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Abstract
We classify finite subgroups G ⊂ PGL4(C) such that P

3 is not G-birational to conic
bundles and del Pezzo fibrations, and explicitly describe all G-Mori fibre spaces that
are G-birational to P

3 for these subgroups.
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1 Introduction

Finite subgroups in PGL4(C) have been classified by Blichfeldt [4], who has split
them into the following four classes: intransitive groups, transitive groups, imprimitive
groups, primitive groups. In geometric language, these classes can be described as
follows:

(I) intransitive groups are group that fix a point or leave a line invariant,
(II) transitive groups are groups that are not intransitive,
(III) imprimitive groups are transitive groups that
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– either leave a union of two skew lines invariant,
– or have an orbit of length 4 (monomial subgroups),

(IV) primitive groups are transitive groups that are not imprimitive.

Note that PGL4(C) contains finitelymany primitive finite subgroups up to conjugation.
Now, let us fix a finite subgroup G ⊂ PGL4(C). The main aim of this paper is

to study G-birational transformations of P
3 into other G-Mori fibre spaces. If P

3 is
not G-birational to any other G-Mori fibre space, then P

3 is said to be G-birationally
rigid. It has been proven in [13, 14, 16] that

P
3 is G-birationally rigid ⇐⇒ G is primitive, G � A5 and G � S5.

For instance, if G is an imprimitive subgroup such that P
3 contains a G-orbit of

length 4, then P
3 is not G-birationally rigid. In fact, this follows from

Example 1.1 ([16, 44]) Suppose thatG is imprimitive,P3 does not containG-invariant
unions of two skew lines, andP

3 contains aG-orbit�4 of length 4. LetM be the linear
system that consists of sextic surfaces in P

3 singular along each line passing through
twopoints in�4. ThenMdefines aG-rationalmapψ : P

3 ��� P
13. Let X24 = im(ψ).

Then

(i) the induced map P
3 ��� X24 is G-birational,

(ii) X24 ∼= P
1 × P

1 × P
1/〈τ 〉 for an involution τ that fixes 8 points [3, § 6.3.2],

(iii) the Fano threefold X24 is a G-Mori fiber space over a point.

Following [2], we define P
3 to be G-solid if P

3 is not G-birational to conic bundles
and del Pezzo fibrations. In this case, allG-Mori fibre spaces that areG-birational toP

3

are terminal Fano threefolds—they form a set PG(P
3), which we call the G-pliability

[20]. For example, if P
3 is G-solid, then PG(P

3) = {P3} ⇐⇒ P
3 is G-birationally

rigid.
It natural to ask when is P

3 G-solid? If P
3 is G-solid, it follows from [15, 16] that

(1) the subgroup G is transitive,
(2) P

3 does not contain G-invariant unions of two skew lines,
(3) neither G ∼= A5 nor G ∼= S5.

In fact, these conditions guarantee that P
3 is G-solid provided that |G| is suffi-

ciently large. Namely, if G is transitive, P
3 has no G-invariant unions of two skew

lines, and |G| � 21734, then it follows from [9, 16] that P
3 is G-solid, P

3 contains
a uniqueG-orbit of length 4, andPG(P

3) = {P3, X24}, where X24 is the Fano threefold
from Example 1.1.

The goal of this paper is to prove the following result:

Main Theorem Let G be an imprimitive finite subgroup in PGL4(C) such that P3 does
not have G-invariant unions of two skew lines, and G is not conjugated to

• the subgroup G48,3 ∼= µ2
2.A4 ∼= µ2

4 � µ3 of order 48 generated by

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 i 0 0
1 0 0 0
0 0 0 −i
0 0 1 0

⎞
⎟⎟⎠ ;



Equivariant pliability of the projective space Page 3 of 84 71

• the subgroup G96,72 ∼= µ3
2.A4 ∼= µ2

4 � µ6 of order 96 generated by

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 i 0 0
1 0 0 0
0 0 0 i
0 0 1 0

⎞
⎟⎟⎠ ;

• the subgroup G ′
324,160

∼= µ3
3 � A4 of order 324 generated by

⎛
⎜⎜⎜⎝

e
2π i
3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1 0 0 0

0 e
2π i
3 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0

0 0 e
2π i
3 0

0 0 0 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ .

Then P
3 is G-solid, and PG(P

3) = {P3, X24}, where X24 is the threefold from Exam-
ple 1.1.

In this paper, the notation Ga,b or G ′
a,b means that the GAP ID of these groups is

[a,b].
If G is conjugate to one of the subgroups G48,3, G96,72, G ′

324,160, then P
3 is not

G-solid:

Example 1.2 Suppose that G is one of the groups G48,3, G96,72, G ′
324,160. Let

C = {(1 + e
2π i
3
)
xd1 + e

2π i
3 xd2 + xd3 = xd0 + e

2π i
3 xd1 − (1 + e

2π i
3
)
xd2 = 0

} ⊂ P
3,

where

d =
{
2 if G = G48,3 or G = G96,72,

3 if G = G ′
324,160.

Then C is a smooth irreducible G-invariant curve, and there exists G-equivariant
diagram

X
ϑ κ

P
3

P
1

whereϑ is the blowup of the curveC, and κ is aG-Mori fibre space, which is a fibration
into surfaces of degree d.

Corollary 1.3 (cf. [16, Theorem 1.1]) Let G be an arbitrary finite subgroup in
PGL4(C). Then P

3 is G-solid if and only if the following conditions are satisfied:

(a) G does not fix a point,
(b) G does not leave a pair of two skew lines invariant,
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(c) G is not isomorphic to A5 or S5,
(d) G is not conjugate to G48,3, G96,72 or G ′

324,160.

This corollary describes all finite subgroups G ⊂ PGL4(C) such that the projective
spaceP

3 is notG-birational to conic bundles anddel Pezzofibrations. For the projective
plane P

2, a similar problem has been solved in [48].
For the group G ′

324,160, we prove the following result.

Theorem 1.4 Suppose that G = G ′
324,160. Then P

3, the threefold X24 from Exam-

ple 1.1, and the G-Mori fibre space κ : X → P
1 from Example 1.2 are the only

G-Mori fiber spaces that are G-birational to the projective space P
3.

Weexpect that a similar result holds also in the casewhenG = G48,3 orG = G96,72.
We plan to prove this in a sequel to this paper together with Igor Krylov by combining
our technique with the methods developed in [18, 38, 47].

Remark 1.5 Our technique is not applicable in the casewhen the groupG is intransitive.
In this case, theG-equivariant birational geometry of P

3 has been studied in [37] using
the very powerful new technique recently developed in [30, 35, 36].

Using Main Theorem and Theorem 1.4, one can construct examples of non-
conjugate isomorphic finite subgroups in Bir(P3). Let us present three such examples.

Example 1.6 Let G324,160 be the subgroup in PGL4(C) generated by

⎛
⎜⎜⎝
e

2π i
3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 0 0 0

0 e
2π i
3 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0

0 0 e
2π i
3 0

0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ .

Then G324,160 ∼= G ′
324,160, P

3 is G324,160-solid by Main Theorem, but P
3 is not

G ′
324,160-solid. Hence, the subgroups G324,160 and G ′

324,160 are not conjugate in
Bir(P3).

Example 1.7 Let G96,227 be the subgroup in PGL4(C) generated by

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

and let G ′
96,227 be the subgroup in PGL4(C) generated by

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ .
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Then G96,227 ∼= G ′
96,227

∼= µ2
2 � S4, and these two subgroups are not conjugate in

PGL4(C), because P
3 contains three G96,227-orbits of length 4 and only one G ′

96,227-
orbit of length 4. Thus, applying Main Theorem, we see that G96,227 and G ′

96,227 are
not conjugate in Bir(P3).

Example 1.8 Let G48,50 ∼= µ2
2 � A4 ∼= µ4

2 � µ3 be the subgroup in PGL4(C) gener-
ated by

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ .

Let Q1 = {x20 + x21 + x22 + x23 = 0} ⊂ P
3. Then Q1 is G48,50-invariant, which

gives a faithful action of the group G48,50 on Q1 × P
1, that induces an embedding

η : G48,50 ↪→ Bir(P3). Since P
3 is G48,50-solid, the subgroups G48,50 and η(G48,50)

are not conjugate in Bir(P3).

In this paper,we also find the generators of the groupBirG(P3) for every imprimitive
finite subgroup G ⊂ PGL4(C) such that P3 is G-solid. In particular, we show that this
group isfinite provided thatG is not conjugate toG48,50 orG96,227 (seeCorollary 7.14).
On the other hand, if G = G48,50 or G = G96,227, then BirG(P3) is infinite by
Corollary 7.15. In these two cases, the group BirG(P3) is generated by the standard
Cremona involution

[x0 : x1 : x2 : x3] 
→ [x1x2x3 : x0x2x3 : x0x1x3 : x0x1x2]

and the finite subgroup G576,8654 ∼= (A4 × A4) � µ2
2 generated by

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1

−1 1 1 −1

⎞
⎟⎟⎠ .

Let us describe the structure of this paper.Wewill proveMain Theorem in Sect. 7. In
Sect. 2, we will describe basic properties of finite monomial subgroups in PGL4(C).
In Sects. 3, 4 and 5, we will study G-equivariant geometry of the projective space
P
3, where G is a finite subgroup in PGL4(C) that satisfies all conditions of Main

Theorem. In Sect. 6, we will study G-equivariant geometry of the threefold X24 from
Example 1.1.

2 Irreducible monomial subgroups of degree four

LetG be a finite transitive subgroup in PGL4(C) such thatP3 has aG-orbit of length 4,
and let P1, P2, P3, P4 be the four points of this G-orbit. Choosing appropriate coor-
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dinates, we may assume that

P1 = [1 : 0 : 0 : 0], P2 = [0 : 1 : 0 : 0], P3 = [0 : 0 : 1 : 0], P4 = [0 : 0 : 0 : 1].

Then the G-action on the set {P1, P2, P3, P4} induces a group homomorphism
υ : G → S4. Denote by T the kernel of the homomorphism υ. Suppose, in addi-
tion, that the following two conditions are satisfied:

• G does not have fixed points in P
3,

• G does not leave a union of two skew lines in P
3 invariant.

Then T is not trivial, and either the homomorphism υ is surjective, or its image is A4.
Let T be the torus in PGL4(C) that consists of the elements given by the diagonal

matrices whose last entry is 1. In the following, we will always abbreviate

(a1, a2, a3) =

⎛
⎜⎜⎝
a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 1

⎞
⎟⎟⎠ .

Note thatwe have T ⊂ T. LetG be the normalizer of the torusT in the group PGL4(C).
Then the subset {P1, P2, P3, P4} isG-invariant, which gives an epimorphismϒ : G →
S4. Since we have G ⊂ G, we obtain the following exact sequences of groups:

1 T G
υ

im(υ) 1

1 T G
ϒ

S4 1.

Note that G ∼= T � S4, where we identify S4 with the subgroup in G generated by

τ =

⎛
⎜⎜⎝
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ and σ =

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

The induced G-action on T gives the injective homomorphism

S4 ∼= G/T → Aut(T),

and the corresponding action of the group S4 = 〈τ, σ 〉 on T can be described as
follows:

τ : (a1, a2, a3) 
−→
(
a2
a1

,
a3
a1

,
1

a1

)
,

σ : (a1, a2, a3) 
−→ (a2, a1, a3).



Equivariant pliability of the projective space Page 7 of 84 71

Clearly, if im(υ) = S4, then T is τ -invariant and σ -invariant.
Let h be an element in T of maximal order n � 1. Then the order of every element

in the group T divides n, hence T ⊆ µ3
n . Here, we identify µ

3
n with the subgroup

〈
(ζn, 1, 1), (1, ζn, 1), (1, 1, ζn)

〉 ⊂ T,

where ζn = e
2π i
n .

Lemma 2.1 (cf. [25], [23, Theorem4.7], [9,Corollary 7.3]) Suppose that im(υ) = S4.
Then one of the following assertions holds:

(1) T = µ3
n;

(2) n is even and T ∼= µ2
n × µ n

2
;

(3) n is divisible by 4 and T ∼= µ2
n × µ n

4
.

Proof We have h = (ζ an , ζ
b
n , ζ

c
n ) for coprime non-negative integers a, b, c. Applying

cyclic permutation of order 3 to h, we see that (ζ bn , ζ
c
n , ζ

a
n ) and (ζ cn , ζ

a
n , ζ

b
n ) are con-

tained in T . Hence, the group T contains (ζn, ζ
β
n , ζ

γ
n ) for some non-negative integers

β and γ . Then

(
τ(ζn, ζ

β
n , ζ

γ
n ) · (ζ−β

n , ζ
−γ
n , ζ−1

n )
)−1 = (ζn, ζn, ζ

2
n ) ∈ T .

Thus, we get τ(ζn, ζn, ζ 2n ) = (1, ζn, ζ−1
n ) ∈ T and so (1, ζ−1

n , ζn) ∈ T . Then

(ζn, ζn, ζ
2
n ) · (1, ζ−1

n , ζn) · (ζ−1
n , 1, ζn) = (1, 1, ζ 4n ) ∈ T ,

Now, we let T ′ = 〈(ζn, 1, ζ−1
n ), (1, ζn, ζ−1

n ), (1, 1, ζ 4n )〉. Then the subgroup T ′ is
S4-invariant. Moreover, we have T ′ ⊆ T ⊆ µ3

n . Furthermore, we have the following
possibilities:

(1) If n is odd, then T ′ = µ3
n , hence T = T ′ = µ3

n .
(2) If n is divisible by 2 but not by 4, then T ′ ∼= µ2

n × µ n
2
.

(3) If n is divisible by 4, then T ′ ∼= µ2
n × µ n

4
.

In the case (2), if there exists t ∈ T \ T ′, then we have 〈t, T ′〉 = µ3
n , hence we are

done. Therefore, we may assume that we are in the case (3). As above, if there exists
t ∈ T \ T ′, then either 〈t, T ′〉 ∼= µ2

n × µ n
2
or 〈t, T ′〉 = µ3

n . �

Corollary 2.2 Suppose that im(υ) = S4, T = µ3
n andn is odd. ThenG is conjugated to

the subgroup generated by

(ζn, 1, 1), (1, ζn, 1), (1, 1, ζn),

⎛
⎜⎜⎝
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,
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or G is conjugated to the subgroup generated by

(ζn, 1, 1), (1, ζn, 1), (1, 1, ζn),

⎛
⎜⎜⎝
0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ .

In both cases, we have G ∼= T � S4.

