy) by [26, Lemma 2.7],
because the group T fixes the point Py, but the group 7 is not cyclic. Therefore, since
Stabg (C1) is a subgroup in G of index 3, we conclude that

v(Stabg (C1)) = im(v),
where v: G — G4 is the group homomorphism induced by the G-action on the set 4.
Thus, we see that the group Stabg (C1) acts transitively on the points of the G-orbit X4,
and the stabilizer in Stabg (C1) of the plane Fy acts transitively on the set { P1, P>, P3}.
On the other hand, we know that C N7 = X4, hence C N F4 = P; U P, U P3. Then
5=F4-Ci=(Fs -C)p + (Fs-C)p,+ (Fs-C)py =3(Fs-C))p,,
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which is absurd. The obtained contradiction completes the proof of the lemma. O
Lemma 5.3 Suppose that C ¢ T. Then C N\ Lo = O.

Proof Suppose C N L¢ # . Letk = |C N £y2|. By Lemma 5.2, ¥4 ¢ C, hence
k> n > 3. Then C N Fy C €12 U €13 U £r3. Indeed, if F4 N C contains a point
P ¢ £1o U €13 U £73, then

I52d=F;-C2>2|FsNC[Z|CNLp|+|CNLz|+ |CNLxs|+ |Orbr(P)]
= 3k + |Orbr(P)| > 3k +n” > 3n+n> > 18,

where ' = Stabg(Fy4). Similarly, we see that 3 < n < k < 5, and the curve C
is smooth at the points of the intersection C N £1,. Therefore, we conclude that
C N7 = C N Lg, and the curve C is smooth at the points of the intersection C N Lg.
Let P be apointin C N¥€1;. Since C is smooth at P, there exists a unique irreducible
component of the curve C that contains P. Denote this curve by Z.Let K = Stabg(Z).
Then Z is smooth at P, and Stabg (P) = Stabg (P), hence Z is Stabg (P)-invariant.
However, if n € {3, 5}, then it follows from the proofs of Lemmas 2.1 and 2.3 that

T N Stabg (P) = 2,

and T'NStabg (P) acts faithfully on Z, because Z is not contained in 7 by assumption.
This is impossible by [26, Lemma 2.7], since Z is smooth at P. Hence, we have n = 4.

Arguing as above and using the proofs of Lemmas 2.1 and 2.3, we see that T = uﬁ
and

T N Stabg(P) = (G, i, —1)) = py.

On the other hand, if |Stabg(P)| = 4, then |Orbg(P)| > 48, hence 5 > k =
|C N £L1p] > 8. Therefore, if im(v) = 24, then v(Stabg (P)) = ((12)(34)) C Ay4.
Similarly, if im(v) = &gy, then |Stabg(P)| > 16, which immediately implies that
v(Stabg (P)) = ((12), (34)) C &4. Thus, there exists § € Stabg(P) such that
v(0) = (12)(34) and 6% € ((i, i, —1)). Then

0 by 0 0
g |t 0 00
0 0 0 1
0 0 b3 O

for some non-zero numbers b1, by, b3 such that b1y, = +b3. Hence, conjugating G
by an appropriate element of the torus T, we may assume that by = 1, b, = 1 and
b3 = £1. In both cases, the subgroup ((i, i, —1), 6) C Stabg (P) is not cyclic. In fact,
one has

12

((i,i,—1),0)

|
I
—_

Dgif b3 =1,
Qg if b3
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On the other hand, the subgroup ((i, i, —1)) = p4 acts faithfully on Z,because Z ¢ 7.
This implies that the whole group ((i, i, —1), ) also acts faithfully on Z, because
neither the dihedral group Dg nor the quaternion group Qg have quotients isomorphic
to p4. Therefore, as above, we obtain a contradiction with [26, Lemma 2.7]. O

Lemma 5.4 If G is not conjugate to Gy, 149, then C C T. If G = Gy 149 and
C ¢ T, then C is one of the following smooth irreducible curves of degree nine and
genus ten:

[+ ¢)x7 + 8333 +x3 =x3 + 837 — (1 + &3)x3 =0}, (5.5)

{3 + (1 +53)x3 — 03 =x3 — (1 +3)x] + 333 =0}, (5.6)
Proof Suppose that C ¢ 7. Then C N Lg = @ by Lemma 5.3, hence Lemma 5.1
gives

60>4d =T -C>|TNC|>4n?,

which gives n < 3. Then G is one of the subgroups G324, 160, G/324!160,
Ge48,704 OF G/648,704' Recall from Sect.2 that G324,160 C Geag,704 and G/324,160 C
Gu5.704- Hence, to proceed, we may assume that G = G324,160 of G = Gy 1605
since G’648’704 swaps (5.5) and (5.6).

Let I' = Stabg (Fy). Then I' = [L% x p3 and I' is generated by

(3.1, 1), (1,23, 1),

SO = O
o - O O
SO o
- o O O

Since 15 >d = F4-C > |F4 N C|and F4 N C is a I'-invariant subset in Fy \ (£12 U
£13 U £23), we conclude that F4 N C is the I"-orbit of one of the following points:

[1:1:1:0],[1:¢&:23:01,[1:¢}:¢3:0].

Moreover, in both cases, we have d = F4 - C = |F4 N C| = 9, which implies, in
particular, that the curve C is smooth in every intersection point C N 7.

Suppose that G = G324, 160- Let S be the Fermat cubic {xg —l—x%—l—x% +x33 =0} C P3.
Then S is G-invariant, and S does not contain [1 : 1 : 1 : O], [1 : &3 : §32 . 0],
[1: 4“32 : ¢3 ¢ 0]. Thus, we conclude that C ¢ S, and the intersection S N C is
a G-invariant finite subset, which is disjoint from the surface 7. Moreover, since
[ISNC| < §-C < 27, it follows from Lemma 5.1 that S N C must be a G-orbit of
length 27, which is not contained in 7. This implies that SNC = Orbg([1:1:1: 1]).
But[l1:1:1:1]¢S.

Thus, we see that G = G’324,160. If C is one of the curves (5.5) or (5.6), we are
done. Hence, we assume that C is not one of them. Let us seek for a contradiction.

We claim that C is irreducible. Suppose it is not. Then C is a union of three cubics,
or C is a union of nine lines. In the former case, the cubic curves must be non-planar,
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because IP? does not have G-orbits of length 3. Moreover, the group G contains unique
subgroup of index three up to conjugation [21], and this subgroup is isomorphic to
[Lg X u%. Since [L% X [L% cannot faithfully act on P!, we see that C is not a union of
three cubics. Similarly, if the curve C is a union of nine lines, then it follows from
[21] that their stabilizers are isomorphic to &3 x &3. The group G contains nine such
subgroups [21], but all of them are conjugate. One of these nine subgroups is generated
by

5 0 0 O 3 0 0 0 0 -1 0 O 00 0 -1
0 1 0 O 0 ¢ 0 O 1 0 0 O 00 -1 O
0 0 & O)’t0o o 1 0)’f0 0O O —-1)710 1 0 -1
0 0 0 1 0 0 0 1 0 0 1 O 1 0 1 0

Now, one can verify that this particular subgroup does not leave any line in P3 invariant.
The obtained contradiction shows that the curve C is irreducible.

We claim that C is smooth. Suppose C is not smooth. Let P be its singular point,
and let S be a surface in the pencil of cubic surfaces that pass through (5.5) such
P € §. Then the surface S is given by the equation

A+ 837 + 6325 +x3) = 1(xg + &x7 — (14 ¢3)x3)

forsome [A : ] € P'. This surface is not G-invariant, but Stabg (S) contains T = [L%.
One the other hand, we have |Orbp (G)| > 27, because P ¢ 7. Thus, if C ¢ S, then

27=8-C> Y (5:C)p= >  multo(Smulto(C) > 2|0rbp(G)| > 54,
0€O0rbp (G) 0€O0rbp (G)

which is absurd. Hence, we see that C C S. Thus, since the surface S is not G-invariant,
the curve C is contained in another cubic surface in the pencil of cubic surfaces that
pass through the curve (5.5), which implies that C is contained in the base locus of
this pencil. But the base locus of this pencil is the irreducible curve (5.5), hence C is
the curve (5.5), which contradicts our assumption. Therefore, we conclude that C is
smooth.

Let g be the genus of the curve C. Now, using Castelnuovo bound, we see that
g < 12. Moreover, arguing exactly as in the proof of Lemma 3.2, we can easily prove
that g = 10. Namely, recall that the stabilizer in the group G of a point in C is cyclic
[26, Lemma 2.7], which implies that the G-orbits in the curve C can be only of lengths
36, 54, 108, 162, because cyclic subgroups in G are isomorphic to pg, g, 3, o (S€C,
for example, [21]). As in the proof of Lemma 3.2, let cC=cC /G, let g be the genus
of the quotient curve C, and let ase, as4, a108, d162 be the number of G-orbits in C of
length 36, 54, 108, 162. Then

22 > 2g — 2 =48(28 — 2) + 288aze + 270as4 + 216a108 + 162a162

by the Hurwitz’s formula. This gives g = 10 or g = 1. But g # 1, since G cannot
act faithfully on a smooth elliptic curve, because our group G = ;1,% x A4 does not
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have abelian subgroups of index at most 6—the largest abelian subgroup in G is
the subgroup 7' = u5. Therefore, we conclude that g = 10.

Let M3 be the linear system consisting of all cubic surfaces in P? that pass
through C. Then M3 is G-invariant. But a priori M3 may be empty. We claim that
M3 is not empty, it is a pencil, and C is its base locus. Indeed, let Z¢ be the ideal
sheaf of the curve C C P?. Then we have the following exact sequence:

0— HY(OpB)®Ic) — H(Op?3)) — H(0p3)|,).
On the other hand, it follows from the Riemann—Roch theorem and Serre duality that
h(Ops(3)|) =3d — g+ 1+ h°(Kc — Op(3)| ) =3d —g + 1 = 18.

Thus, since ho((’)Ps (3)) = 20, we conclude that M3 is not empty, and it is at least
a pencil. Moreover, the linear system M3 does not have fixed components, because
IP? does not contain G-invariant planes and G-invariant quadrics. Therefore, since C
is contained in the base locus of the linear system My and d = 9, we conclude that
M3 is a pencil, and the curve C is its base locus.

On the other hand, the only G-invariant pencils in |Ops (3)| are the pencils of cubic
surfaces that pass through (5.5) or (5.6). This can be shown explicitly or by using GAP.
This shows that C is one of the curves (5.5) or (5.6), which contradicts our assumption.