Proof Let A and B be someelements in the groupG such thatυ(A) = τ andυ(B) = σ .
If A4 = B2 = (AB)3 = 1, then 〈A, B〉 ∼= S4, hence G ∼= T � S4. We have

A =

⎛
⎜⎜⎝

0 0 0 1
a1 0 0 0
0 a2 0 0
0 0 a3 0

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝

0 b2 0 0
b1 0 0 0
0 0 b3 0
0 0 0 1

⎞
⎟⎟⎠

where each ai and b j are non-zero complex numbers. ConjugatingG by an appropriate
element of the torus T, we can assume that a1 = a2 = a3 = 1.

Since τ 4 = σ 2 = (τσ )3 = 1, we see that B2 ∈ T and (AB)3 ∈ T , which gives

⎧⎪⎨
⎪⎩

b1b2 = ζ αn ,

b23 = ζ
β
n ,

b32
b1b3

= ζ
γ
n

for some some numbers α, β, γ in {0, . . . n − 1}. Hence, replacing B with

(
ζ

−6α+β+2γ
8

n , ζ
−2α−β−2γ

8
n , ζ

− β
2

n

)
B ∈ G,

we may assume that B2 = 1. Here, we consider division by 8 and 2 as division
modulo n. In particular, we see that G ∼= T � S4 as claimed.

Now, we observe that b1b2 = 1, b23 = 1, b32 = b1b3. Then solving this system of
equation, we obtain the following eight cases:
In case (i), we are done. In cases (ii), (iii) and (iv), we can conjugate G to get the first
group in the assertion of the lemma using (−1, 1,−1), (−i,−1, i), (i,−1,−i),
respectively. Similarly, in cases (v), (vi), (vii), (viii), we can conjugateG to get the sec-
ond group using

(√2

2
+

√
2i

2
,−i,−

√
2

2
+

√
2i

2

)
,
(

−
√
2

2
−

√
2i

2
,−i,

√
2

2
−

√
2i

2

)
,

(
−

√
2

2
+

√
2i

2
, i,

√
2

2
+

√
2i

2

)
,
(√2

2
−

√
2i

2
, i,−

√
2

2
−

√
2i

2

)
,

respectively. This completes the proof. �
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b1 b2 b3

(i) 1 1 1
(ii) −1 −1 1
(iii) i −i 1
(iv) −i i 1

(v) −
√
2
2 +

√
2i
2 −

√
2
2 −

√
2i
2 −1

(vi)
√
2
2 −

√
2i
2

√
2
2 +

√
2i
2 −1

(vii)
√
2
2 +

√
2i
2

√
2
2 −

√
2i
2 −1

(viii) −
√
2
2 −

√
2i
2 −

√
2
2 +

√
2i
2 −1

Now,we describe the possibilities for the subgroup T in the casewhen im(υ) = A4.
Keeping in mind our identification S4 = 〈τ, σ 〉, we see that A4 = 〈ρ, ς〉 for

ρ =

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ and ς =

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ .

Then ρ and ς acts on T as follows:

ρ : (a1, a2, a3) 
−→ (a2, a3, a1),

ς : (a1, a2, a3) 
−→
(
a2
a3

,
a1
a3

,
1

a3

)
.

Clearly, our subgroup T is ρ-invariant and ς -invariant. Using this, we get

Lemma 2.3 (cf. [9, Corollary 7.3]) Suppose im(υ) = A4. One of the following holds:

(1) T = µ3
n;

(2) n is even and T ∼= µ2
n × µ n

2
;

(3) n is divisible by 4 and T ∼= µ2
n × µ n

4
.

Proof Arguing as in the proof of Lemma 2.1, wemay assume that (ζn, ζ
β
n , ζ

γ
n ) ∈ T for

some non-negative integers β and γ , where n � 1 is the largest order of all elements
in T , and ζn is a primitive n-th root of unity. Then

(ζn, ζ
β
n , ζ

γ
n ) · ς(ζn, ζ βn , ζ γn ) · ς(ζβn , ζ γn , ζn) · ς(ζ γn , ζn, ζ βn ) = (ζn, ζ

β
n , ζ

−β−1
n ) ∈ T .

So, we have

(
ρ(ζn, ζ

β
n , ζ

−β−1
n ) · ςρ(ζn, ζ βn , ζ−β−1

n )
)−1 = (ζ 2n , ζ

2
n , 1) ∈ T

and

(
(ζ 2n , ζ

2
n , 1) · (ρ(ζ 2n , ζ 2n , 1)

)−1
)−1 = (1, ζ−2

n , ζ 2n ) ∈ T .
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If β = 2k for k ∈ Z≥0, then

(ζn, ζ
β
n , ζ

−β−1
n ) · (1, ζ−2

n , ζ 2n )
k = (ζn, 1, ζ

−1
n ) ∈ T .

Thereby, we see that (1, ζn, ζ−1
n ) and (1, 1, ζ 4n ) are both contained in T . Now, arguing

as in the end of the proof of Lemma 2.1, we obtain the required result.
Likewise, if β = 2k + 1, then

(ζn, ζ
β
n , ζ

−β−1
n ) · (1, ζ−2

n , ζ 2n )
k = (ζn, ζn, ζ

−2
n ) ∈ T .

Hence, we have

(ρ((ζn, ζn, ζ
−2
n ) · (1, ζ−2

n , ζ 2n )))
−1 = (ζn, 1, ζ

−1
n ) ∈ T

and we are done similarly to the previous case. �
Arguing as in the proofs of Lemmas 2.1 and 2.3, we obtain the following result:

Lemma 2.4 The group G is conjugated in PGL4(C) to a subgroup 〈T , A, B〉 ⊂
PGL4(C), where A and B are elements in PGL4(C) described as follows:

• if im(υ) = S4, then

A =

⎛
⎜⎜⎝
0 0 0 a2

b
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝
0 a 0 0
a 0 0 0
0 0 b 0
0 0 0 1

⎞
⎟⎟⎠

for some complex numbers a and b such that (a2, a2, b2) ∈ T ;
• if im(υ) = A4, then

A =

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝
0 a 0 0
b 0 0 0
0 0 0 a
0 0 1 0

⎞
⎟⎟⎠

for some complex numbers a and b such that (a2, b, 1) ∈ T and (b, b, 1) ∈ T .

Proof First, we suppose that im(υ) = S4. Let A and B be elements in the group G
such that υ(A) = τ and υ(B) = σ . Conjugating G by elements of T, we may assume
that

A =

⎛
⎜⎜⎝
0 0 0 c
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝
0 a 0 0
a 0 0 0
0 0 b 0
0 0 0 1

⎞
⎟⎟⎠
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for some non-zero complex numbers a, b and c. Then B2 = (a2, a2, b2) ∈ T and

(AB)3 =
(
1,

a2

bc
, 1
)

∈ T .

Now, using the S4-action on T , we see that (1, 1, a2
bc ) ∈ T . Then, replacing A 
→

(1, 1, a2
bc )A, we obtain the required assertion in the case when im(υ) = S4.

Now, we suppose that im(υ) = A4. As above, let A and B be some elements in G
such that υ(A) = ρ and υ(B) = ς . Conjugating G by elements in T, we may assume
that

A =

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 c 0 0
0 0 0 1

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝
0 a 0 0
b 0 0 0
0 0 0 a
0 0 1 0

⎞
⎟⎟⎠

for some non-zero numbers a, b and c. Then A3 = (c, c, c) ∈ T , B2 = (b, b, 1) ∈ T
and

(AB)3 =
(
1,

a2

bc
, 1
)

∈ T .

Now, using the A4-action on T , we get (1, 1, 1
c ) ∈ T . Then, after replacing A 
→

(1, 1, 1
c )A, we obtain the required assertion.

�
Corollary 2.5 In the assumption and notations of Lemma 2.4, let G ′ = 〈T , A, B〉, and
let ι be the standard Cremona involution given by

[x0 : x1 : x2 : x3] 
→ [x1x2x3 : x0x2x3 : x0x1x3 : x0x1x2].

Then ιG ′ι = G ′, so ιGι is conjugated to G in PGL4(C).

Proof Observe that ιT ι = T . Thus, to complete the proof, it is enough to show that
ιAι and ιBι are both contained in G ′. If im(υ) = A4, then ιAι = A ∈ G ′ and

ιBι =
( 1
a2

,
1

b2
,
1

a2

)
B,

so that it is enough to show that (a2, b2, a2) ∈ T . In this case, it follows from
Lemma 2.4 that (a2, b, 1) ∈ T and (b, b, 1) ∈ T , so that, using the A4-action on
T described earlier, we see that (b, 1, a2), (1, b, b) and (b, 1, b) are contained in T as
well, which gives

(a2, b2, a2) = (b, 1, a2)(a2, b, 1)(1, b, b)(b, 1, b)−1 ∈ T ,
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which is exactly what we want. So, we may assume that im(υ) = S4. Then ιBι =
B ∈ G ′. Hence, to complete the proof, it is enough to show that ιAι ∈ G ′. But

ιAι =
(b2
a4

, 1, 1
)
A,

so it is enough to show that ( a
4

b2
, 1, 1) ∈ T . But we have (a2, a2, b2) ∈ T by

Lemma 2.4. Thus, using the S4-action on T , we see that (1, b2

a2
, 1
a2
) ∈ T and

(b2, a2, a2) ∈ T , so that

(b2, b2, 1) =
(
1,

b2

a2
,
1

a2

)
(b2, a2, a2) ∈ T ,

and, using the S4-action on T , we get (b2, 1, b2) ∈ T . On the other hand, it
follows from the proof of Lemma 2.1 that T contains (ζn, 1, ζ−1

n ), which implies
that (b2, 1, b−2) ∈ T . Likewise, we get (a−2, 1, a2) ∈ T , so (1, a−2, a2) ∈ T . Then

(1, 1, a4b2) = (a2, a2, b2)(a−2, 1, a2)(1, a−2, a2) ∈ T ,

which implies that

(
1, 1,

a4

b2

)
= (1, 1, a4b2)(b2, 1, b−2)(b2, 1, b2)−1 ∈ T .

Now, using theS4-action on T one more time, we see that ( a
4

b2
, 1, 1) ∈ T as required.

�

Corollary 2.6 There exist non-zero complex numbers λ1, λ2 and λ3 such that ιGι = G,
where ι is the Cremona involution given by

[x0 : x1 : x2 : x3] 
→ [λ1x1x2x3 : λ2x0x2x3 : λ3x0x1x3 : x0x1x2].

In the remaining part of the section, we classify all such groups G when n ∈ {2, 3}.
In this case, there exist precisely twelve possibilities for the groupG up to conjugation,
which can be described as follows.

(1) Let G48,50 ∼= µ2
2 � A4 ∼= µ4

2 � µ3 be the group generated by

(− 1, 1,−1
)
,
(
1,−1,−1

)
,

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ .
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(2) Let G48,3 ∼= µ2
2.A4 ∼= µ2

4 � µ3 be the group generated by

(− 1, 1,−1
)
,
(
1,−1,−1

)
,

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 i 0 0
1 0 0 0
0 0 0 −i
0 0 1 0

⎞
⎟⎟⎠ .

(3) Let G96,70 ∼= µ3
2 � A4 ∼= µ4

2 � µ6 be the group generated by

(− 1, 1, 1
)
,
(
1,−1, 1

)
,
(
1, 1,−1

)
,

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ .

(4) Let G96,72 ∼= µ3
2.A4 ∼= µ2

4 � µ6 be the group generated by

(− 1, 1, 1
)
,
(
1,−1, 1

)
,
(
1, 1,−1

)
,

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 i 0 0
1 0 0 0
0 0 0 i
0 0 1 0

⎞
⎟⎟⎠ .

(5) Let G96,227 ∼= µ2
2 � S4 ∼= µ4

2 � S3 be the group generated by

(− 1, 1,−1
)
,
(
1,−1,−1

)
,

⎛
⎜⎜⎝
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

(6) Let G ′
96,227

∼= µ2
2 � S4 be the group generated by

(− 1, 1,−1
)
,
(
1,−1,−1

)
,

⎛
⎜⎜⎝
0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ .

(7) Let G192,955 ∼= µ3
2 � S4 ∼= µ4

2 � D12 be the group generated by

(− 1, 1, 1
)
,
(
1,−1, 1

)
,
(
1, 1,−1

)
,

⎛
⎜⎜⎝
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .
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(8) Let G192,185 ∼= µ3
2.S4 ∼= µ2

4 � (µ3 � µ4) be the subgroup generated by

(− 1, 1, 1
)
,
(
1,−1, 1

)
,
(
1, 1,−1

)
,

⎛
⎜⎜⎝
0 0 0 i
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 i 0
0 0 0 1

⎞
⎟⎟⎠ .

(9) Let G324,160 ∼= µ3
3 � A4 be the group generated by

(
ζ3, 1, 1

)
,
(
1, ζ3, 1

)
,
(
1, 1, ζ3

)
,

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ .

(10) Let G ′
324,160

∼= µ3
3 � A4 be the group generated by

(
ζ3, 1, 1

)
,
(
1, ζ3, 1

)
,
(
1, 1, ζ3

)
,

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ .

(11) Let G648,704 ∼= µ3
3 � S4 be the group generated by

(
ζ3, 1, 1

)
,
(
1, ζ3, 1

)
,
(
1, 1, ζ3

)
,

⎛
⎜⎜⎝
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

(12) Let G ′
648,704

∼= µ3
3 � S4 be the group generated by

(
ζ3, 1, 1

)
,
(
1, ζ3, 1

)
,
(
1, 1, ζ3

)
,

⎛
⎜⎜⎝

0 0 0 1
−1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ .

We used Magma [5] to identify the GAP ID’s of these groups. For instance, to
identify the group G648,704, we used the following Magma code provided to us by
Tim Dokchitser:

K:=CyclotomicField(3);
R<x>:=PolynomialRing(K);
w:=Roots(xˆ2+x+1,K)[1,1];
S:=[[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]],

[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]],
[[w,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]],
[[1,0,0,0],[0,w,0,0],[0,0,1,0],[0,0,0,1]],
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[[1,0,0,0],[0,1,0,0],[0,0,w,0],[0,0,0,1]]];
G:=sub<GL(4,K)|[GL(4,K)|M: M in S]>;
D:=[M: M in Center(G) | IsScalar(M)];
GP:=quo<G|D>;
IdentifyGroup(GP);

We want to show that if n ∈ {2, 3}, then G is conjugated to a subgroup
among G48,50, G48,3, G96,70, G96,72, G96,227, G ′

96,227, G192,955, G192,185, G324,160,
G ′

324,160, G648,704, G ′
648,704.

Lemma 2.7 Suppose n = 2, T ∼= µ2
2 and im(υ) = A4. Then the subgroup G is con-

jugated to one of the subgroups G48,50 or G48,3.