O

Now, we are ready to state the main result of this section:

Proposition 5.7 Suppose that C # L. Then G is conjugate to one of the following
Sfour subgroups: G334.160, G/324,16()’ G 648,704, G/648,704' Moreover, if G = Geag 704 OF
G = G/648,7O4’ then C is the reducible curve of degree 9 whose irreducible component
is the cubic

{x8+x13+xg =)C4=0}.

Similarly, if G = G324,160 0¥ G = G’324’ 1600 then either C is a curve of degree 9 whose
irreducible component is

g+ 5xd + 677 x3 = xa =0}
forr €{0,1,2}, or G = G’3247160 and C is one of the curves (5.5) and (5.6).

Proof Using Lemma 5.4, we may assume that 7 contains C. Let Z be the union of all
components of the curve C that are contained in the plane F4, and let I' = Stabg (F4).
Then Z is I'-invariant, but the degree of the curve Z is at most 3, because d < 15.
Observe that the group I' acts transitively on the subset {P;, P>, P3}, and this
action induces a homomorphism I' — &3, whose image is either u3 or G3. More-
over, it follows from the description of the subgroup 7 given in the proofs of
Lemmas 2.1 and 2.3 that the kernel of this homomorphism contains the subgroup
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((&n, 1, D), (1,8, D) = /Lﬁ, which implies that either Z is a smooth conic or Z is
a smooth cubic.

Our assumption on the group G implies that n > 3. Thus, the curve Z is not
a conic, since the group /Lﬁ cannot act faithfully on P! for n > 3. Hence, we see that
Z is a cubic. Then n = 3, since Aut(PP?, Z) does not contain subgroups isomorphic to
uﬁ forn > 4.

Now, it follows from our assumption on G and the results proved in the end of Sect. 2
that the group G is conjugate to one of the subgroups G324,160, G/324,160’ G648,704,
G/648,70 4~ The remaining assertions are elementary computations. O

Corollary 5.8 Let C be a G-irreducible curve in P3 such that C is different from Ls,

and let D be a linear subsystem in |Ops(n)| that has no fixed components, where
n € Zo. If the subgroup G is not conjugate to G, |, then

multe (D) <

NI

IfG = G/324,160 and C is not one of the curves (5.5) or (5.6), then multc (D) < %
Proof Arguing as in the proof of Proposition 3.25, we obtain the required assertion. O
Let us conclude this section by proving the following technical result:

Lemma 5.9 Let S be a cubic surface in IP3 that contains one of the curves (5.5) or (5.6),
let T be the stabilizer of the surface S in the group G/324,16O’ and let D be a I'-
invariant effective Q-divisor on the surface S such that D = —Kg. Then (S, D) has
log canonical singularities away from from singular points (if any) of the surface S.

Proof Suppose that S is smooth. In this case, the required assertion means ar(S) > 1,
where ar (S) is the a-invariant of the surface S [12, 51], which we define as

effective I"-invariant Q-divisor D ~g —Ks

ar(S) = sup {A eQ

the pair (S, AD) is log canonical for every }

This is well-known. Indeed, the group I" contains the subgroup T = lL%, which implies
that S does not have I'-fixed points. On the other hand, if (S, D) is not log canonical,
then there exists a point P € S such that the log pair (S, D) is log canonical away
from P. This follows from [8, Lemma 3.7] or from [10] and the Kollar—Shokurov
connectedness. Thus, the point P must be fixed by I', which is a contradiction.

Thus, we may assume that S is singular. Then there are exactly eight possibilities
for the surface S, and all of them are similar. So, without loss of generality, we may
assume that the surface S is given by the equation

(14 3)x3 + 8303 +x3 = 0.
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This is the cone with vertex at [0 : 0 : O : 1] over the curve {(1 + Q)xf + ;“3)63 +x33 =
x4 = 0}. Observe that ' = ug X M3, since I' is the subgroup in G’324’160 that is
generated by

;0 0 0 1 0 0 O 1 0 0 O 0 01 0
0 1 0 O 0 & 0 O 01 0 O 1 0 0 O
0O 0 1 0710 O 1 O0}J°]O0 O ¢ O)J°JO0O 1 0 O
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

Suppose that (S, D) is not log canonical at some point O € S such that § # [0: 0 :
0 : 1]. Let us seek for a contradiction.

Let L be the ruling of the cone S that passes through O, and let £ be I'-irreducible
curve in S whose irreducible components is the line L. Then deg(L£) > 9, because
I"-orbits in the cubic curve {(1 + Q)xf + §3xg + x% = x4 = 0} have length at least 9.
Let

3u

D'=(+wD—
I+ deg(ﬁ)ﬁ’

where 1 is the largest positive rational number u such that Supp(D’) does not contain
L. Tt follows from the proof of [10, Lemma 2.2] that such positive rational number
exists. Moreover, since deg(£) > 9, the singularities of the log pair

3
(S’ deg(L) E)

are log canonical at O. Therefore, the log pair (S, D) is not log canonical at O,
because

I 3 1 ’
D = L D'
1+u<deg(£) >+1+,u

Observe that D' = D = —Kg by construction, hence 1 = D’ - L > (D' - L)p >
multy (D’), so the pair (S, D’) is log canonical at O by [34, Theorem 4.5] or [19,
Exercise 6.18]. O

6 Rational Fano-Enriques threefold of degree 24
Let us use assumptions and notations of Sect.2. Recall from this section that
Pi=[1:0:0:01,P,=10:1:0:0],P3s=[0:0:1:0],P4,=1[0:0:0:1],

and G is a finite subgroup in PGL4(C) such that the following conditions are satisfied:

(1) the group G does not have fixed points in P3,
(2) the group G does not leave a union of two skew lines in IP? invariant,
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(3) the group G leaves invariant the subset { P1, P>, P3, P4}.

Suppose that G conjugate neither to G4g 3 nor to Gog 72. Moreover, if G is conjugate
to one of the subgroups Gas 50, G96,70, G96,227, Gog 227- G192,955, G192,185, G324 160
G/648,704’ then we will always assume that G is this subgroup. Recall that G4g 50 <
G96,704G 192,955, G48,509G 96,227 4G 192,955, G48,50<9G o6 227 <9G 192,955 and Gy 14509
G/648,7O4'

Forevery 1 <i < j < 4, we let £;; be the line in P3 that passes through P; and
Pj. Set

Fi={x0=0}, , ={x1 =0}, F3 ={x2 =0}, F4 = {x3 =0}.

We let 4 = {P1, P2, P3, P4}, Lo = Lo + 413 + Lia + €3 + loa + 43s, T =
F1+ F>+ F3+ F4. By Corollary 2.6, there exists a G-birational involution ¢ : P3 --» P3
that is given by

[x0 :x1 1 x2 1 x3] = [A1X1X2X3 @ AoXpX2X3 : A3X0X1X3 : XoX1X2]

for some non-zero complex numbers A1, A2, A3. This involution is well-defined away
from the curve Lg, and it contracts Fy, F,, F3, F4 to the point Py, Py, P3, Py, respec-
tively. Observe also that the involution ¢ fits the following G-commutative diagram:

/7 - 6.1)

where Vj is an intersection of two quadrics in P that has six ordinary double points,
the map 7 is the blow up of the orbit X4, the map ¢ is the contraction of the proper
transforms of the lines €12, €13, €14, £23, £24, £34 to the singular points of the three-
fold V4, the map o is a G-biregular involution, and v is a G-birational non-biregular
involution, which is a composition of six Atiyah flops.

Moreover, it follows from [9, 16] that the involution ¢ fits the following G-
commutative diagram:

Xo4 X4

(6.2)
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where X»4 is the toric Fano—Enriques threefold described in Example 1.1, which has
eight quotient singular points of type %(1, 1, 1), the morphism = is a birational G-
extremal contraction that contracts six irreducible surfaces to the lines €12, £13, £14, £23,
€24, £34, the morphism ¢ is the contraction of the proper transforms of the planes Fi,
F>, F3, F4 to four singular points of the threefold X»4, and ¢ is a biregular involution.

As we already mentioned in Example 1.1, the threefold X»4 can also be obtained
as the quotient P! x P! x P! /z, where 7 is the involution in Aut(P! x P! x P!) given
by

(lwy = v1], [uz s w2l [u3 s v3l) > ([ug - —oil, [ug 0 —val, [u3 : —v3)).

Then Sing(X»4) consists of 8 singular points of type %(1, 1, 1)—the images of
the points

(10: 17,10 1,10 17), (0 < 11, [0 = 11, [1 : O1), ([0 : 1], [1: 01, [0 = 11), ([0 : 11, [1 : O, [1 : 0]),
([1:01,10: 11,10 17), (1 : 01, [0 = 11, [1 : 01), (I1 : OF, [1 : 01, [0 : 11), (I1 : O, [1 : O], [1 : 0]).

To match this description of the threefold X»4 with the description given by (6.2),
we set

Vy = {w? = xoxixox3} C P(1,1,1,1,2).

Leté: Vo) — P3 be the projection that is given by [xo : x1 : x2 : X3 : w] = [x0 : X1 :
X3 : x3], where x¢, x1, x and x3 are coordinates of weight 1, and w is a coordinate of
weight 2. Then it follows from [9] that there is a birational map ¢ : Vo, — P! x P! x P!
such that the following diagram commutes:

=== _ ¥
Vo= 7 \\\\\
~ \&
£ X4 P! x P! x P!
o > X4 Pr;

i
Pl
(6.3)
where w is the quotient map by 7, @ and ¢ are the birational morphisms defined
in (6.2), the map y is given by the linear system of all sextic surfaces singular along

the curve L¢, the map pr; is the projection to the i-th factor, and #; is the morphism
induced by pr;.
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It follows from [9] that the maps ¢, w, ¥ in the diagram (6.3) can be described in
coordinates as follows: the birational map ¢ is given by

[x0:x1:x2:x3:w] > ([x0x1 cw], [xox2 t w], [xix2 w]),
the quotient map w is induced by the map P! x P! x P! — P13 given by

([wr = v, [uz = val, [u3 2 v3))
= [u%u%u% . u%u%v% . u%u2v2143v3 . u%v%u% . u%v%v% : ulvlu%u3v3 :
SUTVIUHQVIUS L U VIUQVIVS UV V3URY] ViU ¢ viuFv]
obuavauzs : vfudud s vhded ],
and the birational map  is induced by the map P> --» P!3 given by

[xo TX] X :x3] > [xgxlzxg :x8x1x2x3 :xgxlzxz)q :xoxfxz)g :x%xlzx% :xéxlx%,m :
: xox%x22x3 : x5x1x2x32 : )co)cfxz)c32 : xox]xg)g : x&x%x? : x0x1x22x32 : x%x%x% : xoxlxzx;].

Using this, we see that the biregular involution ¢ in (6.2) is induced by the biregular
involution of P! x P! x P! that is given by

([u1 : vl], [uz : vz], [u3 : U3]) = ([}\.1)\.21}1 : )»3141], [)»1)»31)2 :)»21,{2], [)\2)»31)3 :)»1143]).

Similarly, we see that

e the map ny o ¢ : P3 -5 Plis given by [xg : x1 : x2 : 23] = [xox1 : x2x3],
e the map ny o ¢ : P3 -5 Plis given by [xg : x1 : x2 1 23] > [xox2 @ x1x3],
e the map n3 0 ¢ : P35 Plis given by [xg : x1 : x2 1 23] = [x1x2  xpx3].

Using ¥, we can define the G-action on X»4 such that ¢ is G-equivariant. Note
that

Y(F)=1[0:0:0:0:0:0:0:0:0:0:0:0:1:0]=w([0:1],[0:1],[L:0]),
w(Fz)z[0:0:0:0:0:0:0:0:0:0:1:0:0:0]=w([0:1],[1:0],[0:1]),
w(F3):[0:0:0:0:1:O:O:O:O:O:O:O:O:O]:a)([l:O],[O:1],[0:1]),
w(F4)=[l:O:O:O:O:O:O:O:O:O:O:O:O:O]:a)([l:O],[l:0],[1:0]).

Thus, the locus Sing(X24) splits into two G-orbits: the orbit {V (F1), ¥ (F2), ¥ (F3),
Y (F4)}, and the orbit that consists of the points

w([0:11,[0: 11,[0: 11), ([0 : 1], [1 : O], [1 : 0]),
o([1:0],[0:1],[1:0]), »([1:0],[1:0],[0:1]).
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The involution ¢ swaps these two G-orbits.

Let E11, E12, E21, E22, E31, E3p be the images in X4 of the surfaces in P! x P! x P!
that are given by the equations u; = 0, vy =0, up =0, v2 = 0,u3 =0,v3 =0,
respectively. Then E11, E12, E21, E22, E31 and E3; are singular toric del Pezzo surfaces
of degree 4, and v induces an isomorphism

P3 \ (Fl UFRURKU F3) = Xoa \ (Ell UE)pUEyUE»pUE3 U E32).

Let Ell, Elz, Ezl, 522, E31, 532 be the proper transforms on )?24 of the surfaces Eq,
E12, Ea1, Ex, E31, E3p, tespectively. Then Eq1, E12, Ez1, E2a, E31, E3; are smooth
del Pezzo surfaces of degree 6. Moreover, we have

w(Eu) = {34, w(Elz) =41, ZD'(EM) = {24,
w(gzz) = {13, W(Eﬂ) =Ly, ZD(Ezz) = {23.

Let £ = Ey1 + E12 + E21 + Exn + E3) + E3, and let Z15 = Sing(£). Then £ is
a G-irreducible surface, and Z|, is a G-irreducible curve in X4 that consists of 12
distinct lines in P'3, which are all lines contained in Supp(€). Note that Sing(Z1) =
Sing(X24).

If the subgroup G is conjugate to none of the groups G4g 50 and Gog 227, then it
follows from Lemmas 3.5, 4.1, 5.1 that the G-orbit X4 is the unique G-orbit in P3 of
length four. On the other hand, if G = G4g,50 or G = Gog,227, then it follows from
Lemma 3.5 that the space IP3 contains exactly three G-orbits of length four: X4, )
and XJ, where

EQ:{[I:1:1:—1],[1:1:—1:l],[l:—l:l:l],[—l:l:1:1]}g?_"T
and also
EZ{:l[l:l:l:]],[]:1:—1:—1],[1:—1:—1:1],[—1:—1:1:1]}¢T.

Therefore, if G = Gag,50 or G = Gog 227, then ¥ (X)) and ¥ (X)) are G-orbits of
length 4.

Similarly, if G is conjugate to none of the groups Gag 50 and Gog 227, it easily
follows from Lemmas 3.5, 4.1 and 5.1, that P3 \ 7 does not contain G-orbits of
length < 16. On the other hand, if G = G4g 50 or G = Gog 227, then it follows from
Lemma 3.5 that the G-orbits of length < 16 contained in P3 \ 7 can be described as
follows:

¥, 2, 2, =0rbg(li :i:1:1]), 25 = Orbg([—i :i : 1:1]).

Keeping in mind that v gives an isomorphism P3\7 = X»4\&, we get

Corollary 6.4 Let 3 be a G-orbit in Xp4 such that |X| < 15, and X is not con-
tained in €. Then G = Gu4g 50 or G = Goe 227, and X is one of the orbits 1//(24),
V(Z)), v(Z,), v(Z]5).
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Let H be a general hyperplane section of the threefold X»4 C P'3. Then
¢*(H) ~ @*(Op3(6)) — 2(E11 + E1a + Ea1 + Exo + E31 + En).

Let Fl, fz, 1?53, F4 be the proper transform~on 5(;24 of~the planes F\, Fp, F3, Fy,
respectively. Then @ *(Op3 (2)) ~ ¢*(H) — F| — F» — F3 — Fy4, because

Fi+ P+ Fs+ Fy~ " (O @) = 2(E\1 + Eia + Ea1 + Exy + E31 + Ex).

Thus, we conclude that there exists G-commutative diagram

s N\
P - p

where P? <> P is the second Veronese embedding, and Xo4 --» P is the rational
map which is given by the linear projection P'3 --» P? from the three-dimensional
linear subspace in P13 that contains the points (p(fl ), (p(fz), (p(fg), (p(f4). As above,
we can translate these maps into equations as follows: the projection X4 --» P is
given by

[20:21:22:23:24:25:26:27 2829210 : 211 : 212 : Z13]
(21 :22:23:25:26:27:28:29: 211 : 213],

and the second Veronese embedding P* < P is given by

[XO X1 i X2 )C3] = [xg L X0X1 :x12 S X0X2 L X1X2 D XpX3 L X1X3 :x% L X2X3 :x%].
As we already mentioned, the six surfaces E11, E12, E21, E2, E31, E32 are singular
toric del Pezzo surfaces of degree 4, and each of them has four isolated ordinary double
points. The singular locus of each of these surfaces consists of 4 points in Sing(X24),
and exactly two of them are contained in {(p(F 1, ga(Fz) go(F3) (p(F4)} For instance,
one has

Sing(Ey) = {cp(ﬁ),w(ﬁz),w([o $10,{0: 11,10 : 17), ([0 : 1], [1: 0], [1 : O])},

and the map X4 --» P induces the rational map Eq --» P that whose image is
a conic, which is the Veronese image of the line £34.

Lemma 6.5 Let S be one of the toric del Pezzo surfaces Ev1, E12, E21, E2, E31, E3a,
and let T be the image of the natural homomorphism Stabg (S) — Aut(S). Set

ar(S) = sup {A eQ

the pair (S, AD) is log canonical for every
effective I'-invariant Q-divisor D ~g —Ks
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i.e. the number ar (S) is the a-invariant of the surface S [12, 51]. Then ar(S) = 1.

Proof We may assume that S = E;. Note that Stabg (S) does not always act faithfully
on the surface S, hence we may have I' 22 Stabg (S). For instance, if G = G43 50,
then

Stabg (S) = Stabg (¢34) = (M, N, B) = p3,
where M, N and B are involutions in Gug 50 described in Sect.3. However, using

(6.3), one can check that the involution N acts trivially on S, and I' = u%.
Let us describe geometry of the surface S. To do this, we let

L= w({u1 =u3 = 0}), L/l = a)({ul =13 = 0}),
Ly = o({uy = up = 0}), L) = o({u; = v2 = 0}).

Then Ly, L), Ly, L, are smooth rational curves in S such that 2L; ~ 2L/ and
2Ly ~2L). Notethat Ly N L} =&, LoN L, = & and

LinLy=¢(B),LinLy=o([0:1],[0:11,[0:1]),
LiNLy=¢(F),LiNLy=w([0:1],[1:0][1:0]).

The intersections of these curves on the surface S are contained in following table:

Ly L/l Ly L,2

1 1

Ly 0 0 5 5

’ 1 1

L] 0 0 3 3

Ly ] 3 0 0
’ 1 1

Ly 3 5 0 0

Note that H|g,, ~ 2Ly +2Ls and —Kg ~ L{ + L, + Ly + L. In particular, since
the divisor L + L’] + L+ L’l is I'-invariant, we see that o (S) < 1.

Observe that L is the unique curve in |L1]|, the curve L’1 is the unique curve in
|L 1, the curve L is the unique curve in |L»|, and L} is the unique curve in |L}|.

Note that L + Lo ~ L’l + L%, and the linear system |Lq + L] is a I'-invariant
pencil, whose base locus consists of the points ¢(F1) and ¢(F>). This pencil gives
a I-rational map § --» P!, which is the map § --» ¢34 induced by the birational
map 1//_1 : Xoa --» P3. Then |L1 4+ L2| does not have I'-invariant curves, since £34
has no Stabg (¢34)-fixed points, because IP? does not have G-orbits of length 6 by
Lemmas 3.5, 4.1, 5.1.

Similarly, we see that |[L| 4+ L[ is a I'-invariant pencil generated by L + L/,
and L’1 + L», and its base locus consists of the points w ([0 : 1],[0 : 1],[0 : 1])
and ([0 : 1], [1 : O], [1 : O]). This pencil gives a rational map S --+ €2, which
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is induced by the birational map ¥ ~! o o, where o is the involution from (6.2). As
above, we conclude that | L1 + L| also does not contain I'-invariant curves.

Since neither [L1+ Ly | nor |L1+ L) | contains G-invariant curves, we also conclude
that none of the curves L1, L/1 , Lo, L/2 is I'-invariant, which can be checked directly.

We claim that S does not have I'-fixed points. Indeed, the stabilizer Stabg (£34)
swaps the planes F| and F>, so that the group I" swaps the singular points go(f 1) and
(p(fz). Thus, if S contained a I'-fixed point P, then |L| + L, | would contain a unique
curve that passes through this point, so that this curve would be I'-invariant. But we
already proved that the pencil |L; 4 L| has no I'-invariant curves. So, the surface S
has no I'-fixed points.