Proof Arguing as in theproof ofLemma2.3,we see thatT = 〈(−1, 1,−1), (1,−1,−1)〉.
Let A and B be some elements in the group G such that υ(A) = ρ and υ(B) = ς .
Then

A =

⎛
⎜⎜⎝

0 0 a3 0
a1 0 0 0
0 a2 0 0
0 0 0 1

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝

0 b2 0 0
b1 0 0 0
0 0 0 1
0 0 b3 0

⎞
⎟⎟⎠ ,

where all ai and b j are some non-zero complex numbers. Conjugating G by an appro-
priate element of the torus T, we may assume that a1 = a2 = 1 and b3 = b1. Then
a3 = 1, because A3 ∈ T .

Since B2 ∈ T and (AB)3 ∈ T , we get b2 = ±1 and b21 = b32. If b2 = 1, then
b1 = b3 = ±1, which gives G = G48,50. Likewise, if b2 = −1, then b1 = b3 = ±i ,
hence G = G48,3. �

Lemma 2.8 Suppose n = 2, T = µ3
2 and im(υ) = A4. Then the subgroup G is con-

jugated to one of the subgroups G96,70 or G96,72.

Proof The proof is essentially the same as the proof of Lemma 2.7. �

Lemma 2.9 Suppose n = 2, T ∼= µ2
2 and im(υ) = S4. Then the groupG is conjugated

to one of the subgroups G96,227 or G ′
96,227.

Proof Arguing as in theproof ofLemma2.3,we see thatT = 〈(−1, 1,−1), (1,−1,−1)〉.
Let A and B be some elements inG such that υ(A) = τ and υ(B) = σ . Then, arguing
as in the proof of Corollary 2.2, we can assume that

A =

⎛
⎜⎜⎝
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝

0 b2 0 0
b1 0 0 0
0 0 b3 0
0 0 0 1

⎞
⎟⎟⎠
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for some non-zero complex numbers b1, b2 and b3. Since B2 ∈ T and (AB)3 ∈ T ,
we get

⎧⎪⎨
⎪⎩

b32 = b1b3,

b23 = 1,

b1b2 = ±1.

This gives b82 = 1. If b2 is a primitive eighth root of unity, we get b1 = ∓b32 and
b3 = ∓1, which gives (b32, b

2
2, b2)

−1G(b32, b
2
2, b2) = G ′

96,227. If b
4
2 = 1, then G is

conjugate to G96,227. �
The subgroups G96,227 and G ′

96,227 are not conjugated in PGL4(C), because P
3

contains three G96,227-orbits of length 4 and only one G ′
96,227-orbit of length 4.

Lemma 2.10 Suppose n = 2, T = µ3
2 and im(υ) = S4. Then the group G is conju-

gated to one of the subgroups G192,955 or G192,185.

Proof Arguing as in the proof of Lemma 2.9, we may assume that

G = 〈(−1, 1, 1), (1,−1, 1), (1, 1,−1), A, B〉,

where

A =

⎛
⎜⎜⎝
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝

0 b2 0 0
b1 0 0 0
0 0 b3 0
0 0 0 1

⎞
⎟⎟⎠

for some non-zero complex numbers b1, b2, b3 such that b1b2 = ±1, b23 = ±1,
b32 = ±b1b3. This equations give us b82 = 1. Now, arguing as in the end of the proof of
Lemma 2.9, we see that the subgroupG is conjugated either toG192,955 or toG192,185.

�
Lemma 2.11 Suppose n = 3, T = µ3

2 and im(υ) = A4. Then the group G is conju-
gated to one of the subgroups G324,160 or G ′

324,160.

Proof Arguing as in the proof of Lemma 2.7, we may assume that

G = 〈(ζ3, 1, 1), (1, ζ3, 1), (1, 1, ζ3), A, B〉

for

A =

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 r 0 0
0 0 0 1

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝
0 a 0 0
b 0 0 0
0 0 0 a
0 0 1 0

⎞
⎟⎟⎠ ,



Equivariant pliability of the projective space Page 17 of 84 71

where r , a and b are some non-zero complex numbers. Then

A3 =

⎛
⎜⎜⎝
r 0 0 0
0 r 0 0
0 0 r 0
0 0 0 1

⎞
⎟⎟⎠ , B2 =

⎛
⎜⎜⎝
b 0 0 0
0 b 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , (AB)3 =

⎛
⎜⎜⎝

1 0 0 0

0 a2
rb 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

Since A3 ∈ T , B2 ∈ T , (AB)3 ∈ T , we get r = ζ α3 and b = ζ
β
3 for some α

and β in {0, 1, 2}. Replacing A 
→ (1, 1, ζ−α
3 )A and B 
→ (1, ζ−β

3 , 1)B, we may
assume that r = 1 and b = 1. Then a = ζ

γ
6 for γ ∈ {0, 1, 2, 3, 4, 5}. Replacing

B 
→ (ζ δ3 , 1, ζ
δ
3 )B for some δ ∈ {0, 1, 2}, we may assume a ∈ {±1, ζ6}. If a = 1,

then G = G324,160. If a �= 1, then G = G ′
324,160. �

It follows from Example 1.2 that the subgroups G324,160 and G ′
324,160 are not

conjugate, because P
3 does not contain G324,160-invariant pencils of cubic surfaces.

If n = 3, T = µ3
3 and im(υ) = S4, it follows from Corollary 2.2 that G is conju-

gated to one of the subgroups G648,704 or G ′
648,704. Note that these subgroups are not

conjugated, because the group G648,704 leaves invariant the Fermat cubic surface, but
one can check that there exists no G ′

648,704-invariant cubic surface in P
3.

3 Equivariant geometry of projective space: group of order 48

Let G be the subgroup in PGL4(C) generated by

M =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ , N =

⎛
⎜⎜⎝

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , A =

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ,

and letH ∼= µ4
2 be the normal subgroup of the group G generated by M , N , B, ABA2.

Then G is the subgroup G48,50 ∼= µ4
2 � µ3 that has been introduced in Sect. 2.

Remark 3.1 The subgroup lattice of G is described in [21]. Let us present this descrip-
tion. The subgroupH is the unique subgroup inG that is isomorphic toµ4

2. It is normal.
Similarly, the group G contains 16 subgroups that are isomorphic to µ3, which are
all conjugated by the Sylow theorem. Up to conjugation, the group G contains 5
subgroups isomorphic to µ2, which are all contained in the subgroup H, hence 15
subgroups in total. Finally, up to conjugation, the group G contains exactly 5, 5, 15
subgroups that are isomorphic to A4, µ3

2, µ
2
2, respectively. Their generators can be

described as follows:

Now, let us the action of G on smooth curves of small genus.

Lemma 3.2 ([7, 50]) Let C be a smooth curve of genus g � 19.

(1) If H acts faithfully on C, then g � 5 and C is not hyperelliptic.
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A4 〈A, B, ABA2〉, 〈A,M, N 〉, 〈A, ABA2N , BMN 〉, 〈A, ABA2M, BN 〉, 〈A, ABA2MN , BM〉
µ3
2 〈ABA2, B, N 〉, 〈ABA2, BN ,M〉, 〈ABA2, BM,MN 〉, 〈ABA2, BM, N 〉, 〈B,M, N 〉

µ2
2 〈M, N 〉, 〈B, N 〉, 〈B,M〉, 〈B,MN 〉, 〈BN ,M〉, 〈BN ,MN 〉,

〈BM, N 〉, 〈B, ABA2〉, 〈ABA2, BMN 〉, 〈ABA2, BM〉, 〈ABA2, BN 〉,
〈ABA2N , BM〉, 〈ABA2N , BMN 〉, 〈ABA2M, BN 〉, 〈ABA2MN , BM〉

(2) Suppose that G acts faithfully on C. Then the G-orbits in C are of lengths 16,
24, 48. Let a16 and a24 be the number of G-orbits in C of length 16 and 24,
respectively. Then g ∈ {9, 13, 17}, and the possible values of a16 and a24 are
given in the table

g 9 13 13 13 17 17 17
a16 2 0 0 3 1 1 4
a24 2 1 5 1 0 4 0

Proof By [16, Lemma 2.3], the group H cannot act faithfully on rational or elliptic
curve. Moreover, if H acts faithfully on C and the curve C is hyperelliptic, then
the canonical morphism C → P

1 is H-equivariant, which is impossible, since neither
µ4 nor µ2

2 can act faithfully on a rational curve. Thus, assertion (1) follows from [39].
Suppose G acts faithfully on C . Then g � 5 by (1), and g �= 5 by [40, Proposition

3], since G does not contain elements of order 4. Thus, we conclude that g > 5.
By Remark 3.1, the G-orbits in C are of lengths 16, 24, 48, because the stabilizer

in the group G of a point in C is cyclic. Let Ĉ = C/G, and let ĝ be the genus of
the curve Ĉ . Then 2g − 2 = 48(2ĝ − 2) + 32a16 + 24a24 by the Hurwitz’s formula.
This implies (2). �

LetQ1 = {x20 + x21 + x22 + x23 = 0}. ThenQ1 is the unique G-invariant quadric in
P
3. Let

Q2 = {x20 + x21 = x22 + x23
}
, Q3 = {x20 − x21 = x22 − x23

}
, Q4 = {x20 − x21 = x23 − x22

}
,

Q5 = {x0x2 + x1x3 = 0
}
, Q6 = {x0x3 + x1x2 = 0

}
, Q7 = {x0x1 + x2x3 = 0

}
,

Q8 = {x0x2 = x1x3
}
, Q9 = {x0x3 = x1x2

}
, Q9 = {x0x1 = x2x3

}
.

ThenQ1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,Q10 are all H-invariant quadric surfaces
in P

3. Observe that these quadric surfaces are smooth, and H acts faithfully on each
of them. These are the ten fundamental quadrics in [31].

Lemma 3.3 Let S be an H-invariant quadric surface in P
3. Set

αH(S) = sup

{
λ ∈ Q

∣∣∣∣∣
the pair (S, λD) is log canonical for every

effective H-invariant Q-divisor D ∼Q −KS

}
,
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i.e. the number αH(S) is the α-invariant of the surface S [12, 51]. Then αH(S) = 1.

Proof Fix an isomorphism S ∼= P
1 ×P

1. Observe that S does not have H-fixed points,
and the surface S does not contain H-invariant curves of degree (1, 0), (0, 1) or (1, 1).
Indeed, this follows from the fact that P

3 does not contain H-fixed points, and it
contains neither H-invariant lines nor H-invariant planes.

Note that | − KS| has H-invariant curves, these are the restrictions of other H-
invariant quadric surfaces in P

3 on S. This shows that αH(S) � 1.
Suppose that αH(S) < 1. Then S contains an H-invariant effective Q-divisor D

such that D ∼Q −KS , and (S, λD) is not log canonical for some rational number
λ < 1. Since the surface S does not containsH-invariant curves of degree (1, 0), (0, 1)
or (1, 1), the locus Nklt(S, λD) is zero-dimensional. Applying the Kollár–Shokurov
connectedness theorem [34, Corollary 5.49], we see that Nklt(S, λD) is a point, which
must be H-fixed. But S does not contain H-fixed points. Contradiction. �

Observe also that G acts naturally on the set

{
Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,Q10

}
,

and it splits this set into four G-orbits: {Q1}, {Q2,Q3,Q4}, {Q5,Q6,Q7}, {Q8,Q9,

Q10}.
Remark 3.4 Any two distinct H-invariant quadrics in P

3 intersect by a quadruple of
lines. By [16, Lemma 2.17], this gives 30 lines, which can be characterized as follows:
for every line among these 30 lines, there is an element g ∈ H such that g pointwise
fixes this line. These lines contains all G-orbits of length 24. See Remark 3.11 for
more details.

Let us describeG-orbits inP
3.AllG-orbits of length 24 are described inRemark3.4.

To describe the remaining G-orbits in P
3, we let

�4 = OrbG
([1 : 0 : 0 : 0]),

�′
4 = OrbG

([1 : 1 : 1 : −1]),
�′′

4 = OrbG
([1 : 1 : 1 : 1]),

�12 = OrbG
([0 : 0 : 1 : 1]),

�′
12 = OrbG

([0 : 0 : i : 1]),
�′′

12 = OrbG
([i : i : 1 : 1]),

�′′′
12 = OrbG

([−i : i : 1 : 1]),
�16 = OrbG

([−1 + √
3i : −1 − √

3i : 2 : 0]),
�′

16 = OrbG
([−1 − √

3i : −1 + √
3i : 2 : 0]),

�t
16 = OrbG

([1 : 1 : 1 : t]) for t ∈ C \ {±1}.

Then �4, �′
4, �

′′
4 , �12, �′

12, �
′′
12, �

′′′
12, �16, �′

16 are G-orbits of length 4, 4, 4, 12,
12, 12, 12, 16, 16, respectively. Similarly, �t

16 is a G-orbit of length 16 for every
t ∈ C \ {±1}.
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Lemma 3.5 Let � be a G-orbit in P
3 such that |�| < 24. Then

• either � is one of the G-orbits �4, �′
4, �

′′
4 , �12, �′

12, �
′′
12, �

′′′
12, �16, �′

16,• or � = �t
16 for some t ∈ C \ {±1}.

Proof Let � be the stabilizer of a point in �. Then |�| > 2. But P
3 has no H-

fixed points, so that � is isomorphic to A4, µ3
2, µ

2
2 or µ3 by Remark 3.1. Then |�| ∈

{4, 6, 12, 16}.
If � ∼= µ3

2, then � ⊂ H, hence P
3 contains an H-orbit of length 2, which is

impossible, since P
3 does not contains H-invariant lines. Hence, � is isomorphic to

one of the following three groups: A4, µ2
2, µ3. Then |�| ∈ {4, 12, 16}.

Suppose that � ∼= µ3. By Remark 3.1, we may assume that � = 〈A〉. Then the �-
fixed points in P

3 are the following

[
1 − √

3i : 1 + √
3i : 2 : 0], [1 + √

3i : 1 − √
3i : 2 : 0], [0 : 0 : 0 : 1], [1 : 1 : 1 : t]

for any t ∈ C. Since the stabilizers of the points [0 : 0 : 0 : 1], [1 : 1 : 1 : 1],
[1 : 1 : 1 : −1] are larger than �, either � is one of the orbits �16, �′

16, or � = �t
16

for some t ∈ C \ {±1}.
Now, suppose that � ∼= A4. By Remark 3.1, the group G contains exactly five

subgroups isomorphic to A4 up to conjugation. Three of these groups are 〈A, B〉,
〈A, N B〉, 〈MA, B〉. If � is one of these subgroups, then � is one of the G-orbits
�4, �′

4, �
′′
4 , respectively. The remaining subgroups conjugated to A4 are the groups

〈A,MB〉 and 〈ABA, BNM〉. One can check that both of them do not have fixed points
in P

3.
Finally, we suppose that � ∼= µ2

2. By Remark 3.1, the group G contains 15
subgroups isomorphic to µ2

2 up to conjugation. Five subgroups among them are
normal—they are contained in the subgroups of G isomorphic to A4. The fixed points
of three of them are contained in the subset�4 ∪�′

4 ∪�′′
4 , and the remaining two nor-

mal subgroups do not fix any point in P
3—they leave invariant rulings of the quadric

Q1 ∼= P
1 × P

1.
To complete the proof, we may assume that � is not a normal subgroup of

the group G. Up to conjugation, there are ten such subgroups in G by Remark 3.1.
Four of them fix a point in the subset�12 ∪�′

12 ∪�′′
12 ∪�′′′

12. Up to conjugation, these
are the subgroups

〈
B, N
〉
,
〈
BM, N

〉
,
〈
ABA2, BMN

〉
,
〈
ABA2M, BN

〉

respectively. If � is one of them, then � is one of the G-orbits �12, �′
12, �

′′
12, �

′′′
12.