Now, we ready to prove that ar(S) = 1. We suppose that ar(S) < 1. Then S
contains a I"-invariant effective Q-divisor D suchthat D ~g — K, but the pair (S, A.D)
is not log canonical for some rational number A < 1. Note that the locus NklIt(S, A D) is
I"-invariant. Therefore, if this locus is zero-dimensional, then using Kollar—Shokurov
connectedness theorem [34, Corollary 5.49], we conclude that Nklt(S, D) consists
of a single point, which is impossible, because S does not have I"-fixed points.

Since the locus NKIt(S, AD) is not zero-dimensional, it contains a I'-irreducible
curve C. Then D = uC + A, where © € Q- such that u > % > 1, and A is an
effective divisor. Using [11, Lemma 2.9], we see that C ~ a1 L1 +axL| +a3La+asL)
for some non-negative integers ay, az, as, a4. Then —Kg ~q (a1 Ly +azL/1 +azlo+
asL}) + A, hence

1 = p(a1L1 +aL} +a3ly +aslh) - Ly + A - L

az +a a3z +a az +a
=,M32 4+A~L1>M32 4> 32 4’

so that az + a4 < 2. Hence, we have (a3, as) € {(0,0), (1,0), (0, 1)}. Similarly,
intersecting the divisor D with L, we see that (a1, az) € {(0, 0), (1, 0), (0, 1)}.

If (a3, as) = (0, 0), then (aj, az) # (0, 0), hence (ay, az) = (1,0) or (ay, az) =
(0, 1), which is impossible, since L is the unique curve in |L|, and L’1 is the unique
curve in |L}], but none of these two curves is I'-invariant. Therefore, we conclude
that (a3, as) # (0, 0). Similarly, we see that (a1, az) # (0, 0). Hence, we see that
C €|Li+ Ly|or C € |Ly + L}|, which is impossible, because neither |L1 + L5 | nor
|Ly + L}| contains G-invariant curves. O

Let us conclude this section by proving the following result.

Lemma 6.6 Let C be a G-irreducible curve in Xo4 such that C ¢ £ and deg(C) < 24.
Then G is one of the groups G 43,50, Gos,70, G96,227, and the following assertions hold:

o if G = Gyg 50, then C is one of the curves Y (Lg), ¥ (Lg), w(Lg), v(LY"),
e if G = Gog,70, then C is one of the curves Y (Lg)), ¥ (Lg"),
e if G = Gog 227, then C is one of the curves (L), ¥ (Ly),

where Lg, L¢, Ly, L¢" are G4g s0-irreducible curves in P3 introduced in Sect. 3.
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Proof Let C be the proper transform of the curve C on the threefold X. Since C ¢ €&,
we conclude that @ (C) is a G-irreducible curve in P> which is not contained in 7.
Then

2deg(w(C)) = @*(Op(2)) - C = H-C— (Fi + F, + F3 + F3) - C < deg(C) < 24.

So, the degree of the curve w(a ) is at most 11. Now, using Lemma 5.7 and our
assumption, we see that G is one of the groups Gaig 50, Goe 70, G96.227, G/96’227,
G192,955, G192,185, G334 160-

If G = G192.185, then it follows from Proposition 4.2 that the curve w(5 ) is
a disjoint union of two smooth quartic elliptic curves that are both disjoint from
the curve L. If G = G’324’160, it follows from Lemma 5.7 that @ (C) is one of
the curves (5.5) and (5.6), which are also disjoint from L. Therefore, if G = G192,185
or G = G/324,160’ then

24 > deg(C) = ¢*(H) - C
= <W*(Op3(6)) - 2(511 + Eip+ Eat + Exy + E31 + E32)> .C
= @*(Op3(6)) - C = Op3(6) - w (C) = 6deg(ww (C)) > 48

Thus, we see that G is one of the groups G4g 50, G9s.70, G96,227, G/96’227, G 192,955,
G192,185.

Note that all groups Goe 70, G96,227, G’96’227, G 192,955, G 192,185 contains the group
G4g.50. Moreover, each finite group Gog, 70, G’96,227, G192,955, G192,185 swaps
the curves Lg and L¢, and each finite group among Gog 227, G’96!227, G192.955, G192.185
swaps the curves £¢' and L. Therefore, to complete the proof of the lemma, we may
assume that G = G4g 50-

Now, using results of Sect.3, we conclude that either ar(C) is a smooth 1rre-
ducible curve of degree 8 and genus 9 contained in the quadric Qj, or w(C ) is
one of the reducible curves L4, £, L}, L)', L¢, Ly, %, Ly, L£7", which have been
introduced in Sect. 3. In the former case, the curve @ (C) does not intersect the curve
Ls, because L N Q1 = X|,, but smooth G-invariant irreducible curves contain no
G-orbits of length 12 by Lemma 3.2. Similarly, all curves L4, L, L}, L) are disjoint
from L. Hence, if the curve @ (C) is not one of the curves Ly, L, £/6” . Lg", then
w(C) N L¢ = <, hence

24 > deg(C) = ¢*(H) - C
( *(Op3(6)) — (Eu + Eip + Eay + Exny + Es; +E32)) .C =24,

which is absurd. So, we conclude that z (C) is one of the curves £/, Lg, Lg, Ly
O
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7 The proof of Main Theorem
Let us use assumptions and notations of Sects.5 and 6. In particular, we have
Pi=[1:0:0:0,P,=10:1:0:0],P3=[0:0:1:0],P,=1[0:0:0:1],

and G is a finite subgroup in PGL4(C) such that

(1) G does not have fixed points in P3,

(2) G does not leave a union of two skew lines in P invariant,
(3) G leaves invariant the subset { Py, P>, P3, P4},

(4) G is conjugate neither to G4g 3 nor to Goe 72.

If the subgroup G is conjugate to a subgroup among Gag 50, Gos,70, G96,227, G{)6’227,
G192,955. G192,185, G/324,160’ then we will always assume that G is this subgroup.

If G is not conjugate to G4g 50 and Gog 227, then Xy is the unique G-orbit of
length four. On the other hand, if G = G4g 50 or G = Gog 227, then the projective
space P* contains two additional orbits of length four: =} and X}, which are described
in Sects.3 and 6. Note that ¥4, X}, X are transitively permuted by the following
element of order three:

1 1 1 1
1 1 1 -1 -1

1 -1 1 —1]| € Gsr68654, (7.1)
—1 1 1 -1

where G576 8654 1s the subgroup in PLG4(C) generated by

_
o= O O
- o O O
o= O O
- o O O
o = O O
- o O O

1
0
0
0

SO = O

1
0
ol
0

coco !
co—~o
co~o

By Lemma 3.6, the subgroup Gs576.8654 is the normalizer of the groups G4g 50 and
Go6,227-

Remark 7.2 In Sect.6, we have constructed a non-biregular involution ¢ € Bir¢ (P3).
Moreover, if G = G4 50 or G = Gog 227, we can choose ¢ such that it is given by

[x0 :x1 :x2 : x3] = [X1X2X3 : X0X2X3 : X0X1X3 : XoX1X2].
In these two cases, the group Bir® (P?) also contains two birational involutions ¢’ and
(", which can be defined as follows: ¢ = Roto RZ and (" = R? ot o R. Note that

the birational involution ¢' maps [xg : x1 : x2 : x3] to the point

[xg — (xl2 + x0 + x%)xo — 2X1x0X3 : xi” — (x(% + x% + x%)xl — 2X0x3X2 :

x5 — (0f 4 x4 xD)x2 — 2x0x3x1 1 x5 — (6 + xF + x3)x3 — 2x1x2x0 .
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Similarly, the birational involution ¢ maps [xo : x1 : x2 : x3] to the point

[xg — (x% + x% + x32)x0 + 2x1Xx2X3 : xf' — (x(z) + x% + x%)xl + 2x0Xx3%7 :

: xg — (xg + x12 + x32)x2 + 2x0x3X7 : xg — (x(z) + x12 + x%)x3 + 2x1x2x0].

If G = Gag 50 or G = Gog 227, then (t, ', (") < (1, G576,8654), Where (1, G576 8654) C
Bir¢ (P3).

Let T be the subgroup in Bir® (P3) generated by the involution ¢ described in
Sect. 6 and the normalizer of the group G in PGL4(C). We will see later that I' =
Bir® (P?). Let ¢ o w~! : P? —=» X4 be the G-birational map from the commutative
diagram (6.2), where X4 is the toric Fano—Enriques threefold from Example 1.1.

Theorem 7.3 Suppose that for every non-empty G-invariant linear system M on
the projective space P that does not have fixed components, there exists p € T
such that one of the log pairs (P3, App(M)) or (X24, Ago(M)) has at most canonical
singularities, where 0 = ¢ o w ! o p, and A o and Ao are positive rational numbers
defined by

App (M) ~qg —Kps,
hoo(M) ~qg —Kxy,-

Then P3 and X»4 are the only G-Mori fibred spaces that are G-birational to the space
P3. Moreover, one also has Bir® (P3) = T.

Proof The proof is essentially the same as the proof of [15, Theorem 3.3.1]. O

To apply Theorem 7.3, we need two technical results about P? and X54. Asin Sect. 3,
let Lg, Ly, Lg be the curves in IP that consist of six lines in P that contain two points
in Xg4, E‘", E"{ , respectively. Two technical results we need are Propositions 7.4 and
7.8.

Proposition 7.4 Let M be a non-empty G-invariant linear system M on P? that does
not have fixed components, let A be a positive rational number such that AM ~q
—Kps. Suppose that (P3, A M) is not canonical. If G is not conjugate to G 438,50,
Go6.227, G’324’160, then multg (AM) > 1 or multy, (AM) > 2. Similarly, if G =
Gug 50 or G = Gog 227, then

max (mult 2, (M), multz, (M), multz, (M) > 1 (7.5)
or

max (mult>:4 (X./\/l), multzé/l (AM), multzg (XM)) > 2. (7.6)

Finally, if G = G/324’160, then mult;,(AM) > 1 or multg,(AM) > 2 or
multg (AM) > 1, where € is one of the G-invariant irreducible curves (5.5) or (5.6).
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Proof Let P be a point in the G-orbit 34. Then the group Stabg (P) faithfully and
linearly acts on the Zariski tangent space Tp (P3), and this action is an irreducible
representation. Therefore, if P is a center of non-canonical singularities of the log
pair (P3, A M), then

multy, (AM) > 2

by [1, Lemma 2.4]. Thus, we may assume that no point in ¥4 is a center of non-
canonical singularities of the pair (]P’3, AM). Likewise, if G = G4g 50 or G = Gog 227,
then we may assume that no point in X U X} is a center of non-canonical singularities
of our log pair.