The remaining 6 subgroups in G that are isomorphic to µ2
2 are described in

Remark 3.1. For instance, take the subgroup 〈B,MN 〉 ∼= µ2
2. This group does not fix

any point inP
3, but this subgroup leaves invariant rulings of the quadricQ8 ∼= P

1×P
1.

To be precise, for every [a : b] ∈ P
1, the group 〈B,MN 〉 leaves invariant the line

{
ax0 + bx3 = ax1 + bx2 = 0

} ⊂ Q8.
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Moreover, these are all 〈B,MN 〉-invariant lines in P
3. Similarly, one can also check

that each of the remaining non-normal subgroups inG isomorphic toµ2
2 fixes no point

in P
3, but it leaves invariant infinitely many lines that are contained in one of the H-

invariant quadrics Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10. This completes the proof
of the lemma. �

Let us describe the normalizer of the subgroup G in the group PGL4(C). To start
with, recall from Sect. 2 that G � G96,227 ∼= µ4

2 � S3, where G96,227 is generated by

M, N , A′ =

⎛
⎜⎜⎝
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ , B ′ =

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

Similarly, we have G �G96,70 and G �G192,955, where G96,70 ∼= µ4
2 �µ6 is generated

by

M, N , A, B, L =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

and G192,955 = 〈M, N , A′, B ′, L〉 ∼= µ2
4 � D12. Let G144,184 be the subgroup gener-

ated by

M, N , A, B, R = 1

2

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1

−1 1 1 −1

⎞
⎟⎟⎠ ,

and let G288,1025 = 〈M, N , A′, B ′, R〉. Then G � G144,184 ∼= A4 × A4 and G �
G288,1025 ∼= A4 � µ2.

Let G576,8654 = 〈M, N , L, A′, B ′, R〉. Then G576,8654 ∼= µ4
2 � (µ2

3 � µ2
2)

∼=
(A4 × A4) � µ2

2.

Lemma 3.6 The group G576,8654 is the normalizer of the group G in PGL4(C).

Proof Let � be the normalizer of the subgroup G in PGL4(C). Observe that G �
G576,8654. Thus, we have G576,8654 ⊂ �. Let us show that � ⊂ G576,8654.

Take any element g ∈ �. Since �4, �′
4, �

′′
4 are the only G-orbits of length four

in P
3, we see that g must permutes these G-orbits. Therefore, swapping g with g ◦ R

or g ◦ R2, we may assume that �4 is g-invariant. So, composing g with a suitable
element in G192,955, we may assume that g fixes every point in �4. Then

g =

⎛
⎜⎜⎝
t1 0 0 0
0 t2 0 0
0 0 t3 0
0 0 0 1

⎞
⎟⎟⎠
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for some non-zero complex numbers t1, t2, t3. Recall thatQ1 is the uniqueG-invariant
quadric surface in P

3, so that Q1 is g-invariant. This gives us t1 = ±1, t2 = ±1,
t3 = ±1, so that g ∈ G192,955 ⊂ G576,8654. This shows that � ⊂ G576,8654.

We can also argue as follows. Let N ⊂ PGL4(C) be the normalizer of the group
H ∼= µ4. Then it follows from [4, §123] or [45] that there exists an exact sequence of
groups

1 −→ H −→ N −→ S6 −→ 1.

But H is a normal subgroup in G, G96,70, G96,227, G192,955, G144,184, G288,1025,
G576,8654, and the images of these groups in S6 are isomorphic to µ3, µ6, S3, D12,
µ3 × µ3, µ3 � µ2, µ

2
3 � µ2

2. Using this, it is not difficult to see that G576,8654 is
the normalizer of the group G. �

Let Ĥ, Ĝ, Ĝ96,227 and Ĝ144,184 be the subgroups in GL4(C) defined as follows:

Ĥ = 〈M, N , B, ABA2〉,
Ĝ = 〈M, N , A, B

〉
,

Ĝ96,227 = 〈M, N , A′, B ′〉,
Ĝ144,184 = 〈M, N , A, B, R

〉
,

where we consider M , N , A, B, A′, B ′, R as elements of GL4(C). These groups
are mapped to the groups H, G, G96,227 and G144,184 via the natural projection
GL4(C) → PGL4(C), and their GAP ID’s are [32,49], [96,204], [192,1493] and
[288,860], respectively.

Note that the groups Ĥ, Ĝ, Ĝ96,227, and Ĝ144,184 act naturally linearly on
H0(P3,OP3(1)). The corresponding linear representations are irreducible and can
be identified by GAP.

Lemma 3.7 Let V be the vector subspace in H0(P3,OP3(4)) consisting of all Ĥ-
invariants. Then the vector space V is five-dimensional. Furthermore, it contains all
one-dimensional subrepresentations in the vector space H0(P3,OP3(4)) of the groups
Ĝ, Ĝ96,227 and Ĝ144,184. Moreover, the following assertions hold:

(i) as a Ĝ-representation, the vector space V splits as a sum of 3 trivial represen-
tations and 2 non-isomorphic one-dimensional non-trivial representations;

(ii) as a Ĝ96,227-representation the spaceV splits as a sumof3 trivial representations
and 1 two-dimensional irreducible representations;

(iii) as a Ĝ144,184-representation the space V splits as a sum of 5 distinct non-
isomorphic one-dimensional representations.

Proof We used GAP to verify all assertions. �
By Lemma 3.7, P

3 contains exactly five G144,184-invariant quartic surfaces [16,
(2.20)]. To describe their defining equations, let
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f1 = x20 + x21 + x22 + x23 ,

f2 = 2
(
x20 x

2
1 + x20 x

2
2 + x20 x

2
3 + x21 x

2
2 + x21 x

2
3 + x22 x

2
3

)

− (x40 + x41 + x42 + x43
)+ 8

√
3i x0x1x2x3,

f3 = 2
(
x20 x

2
1 + x20 x

2
2 + x20 x

2
3 + x21 x

2
2 + x21 x

2
3 + x22 x

2
3

)

− (x40 + x41 + x42 + x43
)− 8

√
3i x0x1x2x3,

f4 = (−1 + √
3i)
(
x20 x

2
2 − x20 x

2
3 − x21 x

2
2 + x21 x

2
3

)

− 2
(
x20 x

2
1 − x20 x

2
2 − x21 x

2
3 + x22 x

2
3

)
,

f5 = (−1 − √
3i)
(
x20 x

2
2 − x20 x

2
3 − x21 x

2
2 + x21 x

2
3

)

− 2
(
x20 x

2
1 − x20 x

2
2 − x21 x

2
3 + x22 x

2
3

)
,

and let S2 = { f2 = 0}, S3 = { f3 = 0}, S4 = { f4 = 0}, S5 = { f5 = 0}. Then
• 2Q1, S2, S3, S4, S5 are G144,184-invariant quartic surfaces;
• the surfaces S2, S3, S4, S5 are irreducible;
• one has Sing(S2) = Sing(S3) = �12 and Sing(S4) = Sing(S5) = �4 ∪ �′

4 ∪ �′′
4 .

By [16, Lemma 3.12], singularities of the surfaces S2, S3, S4, S5 are ordinary double
points.

The polynomials f 21 , f2 and f3 generate a three-dimensional vector space that
contains all Ĝ-invariant elements in H0(P3,OP3(4)). Consider the following basis of
this space:

x0x1x2x3, x
2
0 x

2
1 + x20 x

2
2 + x20 x

2
3 + x21 x

2
2 + x21 x

2
3 + x22 x

2
3 , x

4
0 + x41 + x42 + x43 .

Using this basis, let us define the net M4 consisting of quartic surfaces in P
3 given

by

ax0x1x2x3 + b
(
x20 x

2
1 + x20 x

2
2 + x20 x

2
3 + x21 x

2
2 + x21 x

2
3 + x22 x

2
3

)

+c
(
x40 + x41 + x42 + x43 ) = 0, (3.8)

for [a : b : c] ∈ P
2. Then every surface in the net M4 is G-invariant and G96,227-

invariant. For [a : b : c] = [1 : 0 : 0], we get the surface

T = {x0x1x2x3 = 0} ∈ M4.

Similarly, for [a : b : c] = [−8 : −2 : 1], we get another reducible surface

T ′ = {(x0 + x1 + x2 − x3)(x0 + x1 − x2 + x3)(x0 − x1 + x2 + x3)(x0 − x1 − x2 − x3) = 0}.

Likewise, for [a : b : c] = [8 : −2 : 1], we get the reducible surface

T ′′ = {(x0 + x1 + x2 + x3)(x0 − x1 − x2 + x3)(x0 + x1 − x2 − x3)(x0 − x1 + x2 − x3) = 0}.

Finally, for [a : b : c] = [0 : 2 : 1], we get the non-reduced surface 2Q1 ∈ M4.
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Lemma 3.9 The following assertion holds:

(i) the base locus of the net M4 is the set �16 ∪ �′
16,

(ii) the only reducible surfaces in M4 are T , T ′, T ′′, 2Q1,
(iii) every irreducible surface inM4 has at most isolated ordinary double points,
(iv) if S is a surface given by (3.8), then S is singular if and only if

c(b + 2c)(b − 2c)(a + 2b − 4c)(a − 2b + 4c)(a − 6b

−4c)(a + 6b + 4c)(a2c + 4b3 − 12b2c + 16c3) = 0,

(v) if S is an irreducible singular surface given by (3.8), then

• either a2c + 4b3 − 12b2c + 16c3 �= 0, and Sing(S) is described in Table 1,
• or a2c+4b3−12b2c+16c3 = 0, and Sing(S) = �t

16 for t ∈ C\{±1,±√
3i}

which is uniquely determined by [a : b : c] = [2t3 + 6t : −t2 − 1 : 1].
Proof Assertion (i) is easy to check. Assertion (ii) follows from Remark 3.5 and the
fact that Q1 is the only G-invariant quadric surface in P

3.
Assertion (iv) has been proved in [45], see [6, Proposition 3.1], [22, Theo-

rem 10.3.18], [24, Proposition 2.1], [27, Lemma 2.21].
To prove assertions (iii) and (v), let S be an irreducible quartic surface given by

(3.8). If S has non-isolated singularities, the one-dimensional locus of Sing(S) is
either a line, or a (possibly singular) conic, or a pair of skew lines, or a (possibly
singular) spatial cubic curve [53], which is impossible, because G is an imprimitive
subgroup in PGL4(C) that does not leave a pair of skew lines invariant, and P

3 does
contain G-invariant smooth twisted cubic curves, since PGL2(C) does not contain
finite subgroups isomorphic to G. Thus, S is normal. Then S has at most two non-Du
Val singular points [52, Theorem 1], so S has Du Val singularities by Lemma 3.5, and
its minimal resolution is a K3 surface. Now using the fact that the rank of the Picard
group of a smooth K3 surface is at most 20 and applying Lemma 3.5 again, we see that
either S is smooth, or S has isolated ordinary double points, and one of the following
four cases holds:

• Sing(S) is a G-orbit of length 4, 12 or 16,
• Sing(S) is a union of a G-orbit of length 4 and a G-orbit of length 12,
• Sing(S) is a union of two distinct G-orbits of length 4,
• Sing(S) = �4 ∪ �′

4 ∪ �′′
4 .

In particular, this proves (iii).
To prove (v), we take partial derivatives of the polynomial in (3.8), and observe that

the locus Sing(S) is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ax1x2x3 + (2x0x
2
1 + 2x0x

2
2 + 2x0x

2
3 )b + 4x30c = 0,

ax0x2x3 + (2x20 x1 + 2x1x
2
2 + 2x1x

2
3 )b + 4x31c = 0,

ax0x1x3 + (2x20 x2 + 2x21 x2 + 2x2x
2
3 )b + 4x32c = 0,

ax0x1x2 + (2x20 x3 + 2x21 x3 + 2x22 x3)b + 4x33c = 0.
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In particular, substituting the coordinates of the G-orbits�4,�′
4,�

′′
4 , we obtain three

equations c = 0, a + 6b + 4c = 0, a − 6b − 4c = 0, respectively. Thus, we see that

• �4 ∈ Sing(S) ⇐⇒ c = 0,
• �′

4 ∈ Sing(S) ⇐⇒ a + 6b + 4c = 0,
• �′′

4 ∈ Sing(S) ⇐⇒ a − 6b − 4c = 0.

This gives Sing(S) �= �4 ∪ �′
4 ∪ �′′

4 , and the following assertions:

• Sing(S) = �4 ∪ �′
4 ⇐⇒ [a : b : 0] = [6 : 1 : 0],

• Sing(S) = �4 ∪ �′′
4 ⇐⇒ [a : b : 0] = [−6 : 1 : 0],

• Sing(S) = �′
4 ∪ �′′

4 ⇐⇒ [a : b : c] = [0 : −2 : 3].
Similarly, if Sing(S) = �t

16 for t ∈ C \ {±1}, then c �= 0, a + 4 + 6b �= 0,
a − 4 − 6b �= 0, because none of the G-orbits �4, �′

4, �
′′
4 is contained in Sing(S).

Hence, if Sing(S) = �t
16, then c �= 0 and

{
at + (2t2 + 4)b + 4c = 0,

4ct3 + 6bt + a = 0.

Then Sing(S) = �t
16 ⇐⇒ [a : b : c] = [2t3 + 6t : −t2 − 1 : 1] for t ∈

C\{±1,±√
3i}. Here, have t �= ±1 by assumption imposed on the G-orbit �t

16, and
we have t �= ±√

3i , since otherwise we would have [a : b : c] = [0 : 2 : 1] and
S = 2Q1, but S is irreducible. Note that [a : b : c] = [2t3 + 6t : −t2 − 1 : 1] is
a rational parametrization of the singular irreducible cubic curve in P

2
a,b,c that is given

by the equation a2c + 4b3 − 12b2c + 16c3 = 0, and the resultant of the polynomials
at + (2t2 + 4)b + 4c and 4ct3 + 6bt + a is

−4(a2c + 4b3 − 12b2c + 16c3)(a + 4c + 6b)(a − 4 − 6b).

This shows that Sing(S) = �t
16 ⇐⇒ a2c + 4b3 − 12b2c + 16c3 = 0.

Finally, if a2c + 4b3 − 12b2c + 16c3 �= 0, then substituting coordinates of the
G-orbits�4,�′

4,�
′′
4 ,�12,�′

12,�
′′
12,�

′′′
12,�16,�′

16 into the defining equations of the
locus Sing(S), we obtain all possibilities for Sing(S) described in Table 1. This proves
(v). �
Corollary 3.10 Let S be an irreducible surface inM4, and letπ : S̃ → S be itsminimal
resolution of singularities. Then S̃ is a K3 surface, the action of the group G lifts to S̃,
all G-orbits in S̃ are of length 16, 24 or 48, and S̃ contains exactly 6 orbits of length
16. In particular, if S contains a G-orbit of length < 16, then S is singular at this
G-orbit.

Proof All assertions follow from Lemma 3.9 and explicit computations, and the asser-
tion aboutG-orbits follows from [54,Theorem3], since theG-action on S̃ is symplectic
[29]. �
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Table 1 Singular locus of an irreducible quartic surface S ⊂ P
3 such that the surface S is given by (3.8)

with a2c + 4b3 − 12b2c + 16c3 �= 0

Condition on [a : b : c] Additional conditions on [a : b : c] Sing(S)

c = 0 [a : b : 0] �= [±6 : 1 : 0], [±2 : 1 : 0] �4

[a : b : 0] = [6 : 1 : 0] �4 ∪ �′
4

[a : b : 0] = [−6 : 1 : 0] �4 ∪ �′′
4

[a : b : 0] = [2 : 1 : 0] �4 ∪ �′′′
12

[a : b : 0] = [−2 : 1 : 0] �4 ∪ �′′
12

c �= 0 and b + 2c = 0 [a : b : c] �= [±8 : −2 : 1] �12

c �= 0 and b − 2c = 0 [a : b : c] �= [±16 : 2 : 1] �′
12

[a : b : c] = [16 : 2 : 1] �′
12 ∪ �′

4

[a : b : c] = [−16 : 2 : 1] �′
12 ∪ �′′

4

c �= 0 and a + 2b − 4c = 0 [a : b : c] �= [4 : 0 : 1] �′′
12

[a : b : c] = [4 : 0 : 1] �′′
12 ∪ �′

4

c �= 0 and a − 2b + 4c = 0 [a : b : c] �= [−4 : 0 : 1] �′′′
12

[a : b : c] = [−4 : 0 : 1] �′′′
12 ∪ �′′

4

c �= 0 and a − 6b − 4c = 0 [a : b : c] �= [0 : −2 : 3], [16 : 2 : 1], [4 : 0 : 1] �′
4

[a : b : c] = [0 : −2 : 3] �′
4 ∪ �′′

4

c �= 0 and a + 6b + 4c = 0 [a : b : c] �= [−16 : 2 : 1],[-4:0:1], [0 : −2 : 3] �′′
4

Now, let us describe all G-irreducible curves in P
3 that are unions of at most 15

lines. Let L6 = Sing(T ), L′
6 = Sing(T ′), L′′

6 = Sing(T ′′). Then L6, L′
6, L′′

6 are
G-irreducible curves, and each of them is a union of six lines. We have

�4 = Sing
(
L6
)
,

�′
4 = Sing

(
L′
6

)
,

�′′
4 = Sing

(
L′′
6

)
.

Observe also that

�12 = L6 ∩ L′
6 = L6 ∩ L′′

6 = L′
6 ∩ L′′

6,

so that the surfaces T , T ′, T ′′ form a configuration which is known as a desmic system,
see [42, § IV] and [43, § 3.19]. Note also that

L6 ∩ Q1 = �′
12,

L′
6 ∩ Q1 = �′′′

12,

L′′
6 ∩ Q1 = �′′

12.

Now, we let L4 be the G-irreducible curve in P
3 whose irreducible component is

the line
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{
2x0 + (1 + √

3i)x2 − (1 − √
3i)x3 = 2x1 + (1 − √

3i)x2 + (1 + √
3i)x3 = 0

}
,

let L′
4 be the G-irreducible curve in P

3 whose irreducible component is the line

{
2x0 + (1 − √

3i)x2 − (1 + √
3i)x3 = 2x1 + (1 + √

3i)x2 + (1 − √
3i)x3 = 0

}
,

let L′′
4 be the G-irreducible curve in P

3 whose irreducible component is the line

{
2x0 − (1 − √

3i)x2 + (1 + √
3i)x3 = 2x1 + (1 + √

3i)x2 + (1 − √
3i)x3 = 0

}
,

let L′′′
4 be the G-irreducible curve in P

3 whose irreducible component is the line

{
2x0 − (1 + √

3i)x2 + (1 − √
3i)x3 = 2x1 + (1 − √

3i)x2 + (1 + √
3i)x3 = 0

}
,

let L′′′
6 be the G-irreducible curve in P

3 whose irreducible component is the line

{
x0 + i x2 = x1 + i x3 = 0

}
,

and letL′′′′
6 be theG-irreducible curve in inP

3 whose irreducible component is the line

{
x0 + i x3 = x1 + i x2 = 0

}
.

ThenL4,L′
4,L′′

4,L′′′
4 consist of 4 disjoint lines,L′′′

6 andL′′′′
6 consist of 6 disjoint lines,

and all these six G-irreducible reducible curves are contained in the quadric Q1.

Remark 3.11 Since H contains all elements of order 2 in G, it follows from [16, § 2]
that all G-orbits of length 24 in the space P

3 are contained in the unionL6∪L′
6∪L′′

6 ∪
L′′′
6 ∪L′′′′

6 . Vice versa, if P is a point inL6∪L′
6∪L′′

6∪L′′′
6 ∪L′′′′

6 , then either itsG-orbit
has length 24, or the point P is contained in the union�4∪�′

4∪�′′
4 ∪�12∪�′

12∪�′′
12.

Let us present the intersections of the curves L4, L′
4, L′′

4, L′′′
4 , L6, L′

6, L′′
6, L′′′

6 , L′′′′
6 .

∩ L4 L′
4 L′′

4 L′′′
4 L′′′

6 L′′′′
6

L4 L4 ∅ �

√
3i

16 �′
16 ∅ L4 ∩ L′′′′

6

L′
4 ∅ L′

4 �16 �
−√

3i
16 ∅ L′

4 ∩ L′′′′
6

L′′
4 �

√
3i

16 �16 L′′
4 ∅ L′′

4 ∩ L′′′
6 ∅

L′′′
4 �′

16 �
−√

3i
16 ∅ L′′′

4 L′′′
4 ∩ L′′′

6 ∅

L′′′
6 ∅ ∅ L′′

4 ∩ L′′′
6 L′′′

4 ∩ L′′′
6 L′′′

6 �′
12 ∪ �′′

12 ∪ �′′′
12L′′′′

6 L4 ∩ L′′′′
6 L′

4 ∩ L′′′′
6 ∅ ∅ �′

12 ∪ �′′
12 ∪ �′′′

12 L′′′′
6

where the intersections L4 ∩L′′′′
6 , L′

4 ∩L′′′′
6 , L′′

4 ∩L′′′
6 , L′′′

4 ∩L′′′
6 are G-orbits of length

24.
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Lemma 3.12 Let C be a G-irreducible curve in P
3 such that C is a union of d �

15 lines. Then either C is one of the curves L4, L′
4, L′′

4 , L′′′
4 , L6, L′

6, L′′
6 , L′′′

6 , L′′′′
6 , or

C is a disjoint union of 12 lines, and there exists an H-invariant quadric surface that
contains at least four irreducible components of the curve C.

Proof Let � be an irreducible component of the curve C , let � = StabG(�). Then
|�| � 4. Since P

3 contains no H-invariant lines, one has � ∼= A4 or � ∼= µ3
2 or

� ∼= µ3
2 by Remark 3.1. Therefore, we see that d ∈ {4, 6, 12}.

By Remark 3.1, the group G contains five subgroups isomorphic to A4 up to con-
jugation. We explicitly described the generators of these subgroups in the proof of
Lemma 3.5. Three of them are stabilizers of a point in the G-orbits �4, �′

4, �
′′
4 , and

none of them leaves a line in P
3 invariant, hence � is not one of them. If � is one of

the two remaining subgroups in G isomorphic to A4, then � leaves invariant exactly
two lines in P

3—these are either components of the curves L4 and L′
4, or components

of the curves L′′
4 and L′′′

4 . Thus, if �
∼= A4, then C is one of the curves L4, L′

4, L′′
4,

L′′′
4 .
Now, we suppose that� ∼= µ3

2. Up to conjugation, the groupG contains exactly five
subgroups isomorphic to µ3

2. Their generators are explicitly described in Remark 3.1.
For instance, consider the subgroup 〈B,M, N 〉. This subgroup leaves invariant exactly
two lines in P

3—the lines {x0 = x1 = 0} and {x2 = x3 = 0}, which are irreducible
components of the curve L6. Therefore, if � is conjugated to 〈B,M, N 〉, one has C =
L6. Similarly, if � is conjugated to one of the remaining four subgroups isomorphic
to µ3

2, then C is one of the curves L′
6, L′′

6, L′′′
6 or L′′′′

6 .
Hence, we may assume that � ∼= µ2

2 and d = 12. Arguing as in the proof of
Lemma 3.5, we see that � fixes no points in P

3. Up to conjugation, there are eight
possibilities for �, which are described in Remark 3.1. In each case, �-invariant lines
span one of the quadric surfaces Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10. Thus,
we conclude that

� ⊂
10⋃
i=1

Qi .

Moreover, explicit computations show that the curve C is a disjoint union of 12 lines,
and either C ⊂ Q1, or one of the following three possibilities hold:

(i) C ⊂ Q2 ∪ Q3 ∪ Q4, and each quadric Q2, Q3, Q4 contains 4 components of
C ;

(ii) C ⊂ Q5 ∪ Q6 ∪ Q7, and each quadric Q5, Q6, Q7 contains 4 components of
C ;

(iii) C ⊂ Q8 ∪ Q9 ∪ Q10, and each quadric Q8, Q9, Q10 contains 4 components
of C .

This completes the proof of the lemma. �

Now, let us prove one auxiliary results that will be used later.
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Lemma 3.13 Let M6 be the linear system that is generated by the sextic surfaces

3Q1,Q1 + S2,Q1 + S3,
{
x60 + x61 + x62 + x63 = 0

}
.

ThenM6 is three-dimensional, its base locus is L′′′
6 ∪L′′′′

6 , andM6|Q1 = L′′′
6 +L′′′′

6 .
If S is a G-invariant sextic surface inP

3, then S ∈ M6 or S = Q1+S4 or S = Q1+S5.

Proof All assertions about M6 are easy and can be checked using explicit compu-
tations. Arguing as in the proof of Lemma 3.7, we obtain the remaining assertion.

�
Now, let us describe all G-irreducible curves in P

3 that consist of 4 irreducible con-
ics. Let C18 be the G-irreducible curve in P

3 whose irreducible component is the conic

{
x0 = x21 + x22 + x23 = 0

}
,

let C28 be the G-irreducible curve whose irreducible component is the conic

{
x0 = 2x21 − (1 − √

3i)x22 − (1 + √
3i)x23 = 0

}
,

and let C38 be the G-irreducible curve whose irreducible component is the conic

{
x0 = 2x21 − (1 + √

3i)x22 − (1 − √
3i)x23 = 0

}
.

Then C18 , C28 and C38 are union of 4 irreducible conics that are contained in the surface T .
Moreover, one has C18 = T ∩ Q1, which implies that C18 is connected. On the other
hand, the curves C28 and C38 are disjoint unions of 4 conics.

Recall that R is a generator of the group G144,184 defined earlier. Let

C1,′8 = R
(
C18
)
, C2,′8 = R

(
C28
)
, C3,′8 = R

(
C38
)
,

and let

C1,′′8 = R2(C18
)
, C2,′′8 = R2(C28

)
, C3,′′8 = R2(C38

)
.

Then C1,′8 , C2,′8 , C3,′8 are contained in T ′, and the curves C1,′′8 , C2,′′8 , C3,′′8 are contained

in T ′′. One has C1,′8 = T ′ ∩Q1 and C1,′′8 = T ′′ ∩Q1, so that both curves C1,′8 and C1,′′8

are connected. On the other hand, the curves C2,′8 , C3,′8 , C2,′′8 , C3,′′8 are disjoint unions
of 4 conics.

Lemma 3.14 Let C be a G-irreducible curve inP
3 that consists of at most 7 irreducible

conics. Then C is one of the curves C18 , C28 , C38 , C
1,′
8 , C2,′8 , C3,′8 , C1,′′8 , C2,′′8 , C3,′′8 .

Proof Let � be the stabilizer of an irreducible component of the G-irreducible curve
C , and let � be the hyperplane in P

3 that contains this irreducible component. Then
|�| > 6, and the plane � is �-invariant. This implies that P

3 must contain a �-fixed
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point, so that it follows fromRemark 3.1 and Lemma 3.5 that� ∼= A4, and the plane�
is an irreducible component of one of the surfaces T , T ′, T ′′. Now, we can explicitly
find all �-invariant conics in � to obtain the required result. �
Corollary 3.15 Let C be a G-irreducible curve contained in T ∪ T ′ ∪ T ′′ of degree
� 15. Then C is one of the curves L6, L′

6, L′′
6 , C18 , C28 , C38 , C

1,′
8 , C2,′8 , C3,′8 , C1,′′8 , C2,′′8 ,

C3,′′8 .

Proof Arguing as in the proof of Lemma 3.14, we obtain the required assertion. �
Now, we are ready to prove the following result:

Lemma 3.16 Let C be a reducible G-irreducible curve in the quadric Q1 of degree
� 15. Then either C is one of the G-irreducible curves L4, L′

4, L′′
4 , L′′′

4 , L′′′
6 , L′′′′

6 , C18 ,
C1,′8 , C1,′′8 , or the curve C is a union of 12 disjoint lines.

Proof Let r be the number of irreducible components of the curve C , let C1, . . . ,Cr

be irreducible components of the curve C , let d be the degree of the curve C1, and let
� be the stabilizer of the curve C1 in the group G. Then � is a subgroup in G of index
r � 15

d . By Lemmas 3.12 and 3.14, we may assume that d � 3, which gives r � 5,
so that it follows from Remark 3.1 that we have the following possibilities:

(1) r = 3, � = H and d ∈ {3, 4, 5},
(2) r = 4, � ∼= A4 and d = 3.