If G is conjugate to none of the groups G4s,50, G96,70. G 96,227, G§6’227, G192,955,
G4 160 it follows from Corollaries 4.3 and 5.8 that

multe (AM) < 1

for every G-irreducible curve C C P3 such that C # L. If G = Gyg50 or G =
Gog,227, then it follows from Proposition 3.25 that we have multc (AM) < 1 for every
G-irreducible curve C which is different from the G-irreducible curves Lg, L/é, £/6/ .
IfG = G/324’ 160- then it follows from Corollary 5.8 that multc (AM) < 1 for every

G-irreducible curve C C IP? such that C is not one of the curves Lg, (5.5) or (5.6).

Observe that Gog 70, G’96’227, G 192,955 swap the G4g s0-irreducible curves Ly and
£’6’ . Therefore, if G is one of these three groups, then it follows from Proposition 3.25
that we also have multc(AM) < 1 for every G-irreducible curve C C P3 that is
different from Lg.

Thus, to complete the proof, we may assume that multc (A M) < 1 for every C C
IP3. Then (P3, AM) is canonical outside of finitely many points by [34, Theorem 4.5].

Let P be a point in P* such that (P3, M) is not canonical at P. Then every point
in the orbit Orbg (P) must be a center of non-canonical singularities of the log pair
(]Pﬁ, AM). Recall that P ¢ %4. Similarly, if G = Gug 50 or G = Gog 227, then
P¢z Uy

Now, we claim that |Orbg (P)| > 12. Indeed, if G = Gag 50 or G = Gog 227, this
follows from Lemma 3.5. Similarly, if we have G = G192,135, then |Orbg (P)| > 12
by Lemma 4.1. If G is not conjugate to any group among G4s 50, Gos,70. G96,227,
G/96,227’ G 192,955, G192,185, then |Orbg(P)| > 12 by Lemma 5.1. If G is one of
the subgroups Gog 227, G66,227’ G192,955, and |Orbg (P)| < 12, then it follows from
Lemma 3.5 that

Orbg(P) = S, U %},

Let v: V — P2 be the blow up of the points ¥, U X}, let F be the sum of
all v-exceptional surfaces, and let M be the proper transform on V of a sufficiently
general surface in M. Note that the linear system |v* (Op3 (2)) — F| is two-dimensional
and has no base points. Let S1 and S> be general surfaces in this linear system. If
Orbg (P) = ¥, U X}, then
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0 < AM - Si -S> =16 — 8multp (AM),

which is impossible, since we already proved that mult p (AM) > 2, because the linear
system M is Gyg 50-invariant. Therefore, we see that |Orbg (P)| > 12.

Now, we claim that P is not contained in a G-invariant curve in P? of degree at
most 8. To prove this claim, we may assume that G = G4g 50 or G = G192,185
or G is conjugate to none of the finite subgroups Gag s0, Goe.70, G96.227, G/96’227,
G192,955, G192,1g5, because the subgroups G96’7(), G96,227, G/96,227’ G1921955 contain
the subgroup Gag_ 5.

Let C be some G-irreducible curve in P3 of degree d < 8. If G = Guag 50, then
it follows from Corollary 3.15 and Lemmas 3.16, 3.17, 3.21 and 3.22 that either C
is a smooth irreducible G-invariant curve described in Example 3.19, or C is one of
the curves

/ 17 " / " " " 1 2 A3 1,7 »2,0 A3,/ 1,1 2,1 A3,/
‘645‘64"64’[:49£67£67£65£65£6 7C87685685C8 ,Cg ,C »Cg ,Cg ,Cg

described in Sect.3. Similarly, if G = G92,185, then C is one of the curves Le,
Cg, 63, which are described in Proposition 4.2. Finally, if the group G is not conjugate
to a group among Gas 50, G96,70, G96,227, Gog 207- G192,955. G192,185, then C =

L by Proposition 5.7. Among all these curves, only the curves Cj, Cé‘/, Cé‘” are
singular.
Let D be the linear system on P> consisting of surfaces of degree k that contain

C, where, . .
3if C is one of the curves L¢, L4, L¢,
"

4 if C is one of the curves L4, L}, L), L),
4 if C is one of the curves Cy, C3, C3, Cé’/, C;*’, C;", Cé’”, C;*”, Cé’”,
k = § 4if C is a smooth irreducible curve described in Example 3.19,

4 if C is the curve %g described in Proposition 4.2,

6 if C is one of the curves £¢ or L¢” described in Section 3,

8 if C is the curve Cg described in Proposition 4.2.

Then the linear system D is non-empty. Furthermore, it does not have fixed compo-

nents. Moreover, if C is not one of the curves C2, C3, Cé’/, C3’/, Cg’”, Cg’”, then D does
not have base points away from the curve C. If C is one of the curves C§, cs3, Cg !
C3’/, Cé’”, Cg " we can describe D explicitly. For instance, if C = Cg orC = Cg’ , then

D is the pencil

AXxoXx1x2x3 + ,u()céxl2 + xéx% + x3x3 + x2x? 4 x%x% +x3x3) — pulxg +xf
+ x5 +x3) =0,
where [A @ u] € P!, Note that the base locus of this pencil consists of the curves
Cé and Cg. Similarly, if C = Cg’/ or C = Cg’/, then the linear system D is a pencil

of quartic surfaces, and its base locus is the union Cé v Cg 7 Finally, if C = Cé’” or

) Birkhauser



71 Page70of 84 I. Cheltsov, A. Sarikyan

C = Cg " then the linear system D is a pencil of quartic surfaces whose base locus is
the union C3"" U Cy".

Now, we suppose that P € C, hence Orbg(P) C C as well. Let M| and M; be
two general surfaces in M. Write

MMy - My =mC + A,

where m is a non-negative rational number, and A is an effective one-cycle whose
support does not contain C. Then m < 4, since A>M| - M, is a one-cycle of degree
16, and d > 4. On the other hand, it follows from [46] or [18, Corollary 3.4] that
AZ(Ml - M>) p > 4. Therefore, if the curve C is smooth at P, then

multp(A) >4 —m.

Let S be a general surface in D. If C is not one of the curves Cg, 083, Cé’/, Cé’/, Cg’”,

Cg "' then the base locus of the linear system D does not contain curves different from
C, which implies that S does not contains curves in the support of the one-cycle A,
hence

16k — kdm = S - A > |Orbg (P)|multp(A)
> |Orbg (P)|(4 —m) > 12(4 — m) (7.7

provided that the curve C is smooth at P. This immediately gives us a contradiction
in the case when C is one of the curves Lg, £’6, Eg. Thus, we conclude that P ¢
Le U [/6 U Eg. In particular, we obtain our local claim in the case when G is not
conjugate to any group among Gas 50, G96,70, G96,227, Ggg 207- G192,955, G192,185-
Thus, to proceed, we may assume that either G = G4g 50 or G = G192, 185.

If G = G192,185 and C is the curve 63 described in Proposition 4.2, then it follows
from the inequality (7.7) and Lemma 4.1 that

64 — 32m > |Orbg(P)|(4 —m) > 16(4 —m) = 64 — 16m,

which is a contradiction. If G = G192,185 and C is the curve Cg described in Propo-
sition 4.2, then (7.7) implies that 128 — 64m > |Orbg (P)|(4 — m), so that we have
|Orbg (P)| < 32. Recall from Proposition 4.2 that the curve Cg is a disjoint union of
four irreducible conics, and C; = {x3 = xg — xl2 — x% = 0} is one of them. Then

Stabg ., 155 (C1) is generated by

(_19 17 1)7 (17 _15 1)’ (1’ 1’ _1)7

SO = O O
—_ o O O

0
0
i
0

SO~ O
SO O~
SO = O
SO O =
- o O O

so that Stabg,, 145 (C1) = A4 % 4, and the Stabg,,, 45 (C1)-action on the curve Cy
gives a homomorphism Stabg ,, 155 (C1) — Aut(Cy), whose image is isomorphic to
Sy4. Then
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e the curve C has a unique Stabg,q, 55 (C1)-orbit of length 6,
o the unique Stabg,y, ;4 (C1)-orbitin Cy of length 6 is C1 N (€12 U £13 U £23),
e other Stabg,, 45 (C1)-orbits in C have length at least 8.

Therefore, we conclude that Cg N Lg is the unique G192,185-0rbit in Cg that has length
24, and other G197, 185-0rbits in Cg has length at least 32. Hence, if G = G192,185 and
C = Cg, then P € CgN Lg, which is impossible, since we already proved that P ¢ L.
Thus, we have G = Gg,50. Recall that we already proved that P ¢ L¢ U Ly U L.
Therefore, either C is a smooth irreducible curve of degree 8 described in Exam-
ple 3.19, or C is one of the curves L4, L}y, L}, L), L', Lg", Cé, Cg, Cg, C;’/, Cé’/,
Cg’/, Cé'”, Cé’//, CS‘". In the former case, it follows from (7.7) and Lemma 3.2 that

64 — 32m > |Orbg(P)|(4 —m) > 16(4 — m),
which is absurd. Similarly, if C is one of the curves Ly, L), £, L}, then (7.7) gives
64 — 16m > |Orbg(P)|(4 — m),

which implies that |Orbg(P)| < 16, hence it follows from Lemma 3.5 that P is
contained in one of the four Gyg 50-orbits X2, X/,, X,, X3, which are described
earlierin Sect. 3. But 1, UX), C L, LY, C Lg,and X1, C L¢', whichis impossible,
since P ¢ L U Ly U L¢. Likewise, if either C = L{ or C = L{", then (7.7) and
Lemma 3.5 give |Orbg (P)| = 16, because P ¢ X1, U X1, U X}, U E{%. But £{" and
Lg" contain no G4g 50-orbits of length 16. Thus, as above, we conclude that C # L’
and C # Lg".

If C is one of the curves Cgl, Cé’/, Cé’”, then C is smooth at the point P, because
the singular loci of the curves C 1 Cé”, Cé’” are contained in the curves Lg, 5’6, ,Cg s
respectively. Therefore, in this case, it follows from (7.7) that

64 — 32m > |Orbg (P)|(4 — m)

which implies that |Orbg (P)| < 16,hence P ¢ X1, UX|,UX{,UX]) by Lemma3.5.
But P ¢ X1, U X}, U X}, U X{}, so that C is not one of the curves Cé, Cé’/, Cé’”.