In each case, the group � acts faithfully on the curve C1.
Let us consider the curve C1 as a divisor of degree (a, b) in the quadric Q1 ∼=

P
1×P

1, where a and b are some positive integers such that a+b = d. Without loss of
generality, we may assume that a � b. If r = 3, then C1 is an irreducible H-invariant
curve and

(a, b) ∈ {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3)},

which implies that the genus of the normalization of the curve C1 is at most 2, which
contradicts Lemma 3.2. Hence, we see that r �= 3.

Thus, we have r = 4. Then � ∼= A4 and (a, b) = (1, 2), hence C1 is a smooth
twisted cubic curve. Using GAP, one can check that Q1 is the unique �-invariant
quadric in P

3, and P
3 does not contain pencils of �-invariant quadrics. Since all

quadrics passing through the curve C1 form a net, we conclude that this net does not
contain Q1, otherwise we would have a pencil of quadrics surfaces passing through
the curve C1. This is a contradiction, since C1 ⊂ Q1 by assumption. �

Now, we are ready to prove the following result:

Lemma 3.17 Let C be a reducible G-irreducible curve in P
3 of degree d � 15 that is

not contained in Q1 ∪ T ∪ T ′ ∪ T ′′. Then d = 12, and either C is a union of twelve
lines, or the curve C is a union of four twisted cubic curves.
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Proof Since C is not contained in the quadricQ1, we see thatQ1 ·C is a G-invariant
one-cycle inQ1 of degree 2d � 30. One the other hand, we know that all G-orbits in
the quadric Q1 are of lengths 12, 16 and 24. Hence, one has

30 � 2d = 12a + 16b

for some non-negative integers a and b. Therefore, we conclude that d ∈ {6, 8, 12, 14}.
By Lemmas 3.12 and 3.14, we may assume that components of the curve C are

neither lines nor conics. Since G does not contain subgroups of index 2, we see that
d = 12 and

• either C is a union of four twisted cubic curves,
• or C is a union of three irreducible curves of degree 4.

Moreover, in the latter case, the subgroup H is the stabilizer in G of every irre-
ducible component of the curve C , because H is the only subgroup in G of index 3
by Remark 3.1. One the other hand, it follows from Lemma 3.2 that H cannot act
faithfully on a rational curve, and H cannot act faithfully on a smooth elliptic curve.
Hence, we conclude that irreducible components of the curve C cannot be curves in
P
3 of degree 4, which implies that the curve C is a union of four twisted cubic curves

as claimed. �
From the proof of Lemma 3.12, we know that P

3 contains infinitely many G-
irreducible curves that are unions of twelve lines. Similarly, one can show that P

3

contains infinitely many G-irreducible curves that are unions of four twisted cubics.

Example 3.18 Let L = {x0 + i x2 = x1 + i x3 = 0}, let Ps = [i : s : si : 1] for
s ∈ C ∪ {∞}, and let � be the subgroup in G generated by ABA and BMN . Then L
is an irreducible component of the curve L′′′

6 , Ps ∈ L , � ∼= A4, and Orb�(Ps) consists
of the six points

[− is : −i : s : 1], [i : s : si : 1], [1 : i : is : s],[− is : −1 : i : s], [− s : si : −i : 1], [− i : is : −1 : s],

which are contained in six distinct irreducible components of the G-irreducible curve

L′′′
6 . Suppose, in addition, that s �= 1+√

3
2 + 1+√

3
2 i and s �= 1−√

3
2 + 1−√

3
2 i . Then

Ps /∈ L′′′
4 ∪ L′′

4, and no four points in the �-orbit Orb�(Ps) are coplanar. Let Cs be
the unique twisted cubic in P

3 that contains Orb�(Ps), and let Cs12 be theG-irreducible
curve in P

3 whose irreducible component is the curve Cs . Then Cs = {h1 = h2 =
h3 = 0}, whereh1 = (s2 + (1 + i)s − i)x20 − (2is2 + (2 + 2i)s − 2)x0x1 + (2is2 − (2 + 2i)s − 2)x3x0 −

−(s2 + (1 + i)s − i)x21 + (−2is2 + (2 + 2i)s + 2)x2x1 + (s2 + (1 + i)s − i)x22 +
−(2is2 + (2 + 2i)s + 2)x3x2 − (s2 + (1 + i)s − i)x23 ,

h2 = (−s2 − (1 + i)s + i)x20 + (2is2 − (2 + 2i)s − 2)x0x1 + (−2is2 − (2 + 2i)s + 2)x2x0 +
+(s2 + (1 + i)s − i)x21 − (2is2 + (2 + 2i)s − 2)x3x1 + (s2 + (1 + i)s − i)x22 +
−(2is2 − (2 + 2i)s − 2)x3x2 − (s2 + (1 + i)s − i)x23 ,

h3 = (s2 + (1 + i)s − i)x20 + (2is2 − (2 + 2i)s − 2)x0x2 + (2is2 + (2 + 2i)s − 2)x3x0 +
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+(s2 + (1 + i)s − i)x21 + (2is2 + (2 + 2i)s − 2)x1x2 −
−(2is2 − (2 + 2i)s − 2)x3x1 − (s2 + (1 + i)s − i)x22 − (s2 + (1 + i)s − i)x23 .

The curveCs12 is a unionof four twisted cubic curves. For general choice of s ∈ C∪{∞},
these twisted curves are disjoint, but for some s ∈ C∪{∞} the cubics are not disjoint.
To be precise, the curve Cs12 is a disjoint union of four twisted cubic curves if and only
if

s ∈
{
∞, 0,±1,±i,

−1 ± √
3

2
+ −1 ± √

3

2
i,

1 ± √
3

2
− 1 ± √

3

2
i,

−1 ± √
3

2
+ 1 ± √

3

2
i
}
.

For instance, one has Sing(C∞
12 ) = �′

12 and C∞ is given by

⎧⎪⎨
⎪⎩

x20 − 2i x0x1 + 2i x3x0 − x21 − 2i x1x2 + x22 − 2i x2x3 − x23 = 0,

x20 − 2i x0x1 + 2i x0x2 − x21 + 2i x1x3 − x22 + 2i x2x3 + x23 = 0,

x20 + 2i x0x2 + 2i x3x0 + x21 + 2i x1x2 − 2i x1x3 − x22 − x23 = 0.

In this case, two irreducible component of the curve C∞
12 intersect by two points in

�′
12, and every irreducible component of the curve C∞

12 contains four points in the G-

orbit �′
12. Likewise, if s = −1±√

3
2 + −1±√

3
2 i , then all components of the curve Cs12

contain �4.

Let us present some irreducible G-invariant curves in Q1.

Example 3.19 Recall that Q1 is contained in the net M4, so that M4|Q1 is a pencil,
whose base locus is �16 ∪ �′

16 by Lemma 3.9. Note that all curves in M4|Q1 are
G-invariant. Moreover, using Remark 3.1 and Lemmas 3.2 and 3.14 one can show
that every curve in the pencil M4|Q1 is reduced, and all reducible curves in M4|Q1

are

T |Q1 = C18 , T ′|Q1 = C1,′8 , T ′′|Q1 = C1,′′8 , S2|Q1 = L′
4 + L′′′

4 , S3|Q1 = L4 + L′′
4.

Since the arithmetic genus of irreducible curves in M4|Q1 is 9, it follows from
Lemma 3.5 that all remaining curves in M4|Q1 are smooth irreducible G-invariant
curves of genus 9.

Example 3.20 Observe that

(S3 + S4)|Q1 = L4 + L′
4 + 2L′′

4 ∼ 2L4 + 2L′′′
4 = 2S5|Q1 ,

(S2 + S5)|Q1 = L4 + L′
4 + 2L′′′

4 ∼ 2L′
4 + 2L′′

4 = 2S4|Q1,

(S3 + S5)|Q1 = 2L4 + L′′
4 + L′′′

4 ∼ 2L′
4 + 2L′′

4 = 2S4|Q1,

(S2 + S4)|Q1 = 2L′
4 + L′′

4 + L′′′
4 ∼ 2L4 + 2L′′′

4 = 2S5|Q1 .

Using this, we can create 4 pencils on the quadric Q1 that consist of G-invariant
curves. These are the pencils generated by L′

4 + 2L′′
4 and L4 + 2L′′′

4 , by L4 + 2L′′′
4
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and L′
4 +2L′′

4, by 2L4 +L′′′
4 and 2L′

4 +L′′
4, by 2L′

4 +L′′
4 and 2L4 +L′′′

4 , respectively.
One can show that general curves in these four pencils are smooth irreducible G-
invariant curves of genus 21. Moreover, one can also check that each pencil contains
three irreducible singular curves whose singular loci are the G-orbits �′

12, �
′′
12, �

′′′
12,

respectively. These curves have ordinary nodes as singularities, so their normalizations
have genus 9.

Now, we are ready to describe irreducible G-irreducible curves in Q1 of small
degree.

Lemma 3.21 Let C be an irreducible G-invariant curve in Q1 ∼= P
1 × P

1 of degree
(a, b), where a and b are some non-negative integers. Suppose, in addition, that
a + b � 15. Then one of the following three possibilities holds:

• (a, b) = (4, 4), and C is a smooth curve of genus 9,
• (a, b) = (4, 8) or (a, b) = (8, 4), and C is a smooth curve of genus 21,
• (a, b) = (4, 8) or (a, b) = (8, 4), and C is a singular curve with 12 ordinary
nodes, and the normalization of the curve C has genus 9.

Proof Without loss of generality, we may assume that L4 is a divisor in Q1 of
degree (0, 4), so that L′′

4 is a divisor of degree (4, 0). Observe also that the quadricQ1
is G96,227-invariant, and group G96,227 maps C to a curve of degree (b, a). Thus, we
may assume that a � b.

By Lemma 3.2, the curve C is irrational, it is not elliptic and it is not hyperelliptic,
so that we have a � 3. Moreover, if a is odd, then C · L4 = 4a is not divisible by 8,
which contradicts Lemma 3.5, because allG-orbits in the curveL4 have lengths 16, 24
or 48.Hence,we see thata is even. Similarly,we see thatb is also even, becauseC ·L′′

4 =
4b. Therefore, we conclude that (a, b) ∈ {(4, 4), (4, 6), (4, 8), (4, 10), (6, 6), (6, 8)}.

Let pa(C) be the arithmetic genus of the curve C . Then pa(C) = ab − a − b + 1,
hence

(
a, b, pa(C)

) ∈ {(4, 4, 9), (4, 6, 15), (4, 8, 21), (4, 10, 27), (6, 6, 25), (6, 8, 35)}.

Let π : C̃ → C be the normalization of the curve C , let g be the genus of the curve
C̃ . Then the G-action lifts to C̃ , and it follows from Lemma 3.5 that

0 � g = pa(C) − 12α − 16β

for some integers α � 0 and β � 0. If (a, b) = (4, 4), then g = pa(C), hence C is
smooth. Similarly, if (a, b) = (4, 6), then we have g ∈ {3, 15}, which is impossible
by Lemma 3.2. Likewise, if (a, b) = (4, 10) or (a, b) = (6, 8), then

g ∈ {3, 7, 11, 15, 19, 23, 27, 35},

so that g ∈ {23, 27, 35} by Lemma 3.2. Moreover, arguing as in the proof of
Lemma 3.2, we see that g /∈ {23, 27, 35}. Hence, we may assume that (a, b) = (4, 8)
or (a, b) = (6, 6).
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If (a, b) = (6, 6), then the curve C is cut out on Q1 by a G-invariant sextic
surface in P

3, which gives C = L′′′
6 + L′′′′

6 by Lemma 3.13, which is absurd, since C
is irreducible.

Therefore, we have (a, b) = (4, 8). If C is smooth, then we are done. If C is
singular, then it follows from g = 21− 12α − 16β and Lemma 3.2 that g = 9, which
implies that the curve C has 12 ordinary nodes as required. �

Now, we deal with irreducible G-invariant curves in P
3 that are not contained in

Q1.

Lemma 3.22 Let C be an irreducible G-invariant curve in P
3 of degree d � 15 such

that the curve C is not contained in Q1. Then C is smooth, d = 12, its genus is 9, 13
or 17, the curve C is contained in a surface in M4 that has at most ordinary double
points, and the curve C does not contain G-orbits �4, �′

4, �
′′
4 , �12, �′

12, �
′′
12, �

′′′
12.

Proof IfC is smooth, thenC does not contain�4,�′
4,�

′′
4 ,�12,�′

12,�
′′
12,�

′′′
12, because

stabilizers in G of smooth points in C are cyclic groups [26, Lemma 2.7].
Recall from Lemma 3.5 that G-orbits in the quadric Q1 are of length 12, 16, 24,

48, and the G-orbits of length 12 in Q1 are �′
12, �

′′
12, �

′′′
12. On the other hand, if C

contains one of these G-orbits of length 12, then C must be singular at it. Thus, we
conclude that

2d = Q1 · C = 24a + 16b

for some non-negative integers a and b. Hence, either d = 8 or d = 12.
Let P and Q be two general points in C , and let S be a surface in the net M4 that

passes through P and Q. Then C ⊂ S, since otherwise we would have

48 � 4d = S · C � |OrbG(P)| + |OrbG(Q)| = 96,

because G-orbits of the points P and Q are of length 48.
Observe that S is irreducible by Lemma 3.9, since C is not contained in Q1, T ,

T ′, T ′′. Thus, it follows from Lemma 3.9 that S has at most isolated ordinary double
points.

Let π : S̃ → S be the minimal resolution of singularities of the G-invariant sur-
face S. Then S̃ is a smooth K3 surface, and the action of the groupG lifts to the surface
S̃. Let H be a general hyperplane section of the surface S, let H̃ = π∗(H), let C̃ be
the proper transform of the curveC on the surface S̃, let pa(C̃) be the arithmetic genus
of the curve C̃ , and let g be the genus of the normalization of the curve C . Then

36 � d2

4
=
(
H̃ · C̃)2
H̃2

� C̃2 = 2pa(C̃) − 2 � 2g − 2

by the Hodge index theorem, hence g � pa(C̃) � 19. Then g ∈ {9, 13, 17} by
Lemma 3.2. But it follows from Corollary 3.10 that G-orbits in S̃ are of length 16, 24
or 48. Then

19 � pa(C̃) = g + 16a + 24b � 9
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for some non-negative integers a and b. This implies that pa(C̃) = g, hence C̃ is
smooth. Hence, we have Sing(C) ⊂ Sing(S).

If d = 8, then the Hodge index theorem gives g = 9 and 64 = (H̃ ·C̃)2 = H̃2C̃2 =
4C̃2, so that C̃ ∼Q 2H̃ , which implies that C̃ ∼ 2H̃ , because the group Pic(S̃) is
torsion free. Hence, if d = 8, then C is contained in the smooth locus of the surface
S, and C ∼ 2H . On the other hand, the restriction map

H0(
P
3,OP3(2)

)→ H0(S,OS(2H)
)

is a surjectivemapof Ĝ-representations. Therefore, if d = 8, thenwehaveC = S∩Q1,
which is impossible by our assumption. Hence, we see that d �= 8.

To complete the proof,wemust show thatC is smooth. Suppose that it is not smooth.
Then the surface S is also singular, because Sing(C) ⊂ Sing(S). By Lemma 3.9, we
have the following possibilities:

(i) either Sing(S) is a G-orbit of length 16,
(ii) or Sing(S) is a G-orbit of length 12,
(iii) or Sing(S) is a G-orbit of length 4,
(iv) or Sing(S) is a union of a G-orbit of length 12 and a G-orbit of length 4,
(v) or Sing(S) is a union of a G-orbit of length 12 and a G-orbit of length 4,
(vi) or Sing(S) is a union of two G-orbits of length 4.

Moreover, if C contains a G-orbit of length 4 or 12, then C is singular at this orbit,
because stabilizers in G of smooth points in C are cyclic.

Let E1, . . . , Ek be G-irreducible π -exceptional curves. Then E1, . . . , Ek are dis-
joint unions of (−2)-curves, and π(E1), . . . , π(Ek) are G-orbits in Sing(S). One has

C̃ ∼Q π∗(C) −
k∑

i=1

mi Ei

for some non-negative rational numbersm1, . . . ,mk such that 2m1, . . . , 2mk are inte-
gers. Note that mi > 0 if and only if C contains the G-orbits π(Ei ). Moreover, one
has

mi = 1

2
if and only if C is smooth at the points of the G-orbits π(Ei ).

Therefore, if π(Ei ) ⊂ Sing(C), then mi � 1. Furthermore, if all m1, . . . ,mk are
integers, then the curve C is a Cartier divisor on the surface S.

Without loss of generality, we may assume that π(E1) ⊂ Sing(C). Then

C̃2 = C2 +
k∑

i=1

m2
i E

2
i = C2 − 2

k∑
i=1

m2
i

∣∣π(Ei )
∣∣ � C2 − 2m2

1

∣∣π(E1)
∣∣ � C2 − 2

∣∣π(E1)
∣∣.

Applying Hodge index theorem to S, we get C2 � 36, hence 2g − 2 = C̃2 �
36 − 2
∣∣π(E1)

∣∣.
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Thus, if π(E1) is a G-orbit of length 12 or 16, then 2g − 2 = C̃2 � 12, so that
g � 7, which is impossible by Lemma 3.2. Hence, we see that π(E1) is a G-orbits of
length 4.

Write E1 = E1
1 + E2

1 + E3
1 + E4

1 , where E1
1 , E

2
1 , E

3
1 and E4

1 are disjoint (−2)-
curves. Let � be the stabilizer in G of the curve E1

1 . Then � ∼= A4, and the group
� acts faithfully on the curve E1

1 by Corollary 3.10, so that the smallest �-orbit in
E2
1

∼= P
1 is of length 4. Hence, the intersection C̃ ∩ E1

1 consists of at least 4 points,
which implies that

4 �
∣∣C̃ ∩ E1

1

∣∣ � C̃ · E1
1 =
(
π∗(C) −

k∑
i=1

mi Ei

)
E1
1 = 2m1,

so that m1 � 2. Then 2 g − 2 = C̃2 � 36 − 2m2
1|π(E1)| = 36 − 8m2

1 � 4, so that
g � 3, which is impossible by Lemma 3.2. �

Unfortunately, we do not knowwhetherP
3 contains irreducible smoothG-invariant

curves of degree 12 and genus 9 or 17. On the other hand, we know that P
3 contains

infinitely many irreducible smooth G-invariant curves of degree 12 and genus 13.

Example 3.23 By [16, Theorem 3.22], P3 contains four irreducible G144,184-invariant
smooth curves of degree 12 and genus 13. These four curves can be constructed as
follows. Observe that S2|Q1 = L′

4 + L′′′
4 , S3|Q1 = L4 + L′′

4, S4|Q1 = L′
4 + L′′

4 and
S5|Q1 = L4 +L′′′

4 . Hence, none of the intersections S2 ∩ S4, S2 ∩ S5, S3 ∩ S4, S3 ∩ S5
is an irreducible curve. Moreover, it follows from [16, Lemma 3.19] that

S2 ∩ S4 = L′
4 + C′

12,

S2 ∩ S5 = L′′′
4 + C′′′

12,

S3 ∩ S4 = L′′
4 + C′′

12,

S3 ∩ S5 = L4 + C12,

where C12, C′
12, C

′′
12, C

′′′
12 are distinct smooth irreducible curves of degree 12 and

genus 13. Now, we can use the same idea to construct infinitely many irreducible
G-invariant smooth curves of degree 12 and genus 13. For instance, if λ is a general
complex number, then

{
λ f 21 + f3 = f5 = 0

}

splits as a union of the G-invariant reducible curve L4 and a smooth G-invariant
irreducible curve of degree 12 and genus 13.

Irreducible G-invariant curves of degree 12 from Example 3.23 are cut out by
sextics. We think that this should be true for every G-invariant irreducible curve in P

3

of degree 12 which is not contained inQ1. But we are unable to show this �. Instead,
we prove
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Lemma 3.24 Let C be an irreducible G-invariant curve of degree 12 in P
3 that is not

contained inQ1, and letD be a linear subsystem in |OP3(6)| that consists of surfaces
passing through the curve C. ThenD is non-empty,D does not have fixed components,
the curve C is the only curve that is contained in the base locus of the linear system
D. Moreover, if D and D′ are general surfaces in D, then (D · D′)C = 1.

Proof It follows from Lemma 3.22 that the curve C is smooth, and its genus is 9,
13 or 17. Moreover, it follows from Lemma 3.22 that the curve C is contained in
an irreducible quartic surface in S ∈ M4 that has at most ordinary double points.
Then S + Q ∈ D for every quadric Q ∈ |OP3(2)|. Thus, the base locus of D is
contained in S.

Let IC be the ideal sheaf of the curve C . The surfaces in D are cut out by
the global sections in H0(OP3(6) ⊗ IC ). On the other hand, we have the following
exact sequence:

0 −→ H0(OP3(6) ⊗ IC
) −→ H0(OP3(6)

) −→ H0(OP3(6)
∣∣
C

)

Thus, using the Riemann–Roch theorem and Serre duality, we see that

h0
(
OP3(6) ⊗ IC

)
� h0
(
OP3(6)

)− h0
(
OP3(6)

∣∣
C

) = 84 − h0
(
OP3(6)

∣∣
C

) = 11 + g,

where g is the genus of the curve C . Therefore, the dimension of D is at least 10+ g.
Then the dimension of the linear system D|S is at least g, because h0(OP3(2)) = 10.

Let M6 be the linear system introduced in Lemma 3.13. By Lemma 3.13, this
linear system is three-dimensional, every surface inM6 isG-invariant, andM6

∣∣Q1
=

L′′′
6 + L′′′′

6 , so that the base locus of the linear system M6 is a union of the curves
L′′′
6 and L′′′′

6 . We claim that M6 contains a possibly reducible surface such that it
passes through C , but S is not its irreducible component. Indeed, let P and Q be two
sufficiently general points in the curve C , and let S6 and S′

6 be two distinct surfaces
inM6 that both pass through P and Q. If C �⊂ S6, then

72 = S6 · C �
∣∣OrbG(P)

∣∣+ ∣∣OrbG(Q)
∣∣ = 96,

which is absurd. Therefore, we conclude that C ⊂ S6. Similarly, we see that C ⊂
S6 ∩ S′

6. On the other hand, the quartic surface S is not contained in S6 ∩ S′
6, because

otherwise we would have S6 = S′
6 = S+Q1, sinceQ1 is the onlyG-invariant quadric

surface in P
3. Hence, either S �⊂ S6 or S �⊂ S′

6. Without loss of generality, we may
assume that S is not an irreducible component of the surface S6.

We see that S6|S = C+Z for someG-invariant curve Z . Observe that deg(Z) = 12.
If Z is not G-irreducible, then it follows from Corollary 3.15 and Lemmas 3.17 and
3.22 that at least one irreducible component of the curve Z is contained in the quadric
Q1, because the curvesL6,L′

6,L′′
6 are not contained in S. On the other hand, we know

that

S6|Q1 = L′′′
6 + L′′′′

6 ,



71 Page 38 of 84 I. Cheltsov, A. Sarikyan

and neitherL′′′
6 norL′′′′

6 are contained in S. Hence, we conclude that Z isG-irreducible.
A priori, we may have Z = C .

Since S6 ⊂ D, the base locus of the linear systemD is contained in S6∩S = C∪ Z .
If Z is contained in the base locus of the linear systemD, then we haveD|S = C + Z ,
so thatD|S is a zero-dimensional linear system. On the other hand, we already proved
earlier that the dimension of D|S is at least g � 13. This shows that C is the only
curve contained in the base locus of the linear system D.

Likewise, we see that D|S �= 2C . Thus, for a general surface D ∈ D, one has
(D · S)C = 1. This implies the final assertion of the lemma, since S + Q ∈ D for
every Q ∈ |OP3(2)|. �

Let us conclude this section with one rather technical result.

Proposition 3.25 Let C be a G-irreducible curve in P
3 that is different from L6, L′

6,
L′′
6 , and let D be a linear subsystem in |OP3(n)| that has no fixed components, where

n ∈ Z>0. Then multC (D) � n
4 . Moreover, one has multL′

6
(D) + multL′′

6
(D) � n

2 .

Proof First, let us prove the last assertion. To do this, we let

L ′
1 = {x0 + x2 = x1 − x3 = 0},

L ′
2 = {x0 − x2 = x1 + x3 = 0},

L ′′
1 = {x0 + x3 = x1 + x2 = 0},

L ′′
2 = {x0 − x3 = x1 − x2 = 0}.

Then the lines L ′
1, L

′
2, L

′′
1, L

′′
2 are disjoint. Moreover, the lines L ′

1 and L ′
2 are two

irreducible components of the curveL′
6, but L

′′
1 and L

′′
2 are two irreducible components

of the curve L′′
6. On the other hand, the lines L ′

1, L
′
2, L

′′
1, L

′′
2 are contained in Q2 =

{x20 + x21 − x22 − x23 = 0}. Thus, if D is a general surface in D, then

D
∣∣Q2

= m′
1L

′
1 + m′

2L
′
2 + m′′

1L
′′
1 + m′′

2L
′′
2 + �,

where m′
1, m

′
2, m

′′
1, m

′′
2 are such that m′

1 � multL′
6
(D), m′

2 � multL′
6
(D), m′′

1 �
multL′′

6
(D) and m′′

2 � multL′′
6
(D), and � is an effective divisor on Q2 whose support

does not contain the lines L ′
1, L

′
2, L

′′
1, L

′′
2. Now, let � be a general line in Q2 that

intersects L ′
1. Then

n = � · D∣∣Q2
= m′

1 + m′
2 + m′′

1 + m′′
2 + � · � � 2multL′

6
(D) + 2multL′′

6
(D),

so that multL′
6
(D) + multL′′

6
(D) � n

2 as claimed.
Now, let D1 and D2 be two general surfaces in the system D. Then D1 · D2 =

δC + �, where δ is a non-negative integer, and � is an effective one-cycle such that
C �⊂ Supp(�). One has δ � mult2C (D). But the degree of the cycle D1 · D2 is n2.
Then δdeg(C) � n2, which gives the required inequality if deg(C) � 16. So, we may
assume that deg(C) � 15.

Now, we suppose that the curve C is contained in the G-invariant quadric sur-
faceQ1. Let �1 and �2 be general curves in the surfaceQ1 of degrees (0, 1) and (1, 0),
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respectively. Then �1 and �2 are not contained in the base locus of the linear systemD,
and it follows from Lemmas 3.16 and 3.21 that �1 ·C � 4 or �1 ·C � 4. If �1 ·C � 4,
we get

n = D · �1 � multC
(
D
)|C ∩ �1| = multC

(
D
)
(C · �1) � 4multC

(
D
)

for sufficiently general surface D ∈ D, hencemultC (D) = multC (D) � n
4 as required.

Similarly, we obtain the required inequality when �2 · C � 4.
Thus, to complete the proof of the lemma, we may assume that C �⊂ Q1.
Now, we suppose that irreducible components of the curve C are lines. Then it

follows fromLemma 3.12 thatC is a union of 12 disjoint lines.Moreover, Lemma 3.12
also implies that there is an H-invariant quadric that contains at least four components
of the curveC . Thus, arguing as in the caseC ⊂ Q1, we obtain the required inequality.

Now, suppose that irreducible components of the curve C are conics. By
Lemma 3.14, the curve C is one of the curves C28 , C38 , C

2,′
8 , C3,′8 , C2,′′8 , C3,′′8 , because

C18 ∪C1,′8 ∪C1,′′8 ⊂ Q1. Observe that G144,184 transitively permutes the curves C28 , C
2,′
8 ,

C2,′′8 , and it transitively permutes the curves C38 , C
3,′
8 , C3,′′8 . Therefore, we may assume

that C = C28 or C = C38 . But the group G96,227 swaps the curves C28 and C38 , hence
we may assume that C = C38 . Recall that C38 is the G-irreducible curve in P

3 whose
irreducible component is the conic

{
x0 = 2x21 − (1 + √

3i
)
x22 − (1 − √

3i
)
x23 = 0
} ⊂ P

3.

Its remaining three irreducible components intersect the plane {x0 = 0} in the points

[0 : √
3 − i : 2 : 0], [0 : −√

3 + i : 2 : 0],
[0 : 0 : √

3 + i : 2], [0 : 0 : −√
3 − i : 2],

[0 : 0 : √
3 − i : 2], [0 : 0 : −√

3 + i : 2].

None of these six points is contained in the conic {x0 = 2x21 − (1 + √
3i)x22 − (1 −√

3i)x23 = 0}. Let Z be a general conic in the plane {x0 = 0} ⊂ P
3 that contains

the points

[0 : √
3 − i : 2 : 0], [0 : −√

3 + i : 2 : 0], [0 : 0 : √
3 + i : 2], [0 : 0 : −√

3 − i : 2].

Then |Z ∩ C | = 8, and Z is not contained in the base locus of the linear system
D, so that

2n = D · Z � multC
(
D
)|C ∩ Z | = 8multC

(
D
) = 8multC

(
D
)
,

where as above D is a general surface in D. This gives us the required inequality.
Therefore, to complete the proof of the proposition, wemay assume that irreducible

components of the curve C are neither lines nor conics. Hence, using Corollary 3.15
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and both Lemmas 3.17 and 3.22, we see that either C is a union of four twisted cubic
curves, or C is a smooth irreducible curve of degree 12, and its genus is 9, 13 or 17.