We see that C is one of the curves Cé, Cg’, Cé’/, Cg’/, Cg’”, Cg’”. Without loss of
generality, we may assume that C = C%, because Gog 227 and G 144,184 transitively
permutes these six curves. Recall that D is a pencil, and its base locus consists of
the curves C = Cé and Cg. As above, we write

APMy - My =mC +m'C3 + A,

where m’ is a non-negative rational number, and A’ is an effective one-cycle whose
support contains none of the curves Cé and Cg’. Then m + m’ < 2, since A2M; - M»
has degree 16. Since A?(M; - Ma), > 4,if P ¢ C3 N C3, then multp(A) > 4 —m,
hence
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64 —32m > 64 —32m —32m' = S - A > |Orbg (P)|multp (A) > |Orbg (P)|(4 — m)

for a general surface S € D. Therefore, if P ¢ C% ﬂCé’, then we have |Orbg (P)| < 16,
which contradicts Lemma 3.5, because we have P ¢ ¥4 U X U X/ U X UX|, U
%1, U Z{5. Hence, we see that P ¢ C% N Cg’. Then Orbg (P) is the Gag 50-orbit of
the point [1 : 1 : 1 : O], which gives |Orbg (P)| = 16. Observe that this G4g 50-orbit
is cut out by cubic surfaces, because it is a singular locus of the surface

{xgxlz + x%x% + x5x32 + xlzxg + x%x% + x%x% = xg + x? + xé + x?} c P

Thus, if S3 is a general cubic surface in P3 that contains Orbg (P), then S3 does not
contain curves that are contained in the support of the one-cycle A2M, - M>, hence

48 = )2My - Ms - S3 > Z (A*M1 - M3) , > 4|0rbg (P)| = 64,
0€0rbg (P)

which is absurd. So, we conclude that our point P is not contained in any G-irreducible
curve in P whose degree is at most 8.

Observe that (P?, §)»/\/1) is not log canonical at P. Let u be the largest rational
number such that (IP’3, uM) is log canonical at P. Then p < %A and Orbg(P) C
Nklt(P3, uM). Observe that the locus NkIt(P3, M) is at most one-dimensional,
because M does not have fixed components. Moreover, this locus is G-invariant,
since M is G-invariant.

We claim that the locus NkIt (P?, 1M) does not contain curves that passes through
P. Indeed, suppose this is not true. Then Nklt(P3, £ M) contains a G-irreducible
curve Z that passes through P. As above, for two general surfaces M| and M; in M,
we write

WM - My =687+,

where § is a non-negative rational number, and 2 is an effective one-cycle whose
support does not contain the curve Z. Then § > 4 by [18, Theorem 3.1]. Now, taking
into account that the degree of the one-cycle u”>M; - M is less that 36, we conclude
that deg(Z) < 9. But we already proved that P is not contained in any G-irreducible
curve in P? whose degree is at most 8. Thus, the locus NKIt(P3, M) contains no
curves passing through P, so that this locus does not contain curves that pass through
any point in Orbg (P).

Let Z be the multiplier ideal sheaf of the pair (P3, M), and let £ be the correspond-
ing subscheme in P>, Applying [41, Theorem 9.4.8], we get i (P*, T ® Op3(2)) = 0.
Then

10 = 1°(P3, Op3(2)) = 1% (O ® Op3(2)) > |Orbg (P)| > 12,
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because the subscheme £ contains at least |Orbg (P)| > 12 disjoint zero-dimensional
components, since Orbg (P) C NKIt(P3, uM), and NKlt(P3, M) does not contain
curves that are not disjoint from Orbg(P). The obtained contradiction completes
the proof. O

Recall from (6.2) that we have the following G-commutative diagram:

where @, ¢ and ¥ are birational maps described in Sect. 6.

Proposition 7.8 Let M be a non-empty G-invariant linear system on X4 that has
no fixed components. Choose » € Q~¢ such that AM ~q —Kx,,. If (X24, AM) is
canonical at every point in Sing(X»24), then (X24, AM) is canonical.

Proof Suppose that the singularities of the log pair (X24, A M) are not canonical, and
the log pair (X24, A M) is canonical at every point in Sing(X24). Let us seek for a con-
tradiction. Let Z be a center of non-canonical singularities of the pair (X24, A M) that
has the largest dimension. Since the linear system M does not have fixed compo-
nents, we conclude that either Z is an irreducible curve, or Z is a smooth point of
the threefold Xo4.

Let £ = Ei1 + E12 + E21 + Exn + E31 + E3p, where Eq1, E12, E21, Eo,
E3y, E3p are surfaces in the threefold Xp4 defined in Sect.6. If Z C €&, then
(E11, AM|Eg,,) is not log canonical by the inversion of adjunction [34, Theorem 5.50],
which is impossible by Lemma 6.5, because AM|g,, ~qg —KE,, by the adjunction
formula. Thus, we conclude that Z ¢ £.

If G is one of the groups Gag.50, G9s,70, G96.227, G/96,227’ G192,955, We can use
Lemma 3.3 to show that Z is not contained in the locus

¥ (Qs) U (Qs) U (Q7) U (Qs) U (Qo) Ur(Qio). (7.9)

where Qs, Qg, Q7, Qg, Qo, Q10 are quadric surfaces in P3, which are defined in Sect. 3.
Indeed, suppose that G is one of the subgroups G4g 50, G96,70, G96,227, G’96’227,
G 192,955, and there is a surface S among ¥ (Qs), ¥ (Qs), ¥ (Q7), ¥ (9Qsg), ¥ (Qo),
¥ (Qj1o) that contains Z. Recall that G contains the subgroup H = ;L‘Z‘ defined in
Sect. 3, the quadrics Qs, Qg, Q7, Og, Qg, Q1o are H-invariant, and the subgroup H
acts faithfully on each of them. Furthermore, the rational map  : P* --» X4 induces
H-equivariant isomorphisms

Qs = ¥(Qs), Q6 = ¥ (Qs), Q7 = ¥(Q7), Q8 = ¥(Qs), Qo = ¥ (Q9), Q1o = ¥(Q10)-
Moreover, one can also check that
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e (Q7) and ¥ (Qjp) are the fibers of the morphism 7 over [1 : —1] and [1 : 1],
e Y (Qs) and ¥ (Qg) are the fibers of the morphism 7, over [1 : —1] and [1 : 1],
e Y (Qg) and ¥ (Qo) are the fibers of the morphism 53 over [1 : —1] and [1 : 1].

Thus, it follows from the inversion of adjunction that (S, AM|s) is not log canonical,
which is impossible by Lemma 3.3, because AM|s ~g — K.

Now, we are ready to show that Z is a point. Namely, we suppose that Z is a curve.
Let H be a hyperplane section of the threefold X24 C P13, let M, and M; be two
general surfaces in the linear system M. Then deg(Z) < 24, since

24 =)2H - My - My > 22deg(Z)(M; - M), > deg(Z)mult5 (AD) > deg(2).

Therefore, it follows from Lemma 6.6 that G is one of the groups G4s 50, G9s,70,
Go6,227,and Z is one of the curves ¥ (Ly), ¥ (L), ¥ (Lg)), ¥ (Lg"), where Lg, L¢, Ly,
L are curves in the projective space IP3 introduced in Sect. 3. But this is impossible,
since all these curves are contained in (7.9). This shows that Z is a point.

Observe that (X4, %AM) is not log canonical at Z. Let u be the largest rational
number such that (X»4, uM) is log canonical at Z. Then u < %X and Orbg(Z) C
NKlIt(X54, uM). Note that the locus NKIt(Xo4, uM) is at most one-dimensional,
because M does not have fixed components. Moreover, this locus is G-invariant,
since M is G-invariant.

Now, we claim that the locus Nklt(X24, uM) does not contain curves passing
through Z. Indeed, we suppose that the locus Nklt(X24, uM) contains some G-
irreducible curve C. As above, we let M| and M, be two general surfaces in M.
Write

WMy - My =68C + Q,

where § is a non-negative rational number, and €2 is an effective one-cycle whose
support does not contain the curve C. Then § > 4 by [18, Theorem 3.1]. Now, taking
into account that the degree of the one-cycle > M - M is less that 54, we conclude
that deg(C) < 13. Therefore, it follows from Lemma 6.6 that G is one of the groups
G43,50, G96,70, G96,227, and C is one of the curves ¥ (Ly), ¥ (L), ¥ (L), ¥ (L.
But all of these four curves are contained in the subset (7.9), so that none of them
contains Z, since Z is not in (7.9).

We conclude that all curves in Nklt(P3, u M) are disjoint from Orbg (Z).

Let Z be the multiplier ideal sheaf of the pair (X24, uM), and let £ be the cor-
responding subscheme in X4. Applying [41, Theorem 9.4.8], we get H'(X24,7 ®
Ox,,(H)) = 0. Then

14 = h°(X24, Ox,, (H)) = h° (O ® Ox,,(H)) > |Orbg (Z)],

since the subscheme L contains at least |Orbg (Z)| disjoint zero-dimensional compo-
nents. Therefore, since Z ¢ &, it follows from Corollary 6.4 that either G = G350
or G = Gog 227, and Orbg (Z) is one of the orbits ¥ (X)), ¥ (X)), ¥ (X1,), ¥ (E]3),
which is a contradiction, because these orbits are contained in (7.9), while Z is not
contained in this locus. O
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Now, arguing as in the proof of [9, Proposition 6.11], we can prove our Main Theo-
rem using Theorem 7.3, Propositions 7.4 and 7.8. Similarly, we can prove Theorem 1.4
using both Propositions 7.4 and 7.8 together with the following lemma:

Lemma 7.10 Let € be one of the two G’324’160-invariant irreducible curves (5.5) or
(5.6), and let 9: X — P3 be the blow up of the curve €. There is a G’324,160-

equivariant diagram
X
N
P3 P!

where k is a fibration into cubic surfaces. Now, let M be a non-empty G-invariant
linear system on X that does not have fixed components such that

Kx + A M ~q «*(D)
for some A € Q-q, and some Q-divisor D on P'. Then (X, »M) is canonical.

Proof Suppose the pair (X, AM) is not canonical. Let Z be its center of non-canonical
singularities. Then

multz (M) > %

by [34, Theorem 4.5] or [19, Exercise 6.18].

First, we suppose that Z is a curve that is not contained in the fibers of the mor-
phism «. Let F be a general fiber of «, let M| and M; be general surfaces in M.
Then

F-Z |FNZ|

3
S =M -My-F > (F-Z) (M- M), > (F - Z)multy (M) > S =7

)»2
sothat |[FNZ| = 1 or |FNZ| = 2. One the other hand, we have StabG/324 60 (F) = y%,
and the surface F does not have StabG/z o160 (F)-orbits of length 1 and 2. Contradiction.

Thus, we conclude that there exists a fiber S of the morphism « such that Z C S.

Suppose that the surface S is singular and Z is its singular point. Then § is a cubic
cone in P? with vertex at Z. Let M be a general surface in M, and let £ be a general
ruling of the cone S. Then ¢ ¢ M, hence

11 1 1
X:X(—KX)-ZZX(—KX—}-K*(D))%:M%Emultz(/\/lx)>X,

which is absurd. This shows that Z is not a singular point of the surface S.
Using the inversion of adjunction [34, Theorem 5.50], we conclude that (S, AM|s)
is not log canonical at general point of the subvariety Z. But this is impossible by
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Lemma 5.9, because we have AM|s = — K. This completes the proof of the lemma.
(]

In the remaining part of this section, let us present a combined proof of Main
Theorem and Theorem 1.4 that does not use Theorem 7.3. We decided to include this
proof for convenience of the reader and for one application (see Corollary 7.15 below).

Theorem 7.11 Let f : P> —-» Y be a G-birational map such that Y is a threefold with
terminal singularities, and there is a G-morphism ¢: Y — Z that is a G-Mori fiber
space. If G is not conjugate to G’324’160, then Z is a point, and Y is G-isomorphic to

P3 or Xo4. Similarly, if G = G/324,160’ then one of the following possibilities holds:
e Z is apoint, and Y is G-isomorphic to P3;

e Z is apoint, and Y is G-isomorphic to X4 from Example 1.1;
e Z =P andY is G-isomorphic to the threefold X from Lemma 7.10.

Moreover, one has Bir® (P3) = T, where I is the subgroup in Bir(P3) that is generated
by the involution  constructed in Sect.6 and the stabilizer of the subgroup G in
PGL4(C).

Proof Recall from Sect. 6, that there exists the following G-commutative diagram:

o [
X24 X4 X4
| |
x| I X
\ \
(o P3_ _ _'_ _ o p3
A

For the detailed description of the G-birational maps 7, ¢, @, ¢, x and v, see Sect. 6.
Let € be one of the two G/324’160-invariant curves (5.5) and (5.6). If G = G/324,16O’
then we also have the following G-equivariant diagram:

where ¥ is a blow up of the curve €, and « is a fibration into cubic surfaces. Using [7,
50], one can show that

Aut(€) = G4 1605

which implies that the normalizer in PGL4(C) of the group G’324’160 is the group
G/648,7O4' Observe that G’64&7O4 swaps the curves (5.5) and (5.6).
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If G is not conjugate to G’324’ 160> it is enough to prove that there exists y € I" such
that one of the maps f oy, f oy o x or f otis anisomorphism. If G = G’324’160,
it is enough to prove that there exists y € I' such that foy, foyox, foy o¥is
an isomorphism. To complete the proof, we suppose that none of these assertions are
true.

Let Hps = Ops(1), let Hy,, be the hyperplane section of the Fano threefold Xo4 C
P13, let Ey, E,, Es, Ey be the G-irreducible exceptional divisors of 7, ¢, @, ¥,
respectively, and let F be a fiber of the cubic fibration «. Then

20" (Hps) ~ @ *(Hxy) — Ew.

@*(Hx,,) ~ 69" (Hps) — 2E,,
(o U)*(H[Fﬁ) ~ 371*(HP3)
3
E, ~q @*(Hx,,) — 5 Eer (7.12)

Eq ~q 49" (Hps) — 2E,,
Ex ~q 4(m o v)*(Hps) — 3v*(Ex),
F ~39*(Hps) — Ey.

Note also that Hy,, generates the group Cl° (X)) ® Q. In fact, it is not hard to see that
every G-invariant Weil divisor on X»4 is Q-rationally equivalent to k Hy.,, for k € %Z.

Fix a sufficiently large integer n > 0. Let Dz be a sufficiently general very ample
divisor on Z, and let My = | — nKy 4+ ¢*(Dz)|. Forevery y € I', we let

P} = (f o)y M),
MY, = (foyox), (My).

Similarly, if G = G/324’160, then we let
My = (foyon), (My)
for every element y € I'. Now, for every element y € T, let n” be the positive

integer such that /\/ly3 ~ nY Hps, and let k), be the positive half-integer such that

M§z4 Q ky Hx,,. It follows from the Noether-Fano inequality [15, 17, 32] that
the s1ngular1tles of the pair

4
3 4
(P 3 n_VM]P3)

are not canonical for every y € I', because f o y is not an isomorphism by our
assumption. Similarly, we see that the singularities of the log pair

(o M)
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are also not canonical for every y € I', since we assumed that f o y o x is not an
isomorphism.
. 7
Moreover, if G = G7y, 140, then

1 M~ n? — 4mu1tq;(/\/lﬁ;3)
nY — Smultq;(/\/lﬁ/ﬁ) x 0 nY — Smultq;(/\/lﬂ);)

Kx +

where multg(/\/lfgs) < % Thus, if G = G,y 149 and n¥ — 4mult¢(/\/l];3) > 0, then
it follows from the Noether—Fano inequality that the singularities of the log pair

1
X, Y
( nv — 3mu1t¢(M§3)MX)

are not canonical for every y € T, because we assumed that f o y o ¢ is not an
isomorphism. However, we already proved in Lemma 7.10 that this log pair have
canonical singularities. Hence, if G = G’324’] 60> then multg(MI}gﬁ) < % for every
yel.

Now, for every y € I', we let mz6 = multg, (M]’}/ﬁ) and mg = multm(/\/lﬁ/ﬁ).

Similarly, let mé¢ be the non-negative rational number such that

-1
¢* (M§24) NQ ¢*(M§24) - m/E¢E¢
Then, using (7.12), we see that

n? = 6k¥V — 4mé¢;

n’® =3n" — 4m}é4; (7.13)
ny
y _ oy
kY = 2 mp..

Then, we let

ny
5 :min{—,k”}.
yel L 4

Note that this minimum is attained for some y € T'.
Suppose that § = % for some y € I'. If G is not conjugate to G4g 50, G96.227,
G’324 160> then it follows from Proposition 7.4 that

v

n

m’. -
Le >

4

or

m24 > Z,
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therefore (7.13) gives

or

ny
8<ny°‘=3ny—4m;4 < T:S,

which is a contradiction. Similarly, if G = G/324,16O’ it follows from Proposition 7.4
that at least one of the following strict inequalities holds:

Y
mp . >
v o
my, > 2
multg(/\/ly ) > ﬂ
IP3 4°
yoK v
mult¢(/\/lIP>3 ) >

for

0
0
o|€ Geag 704 C T,

SO = O O

1
0
0
0 —1

oo = O

since € and K (€) are the G/324,1 go-invariant curves (5.5) and (5.6). But we already

proved earlier that muth(Mﬁ;}) < % and multg;(/\/l]});; K) < %, which implies that

14

n

m2>—
67 4

or

and (7.13) gives

or
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Thus, we see that either G = G4g 50 or G = Gog 227. Then it follows from Proposi-
tion 7.4 that at least one of the following inequalities holds:

ny
4
yoR n?
m£ > —,
s T 4
yoR2 n?
mﬁ > —
6 4

14

n

Y

m24 > T,
YoR n”
mz4 > T,
YoR n”
e T g

14
m£6>

because R(Le¢) = Lg, R*(L¢) = Lf, R(Z4) = T, R*(Z4) = T, and R €
Gs76.8654 C I'. Here, R is one of the generators of the group G576 8654 defined in
(7.1), see Remark 7.2. As above, we obtain a contradiction with § = %, because
nY = nYoR = proR?,

Hence, we conclude § = k¥ for some y € I'. Then it follows from Proposition 7.8
that the log pair (X24, kly/\/l X2V4) is not canonical at some singular point of the three-
fold Xp4.

Recall from Sect. 6 that Sing(X24) is a union of two G-orbits: ¢ (Ey) and g op(Ey),
where ¢ = x ! oto x. If (Xo4, kiy/\/lxﬂ) is not canonical at ¢(E,), then

kY

v
m > —
Ey 2

by Kawamata’s theorem [33]. Likewise, if (Xo4, kiy/\/l X,,) 1s not canonical at ¢ o
@(Ey), then

-5

Therefore, using (7.13), we see that

ny k¥ — 4mg¢

§ < i 1 <kV =6
or
you
3 < n:m =w < k¥ =3.

The obtained contradiction completes the proof of Theorem 7.11. O
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Corollary 7.14 If G is not conjugate to Gag 5o or Gog 227, then Bir% (P3) is finite.

Proof Let O be the normalizer of the group G in PGL4(C). Then
Bir¢ (]P’3) = (L, ‘ﬂ)

by Theorem 7.11. The centralizer of the group G in PGL4(C) is trivial by Schur’s
lemma, so we have an embedding 91 < Aut(G), which implies that 1 is finite.
Observe that X4 is a Ot-orbit, because X4 is a unique G-orbit of length 4.
Let ¢ be the involution in Bir® (P3) described in Sect. 6. Note that ¢ is IN-equivariant,
since X4 is a Jt-orbit. This implies that ¢ also normalizes 91, so (¢, N) is finite. O

If G = Gag 50 or G = Gog 227, it follows from Theorem 7.11 that Bir¢ (P3) =
(t, Gs76.8654)- In these two cases, the group Bir® (P?) is infinite (but discrete) by
the following result.

Corollary 7.15 Suppose that G = Gag 50 or G = Gog 227. Then (1, V', ") = o * up *
W2, and there exists the following split exact sequence of groups:

1 — (i, /) — BirG(IP3) —> Gs76.8654 — 1,

where i, (', " are birational involutions in Bir® (P?) described in Remark 7.2.

Proof 1t follows from Theorem 7.11 that Bir®(P?) is generated by ¢, ¢/,  and
G576.8654- Using this, it is not very difficult to check that (¢, ¢/, /") is a normal subgroup
in Bir¢ (IF’3 ). Recall from Lemma 3.6 that G576 ges4 is the normalizer of the subgroup
G in PGL4(C).

Fix a G-birational map g € (¢, ¢, (”). Let us show that g can be uniquely written
as a composition of ¢, ¢, ¢”’. The proof of this fact is similar to the proof of [32,
Theorem 3.10]. More precisely, the proof of Theorem 7.11 provides an algorithm how
to decompose g as a composition of ¢, ¢/, ¢”. Let us remind this algorithm. To start
with, we let

Mps = g, (10p (D)),

and let n € Z~ such that Mps C |Ops(n)|. The number 7 is known as the degree
of g. Then, arguing as in the proof of Theorem 7.11, we see that either n = 1 and
g € Gs76.8654, or n > 1 and the singularities of the log pair

(. L)

are not canonical. Now, using Proposition 7.4, we see that at least one inequality holds
among the following three inequalities:

max<4mult£6 (Mp3), 2multy, (./\/lps)) > n, (7.16)
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max <4rnult£/6 (Mp3), 2multy; (./\/lpa)) > n, (7.17)

max (4mult z; (Mys ), 2mult; (Mgs) ) > . (7.18)

Moreover, if the inequality (7.16) holds, then it follows from the proof of Theorem 7.11
that the degree of the composition g o ¢ is strictly smaller than n. Similarly, if (7.17)
holds, then the degree of the composition g o ¢’ is strictly smaller than n. Finally, if
(7.18) holds, then the degree of the composition g o¢” is smaller than . Thus, iterating
this process, we decompose g into a composition of involutions ¢, ¢/, ¢”” and an element
in G576,8654-

To prove that (¢, ¢/, t") = o * o * (o, we must prove that precisely one birational
map among g ot, g ot/, g ot has degree (strictly) smaller than the degree of the bira-
tional map g, so the described algorithm decomposes g in a unique way. To prove this,
it is enough to show that precisely one inequality among (7.16), (7.17), (7.18) holds.

Without loss of generality, it is enough to show that both inequalities (7.17) and
(7.18) cannot hold simultaneously. By Proposition 3.25, we have

multz, (Mps) + multzy (Mps) <

oS

Similarly, it follows from the proof of Proposition 7.4 that
multy, (Mp3) + multyy (Mp3) < n.

Moreover, if mult c, (Mp3) > %, then it follows from the proof of Proposition 7.4 that
the degree of the composition g o ¢’ is strictly less than n, so (7.13) gives

multy, (Mp3) >

NS

Likewise, if mult oy (Mp3) > %, then

n
multy (Mps) > 3

Therefore, if (7.17) holds, then the inequality (7.18) does not hold. m]

Acknowledgements We want to thank Hamid Abban, Michela Artebani, Igor Krylov, Jennifer Paulhus,
Yuri Prokhorov, Xavier Roulleau, Alessandra Sarti, Costya Shramov, Andrey Trepalin, Yuri Tschinkel for
helpful comments. We want to thank Tim Dokchitser for his help with Magma computations and his online
database [21]. Ivan Cheltsov has been supported by EPSRC Grant EP/V054597/1

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

W Birkhauser


http://creativecommons.org/licenses/by/4.0/

Equivariant pliability of the projective space Page 830f84 71

References

10.
11.
12.
13.
14.
15.
16.

17.
18.

20.
21.
22.
23.
24.
25.
26.
27.

28.

29.
30.

31.
32.

33.

. Abban, H., Cheltsov, I., Park, J., Shramov, C.: Double Veronese cones with 28 nodes, to appear in

L’Enseignement Mathematique

. Abban, H., Okada, T.: Birationally rigid Pfaffian Fano 3-folds. Algebraic Geom. 5, 160-199 (2018)
. Bayle, L.: Classification des varietes complexes projectives de dimension trois dont une section hyper-

plane generale est une surface d’Enriques. J. Reine Angew. Math. 449, 9-63 (1994)

. Blichfeldt, H.: Finite Collineation Groups. University of Chicago Press, Chicago (1917)
. Bosma, W., Cannon, J., Fieker, C., Steel, A.: Handbook of Magma Functions, 5017 pages (2010)
. Bouyer, E.: The Picard group of various families of (Z/ 27)*-invariant quartic K3 surfaces. Acta Arith.

186, 61-86 (2018)

. Breuer, Th.: Characters and automorphism groups of compact Riemann surfaces, London Mathematical

Society Lecture Note Series 280, Cambridge University Press, Cambridge, 199 pages (2000)

. Cheltsov, I.: Log canonical thresholds of del Pezzo surfaces. Geom. Funct. Anal. 18, 1118-1144 (2008)
. Cheltsov, I., Dubouloz, A., Kishimoto, T.: Toric G-solid Fano threefolds, to appear in L’Enseignement

Mathematique

Cheltsov, I., Park, J., Won, J.: Affine cones over smooth cubic surfaces. J. Eur. Math. Soc. 18, 1537-1564
(2016)

Cheltsov, 1., Prokhorov, Yu.: Del Pezzo surfaces with infinite automorphism groups. Algebr. Geom.
8(3), 319-357 (2021)

Cheltsov, 1., Shramov, C.: Log canonical thresholds of smooth Fano threefolds. Russ. Math. Surv. 63,
859-958 (2008)

Cheltsov, I., Shramov, C.: Three embeddings of the Klein simple group into the Cremona group of
rank three. Transform. Groups 17, 303-350 (2012)

Cheltsov, 1., Shramov, C.: Five embeddings of one simple group. Trans. AMS 366, 1289-1331 (2014)
Cheltsov, I., Shramov, C.: Cremona Groups and the Icosahedron. CRC Press, Boca Raton, FL (2016)
Cheltsov, 1., Shramov, C.: Finite collineation groups and birational rigidity. Sel. Math. 25, Paper No.
71, 68 p. (2019)

Corti, A.: Factoring birational maps of threefolds after Sarkisov. J. Algebr. Geom. 4, 223-254 (1995)
Corti, A.: Singularities of linear systems and 3-fold birational geometry. Cambridge University Press.
Lond. Math. Soc. Lect. Note Ser. 281, 259-312 (2000)

. Corti, A., Kolldr, J., Smith, K.: Rational and Nearly Rational Varieties. Cambridge University Press,

Cambridge (2003)

Corti, A., Mella, M.: Birational geometry of terminal quartic 3-folds. I. Am. J. Math. 126, 739-761
(2004)

Dokchitser, T.: GroupNames.org (2021)

Dolgacheyv, I.: Classical Algebraic Geometry: A Modern View. Cambridge University Press, p. 639
Dolgacheyv, L., Iskovskikh, V.: Finite Subgroups of the Plane Cremona Group, Progress in Mathematics
269, pp. 443-548. Birkhduser Boston, Boston (2009)

Eklund, D.: Curves on Heisenberg invariant quartic surfaces in projective 3-space. Eur. J. Math. 4,
931-952 (2018)

Flannery, D.: The finite irreducible monomial linear groups of degree 4. J. Algebra 218, 436469
(1999)

Flenner, H., Zaidenberg, M.: Locally nilpotent derivations on affine surfaces with a G, -action. Osaka
J. Math. 42, 931-974 (2005)

Gonzalez-Dorrego, M.: (16, 6) configurations and geometry of Kummer Surfaces in PP3, Memoirs of
the AMS 512 (1994)

Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, vol. 52. Springer-Verlag, Berlin
(1977)

Hashimoto, K.: Finite symplectic actions on the K3 lattice. Nagoya Math. J. 206, 99-153 (2012)
Hassett, B., Kresch, A., Tschinkel, Yu.: Symbols and equivariant birational geometry in small dimen-
sions. Prog. Math. 342, 201-236 (2021)

Hudson, R.: Kummer’s Quartic Surface. Cambridge University Press, Cambridge (1905)

Iskovskikh, V.: Birational automorphisms of three-dimensional algebraic varieties. J. Sov. Math. 13,
815-868 (1980)

Kawamata, Y.: Divisorial contractions to 3-dimensional terminal quotient singularities, Higher-
dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, pp. 241-246 (1996)

) Birkhauser



VAl

Page 84 of 84 I. Cheltsov, A. Sarikyan

34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51
52.

53.
54.

Kolldr, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge University Press, Cam-
bridge (1998)

Kontsevich, M., Pestun, V., Tschinkel, Yu.: Equivariant birational geometry and modular symbols. J.
Eur. Math. Soc. 25, 153-202 (2023)

Kresch, A., Tschinkel, Yu.: Equivariant birational types and Burnside volume. Ann. Sc. Norm. Super.
Pisa 23, 1013-1052 (2022)

Kresch, A., Tschinkel, Yu.: Equivariant Burnside groups and representation theory, Sel. Math. 28,
Paper No. 81, 39 p. (2022)

Krylov, L.: Families of embeddings of the alternating group of rank 5 into the Cremona group, preprint.
arXiv:2005.07354 (2020)

Kuribayashi, A., Kuribayashi, I.: Automorphism groups of compact Riemann surfaces of genera three
and four. J. Pure Appl. Algebra 65, 277-292 (1990)

Kuribayashi, A., Kimura, H.: Automorphism groups of compact Riemann surfaces of genus five. J.
Algebra 134, 80-103 (1990)

Lazarsfeld, R.: Positivity in Algebraic Geometry II. Springer-Verlag, Berlin (2004)

Lewis, F.: On a monomial group of order 768. Tohoku Math. J. 43, 236-245 (1937)

Lord, E.: Symmetry and Pattern in Projective Geometry. Springer, Berlin (2012)

Martello, V.: On the rational Enriques—Fano threefolds discovered by Fano. arXiv:2107.04107 (2021)
Nieto, I.: The singular H; >-invariant quartic surfaces in P3. Geom. Dedicata. 57, 157-170 (1995)
Pukhlikov, A.: Birational automorphisms of Fano hypersurfaces. Invent. Math. 134, 401-426 (1998)
Pukhlikov, A.: Birational automorphisms of three-dimensional algebraic varieties with a pencil of del
Pezzo surfaces. 1zv. Ross. Akad. Nauk 62, 123-164 (1998)

Sakovics, D.: G-birational rigidity of the projective plane. Eur. J. Math. 5, 1090-1105 (2019)

The GAP Group, GAP — Groups, Algorithms, and Programming, version 4.11.1 (2021)

The LMFDB Collaboration. The L-functions and modular forms database. http://www.lmfdb.org
(2021)

Tian, G.: On Kihler-Einstein metrics on certain Kihler manifolds with ¢ (M)>0. Invent. Math. 89,
225-246 (1987)

Umezu, Y.: On normal projective surfaces with trivial dualizing sheaf. Tokyo J. Math. 4, 343-354
(1981)

Urabe, T.: Classification on non-normal quartic surfaces. Tokyo J. Math. 9, 265-295 (1986)

Xiao, G.: Galois covers between K3 surfaces. Annales de I'Institut Fourier 46, 73—-88 (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

W Birkhauser


http://arxiv.org/abs/2005.07354
http://arxiv.org/abs/2107.04107
http://www.lmfdb.org

	Equivariant pliability of the projective space
	Abstract
	1 Introduction
	2 Irreducible monomial subgroups of degree four
	3 Equivariant geometry of projective space: group of order 48
	4 Equivariant geometry of projective space: group of order 192
	5 Equivariant geometry of projective space: large groups
	6 Rational Fano–Enriques threefold of degree 24
	7 The proof of Main Theorem
	Acknowledgements
	References