Now, we suppose that C is a smooth irreducible curve of degree 12 and genus
g ∈ {9, 13}. Let ϕ : X → P

3 be the blow up of the smooth curve C , let EC be
the ϕ-exceptional divisor, let D̂ be the proper transform on X of the linear system D,
let D̂1 and D̂2 be general surfaces in the system D̂. Using Lemma 3.24, we see that
|ϕ∗(OP3(6)) − EC | is not empty, this linear system does not have fixed components,
and it also does not have base curves except possibly for the fibers of the natural
projections EC → C . Therefore, we conclude that the divisor ϕ∗(OP3(6)) − EC is
nef. Thus, if multC

(
D
)
> n

4 , then

0 �
(
ϕ∗(OP3(6)

)− EC

)
· D̂1 · D̂2 = (2g − 26)mult2C

(
D
)− 24nmultC

(
D
)+ 6n2 < 0,

which is absurd. Thus, if C is an irreducible smooth curve, then g �= 9 or g �= 13.
Hence, to complete the proof, we may assume that either C is a smooth irreducible

curve of degree 12 and genus 17, or the curveC is a union of four twisted cubic curves.
In the former case, it follows from Lemma 3.22 that C is contained in an irreducible
surface in the net M4. In fact, arguing as in the proof of Lemma 3.22, we conclude
that the curve C is contained in an irreducible surface S ∈ M4 in both cases, and it
follows from Lemma 3.9 that S has at most ordinary double points.

By the Hodge index theorem, we haveC2 � 36 on the surface S. IfC is irreducible,
then it follows from Lemmas 3.9 and 3.22 that either C ∩ Sing(S) = ∅, or S has 16
ordinary double points, and Sing(S) ⊂ C . Thus, if C is irreducible, the adjunction
formula gives

36 � C2 = 32 + |C ∩ Sing(S)|
2

=
{
32 if C ∩ Sing(S) = ∅,

40 if C ∩ Sing(S) �= ∅,

so that C ∩ Sing(S) = ∅ and C2 = 32.
Arguing as in the proof of Lemma 3.24, we see that there exists a G-invariant

sextic surface S6 ∈ |OP3(6)| such that C ⊂ S6, but S is not a component of the sextic
surface S6. Then S6|S = C + Z for some G-invariant curve Z of degree 12. Moreover,
arguing as in the proof of Lemma 3.24, we see that Z is G-irreducible. On S, we have
C · Z = 72 − C2, since 72 = (C + Z

) · C = C2 + C · Z . Similarly, we see that
C2 = Z2.

Let H be a hyperplane section of the surface S, and let D be a general surface inD.
Then nH ∼Q D

∣∣
S = mC + εZ + � for some effective divisor � on the surface

S whose support does not contain C and Z , where m and ε are some non-negative
rational numbers. Thenm � multC (D). So, it is enough to show thatm � n

4 . Suppose
that m > n

4 .
First, let us exclude the case when C is irreducible. In this case, the curve C is con-

tained in the smooth locus of the surface S, and C2 = 32 on the surface S, so that it
follows from the Riemann–Roch theorem and Serre duality that
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h0
(
OS(4H − C)

)− h1
(
OS(4H − C)

) = 2 + (4H − C)2

2
= 2,

which implies that |4H−C | is a pencil. Since all curves in this pencil have degree four,
the pencil |4H − C | has no fixed curves, since otherwise the union of all its fixed
curves would be a G-invariant curve in S of degree less than 4, which contradicts
Corollary 3.15 and Lemmas 3.17 and 3.22. In particular, we see that the divisor 4H−C
is nef, hence

4n = nH · (4H − C) = m(4H − C) · C + ε(4H − C) · Z
+(4H − C) · � � m(4H − C) · C = 16m,

so that m � n
4 , which is a contradiction.

Hence, we see that C is a union of four twisted cubics. Denote them by C1, C2, C3,
C4.On the surface S, we haveC2

1 = C2
2 = C2

3 = C2
4 = −2+|C1∩Sing(S)|/2, because

G acts transitively on the set {C1,C2,C3,C4}. This action gives a homomorphism
υ : G → S4, whose image im(υ) is isomorphic to one of the following groups: µ4,
µ2
2, D8, A4, S4. Now, using Remark 3.1 and Lemma 3.2, we conclude that im(υ) ∼=

A4, so that ker(υ) ∼= µ2
2. Then G acts two-transitively on {C1,C2,C3,C4}, hence

Ci · C j = C1 · C2 for i �= j . Then

C2 = 12(C1 · C2) + 4C2
1 .

IfC∩Sing(S) = ∅, thenC1 ·C2 is an even integer, becauseC1∩C2 is ker(υ)-invariant,
but the group ker(υ) acts faithfully on the curve C1, and its orbits have length 2 or 4.
Similarly, we see thatC1 ·C2 is an integer in the case whenC ∩Sing(S) �= ∅, because
singular points of the surfaces S are at most ordinary double points.

Observe that m + ε � n
3 , because 4n = nH2 = 12(m + ε)+ H ·� � 12(m + ε).

But

12n = H · Z = mC · Z + εZ2 + Z · � � mC · Z + εZ2

= mC · Z + εC2 = 72m + (ε − m)C2.

Thus, if C2 � 0, then 12n � 72m > 18n, which is absurd. Hence, we have C2 > 0.
Then

12n � m(72 − C2) + εC2 � m(72 − C2) >
(72 − C2)n

4
,

whichgivesC2 > 24.Thus, ifC∩Sing(S) = ∅, then24 < C2 = 12(C1·C2)−8 � 36,
which is impossible, becauseC1 ·C2 is an even integer. Hence, we haveC∩Sing(S) �=
∅.

Observe that StabG(C1) ∼= A4, this group acts faithfully on the curve C1, and its
orbits in the curve C1 are of length 4, 6 and 12. Moreover, the twisted cubic curve
C1 contains exactly two StabG(C1)-orbits of length 4, and it has a unique StabG(C1)-
orbit of length 6. But |C1 ∩ Sing(S)| � 9, because the subset Sing(S) ⊂ P

3 is cut out
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by cubic hypersurfaces. Thus, we conclude that one of the following three cases are
possible:

• C2
1 = 0 and C1 ∩ Sing(S) is a StabG(C1)-orbit of length 4;

• C2
1 = 1 and C1 ∩ Sing(S) is the unique StabG(C1)-orbit of length 6;

• C2
1 = 2 and C1 ∩ Sing(S) is the union of two StabG(C1)-orbits of length 4.

Butwe know that 24 < C2 = 12(C1 ·C2)+4C2
1 � 36, hence 6 < 3(C1 ·C2)+C2

1 � 9,
where C1 · C2 is an integer. Hence, we see that C1 · C2 = 2, and either C2

1 = 1 or
C2
1 = 2. Therefore, we conclude that either C2 = 28 and C2

1 = 1, or C2 = 32 and
C2
1 = 2.
Let π : S̃ → S be the minimal resolution of singularities, let E be the sum of

exceptional curves of the morphism π , let C̃ be the proper transform of the curve C
on the surface S̃, let C̃1, C̃2, C̃3, C̃4 be the proper transforms on S̃ of the curves C1,
C2,C3,C4, respectively. Then S̃ is a smooth K3 surface, and the action of the group G
lifts to the surface S̃. Arguing as above, we get C̃2 = 12(C̃1 · C̃2) − 8, where C̃1 · C̃2
is an even non-negative integer.

Suppose that the set Sing(S) is formed by one G-orbit. Then E is a G-
irreducible curve. Let P be a singular point of the quartic surface S, and let k be
the number of irreducible components of the curve C that pass through the point P .
Then

C̃ ∼Q π∗(C) − k

2
E,

because irreducible components of the curve C are smooth. Therefore, since all irre-
ducible components of the curve E are (−2)-curves, we get

C̃2 = C2 − k2

2

∣∣Sing(S)∣∣,

where C2 = 28 or C2 = 32. For instance, if |Sing(S)| = 16, then C2 + 8 =
8k2+12(C̃1 · C̃2), so that either 9 = 2k2+3(C̃1 · C̃2) or 10 = 2k2+3(C̃1 · C̃2), which
leads to a contradiction, since C̃1 · C̃2 is an even integer. Similarly, if |Sing(S)| = 12,
then

C2 + 8 = 6k2 + 12
(
C̃1 · C̃2

)
,

which leads to a contradiction. Thus, it follows from Lemma 3.9 that |Sing(S)| = 4.
Let EP be theπ -exceptional curve that ismapped to the singular point P ∈ Sing(S).

Then StabP (G) ∼= A4, and the group StabP (G) acts faithfully on the exceptional
curve EP . Moreover, it is well known that the smallest StabP (G)-orbit in EP ∼= P

1

has length 4. Therefore, since the subset EP ∩ C̃ is StabP (G)-invariant, we conclude
that |EP ∩ C̃ | � 4, so that all irreducible components of the curve C̃ pass through P .
Then k = 4 and

12
(
C̃1 · C̃2

)− 8 = C̃2 = C2 − k2

2
|Sing(S)| = C2 − 32,
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which implies that 12(C̃1 · C̃2) + 24 = C2, which is impossible, since C2 = 28 or
C2 = 32. Hence, we conclude that Sing(S) is not a single G-orbit.

ByLemma3.9, Sing(S) is a union of aG-orbit of length 4 and aG-orbit of length 12.
Therefore, we conclude that E = E1 + E2, where E1 and E2 are two G-irreducible
curves such that the image π(E1) is a G-orbit of length 4, and π(E2) is a G-orbit of
length 12. Take two points P1 ∈ π(E1) and P2 ∈ π(E2). Let k1 and k2 be the number
of irreducible components of the curve C that pass through the points P1 and P2,
respectively. Then

C̃ ∼Q π∗(C) − k1
2
E1 − k2

2
E2,

where k1 > 0 or k2 > 0. Then

12
(
C̃1 · C̃2

)− 8 = C̃2 = C2 − 2k21 − 6k22 .

If k1 = 0, we obtain a contradiction exactly as in the case |Sing(S)| = 12, hence
k1 > 0. Now, arguing as in the case |Sing(S)| = 4, we see that k1 = 4, hence

12
(
C̃1 · C̃2

)+ 24 + 6k22 = C2 ∈ {28, 32},

which is impossible, since C2 is not divisible by 6. This completes the proof. �

4 Equivariant geometry of projective space: group of order 192

Let G be the subgroup in PGL4(C) generated by

M =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , N =

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , L =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ ,

A =

⎛
⎜⎜⎝
0 0 0 i
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 i 0
0 0 0 1

⎞
⎟⎟⎠ ,

Then G is the subgroup G192,185 ∼= µ3
2.S4 ∼= µ2

4 � (µ3 � µ4) introduced in Sect. 2.
Let

P1 = [1 : 0 : 0 : 0], P2 = [0 : 1 : 0 : 0], P3 = [0 : 0 : 1 : 0], P4 = [0 : 0 : 0 : 1],

and let �4 = P1 ∪ P2 ∪ P3 ∪ P4.

Lemma 4.1 The subset �4 is the unique G-orbit in P
3 of length � 15.
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Proof Let � be a G-orbit in P
3 of length � 15. Take a point P ∈ �. Let GP =

StabG(P). Then |GP | � 16. Thus, using [21], we see that GP contains a subgroup �

that is isomorphic to one of the following groups: µ2
4, µ

2
2 � µ4 or µ4 � µ2

2.
Suppose that � ∼= µ2

4. According to [21], the subgroup � is normal, and � is
the unique subgroup in G that is isomorphic to µ2

4. Using this, we see that � is
generated by

A2BA−2BL =

⎛
⎜⎜⎝
0 −1 0 0
i 0 0 0
0 0 0 i
0 0 1 0

⎞
⎟⎟⎠ and A3BA−2BLA−1 =

⎛
⎜⎜⎝
0 0 0 i
0 0 −1 0
0 i 0 0
1 0 0 0

⎞
⎟⎟⎠ .

Using this, one can show that P3 does not contain �-fixed points and �-invariant lines.
Thus, this case is impossible.

Now, we suppose that � ∼= µ2
2 � µ4. According to [21], there are exactly two

possibilities for the subgroup � up to conjugation, which can be distinguished as
follows:

(1) either � contains the normal subgroup 〈M, N , L〉 ∼= µ3
2,

(2) or � contains a non-normal subgroup isomorphic to µ3
2.

In the first case, we may assume that � is generated by M , N , L and B, which implies
that the only �-fixed points in P

3 are the points P3 and P4, and the only �-invariant
lines are the lines {x0 = x1 = 0} and {x2 = x3 = 0}. Similarly, in the second case,
we may assume that � contains the non-normal subgroup isomorphic to µ3

2 that is
generated by

MN =

⎛
⎜⎜⎝

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,ML =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝
0 0 i 0
0 0 0 i
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ .

Observe that this subgroup does not fix any point in P
3, and it leaves invariant exactly

two lines: the lines {x0 = x2 = 0} and {x1 = x3 = 0}. In particular, the group � does
not fix points in P

3 either. Hence, if � ∼= µ2
2 � µ4, then P ∈ �4, hence � = �4.

To complete the proof, we may assume that � ∼= µ4 � µ2
2. Using [21] again, we

see that the group � contains a non-normal subgroup that is isomorphic to µ3. Hence,
arguing as in the previous case, we conclude that P ∈ �4, hence� = �4 as required.

�
As in Sect. 3, let �i j be the line in P

3 that contains Pi and Pj , where 1 � i < j � 4.
Similarly, we let L6 = �12 + �13 + �14 + �23 + �24 + �34 and T = F1 + F2 + F3 + F4,
where

F1 = {x0 = 0}, F2 = {x1 = 0}, F3 = {x2 = 0}, F4 = {x3 = 0}.

The main result of this section is the following
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Proposition 4.2 Let C be a G-irreducible (possibly reducible) curve in P
3 of degree�

15. Then C is one of the following seven G-irreducible curves:

(1) the reducible curve L6,
(2) the reducible curve C8 ⊂ T that is a disjoint union of 4 conics

{
x0 = x21 − x22 − x23 = 0

}
,{

x1 = x20 + x22 − x23 = 0
}
,{

x2 = x20 + x21 + x23 = 0
}
,{

x3 = x20 − x21 − x22 = 0
}
,

(3) the reducible curve C8 that is a disjoint union of 2 smooth quartic elliptic curves

{
x20 + (ζ6 − 1

)
x22 + ζ6x

2
3 = x21 + ζ6x

2
2 + (1 − ζ6

)
x23 = 0
}
,{

x20 − ζ6x
2
2 + (1 − ζ6

)
x23 = x21 + (1 − ζ6

)
x22 + ζ6x

2
3 = 0
}
,

where ζ6 is a primitive sixth roon of unity,
(4) the reducible curveC12 that is a disjoint union of 3 smooth quartic elliptic curves

{
x20 + √

2i x21 − x22 = x21 + √
2i x22 − x23 = 0

}
,

{√
2i x20 − x21 − x23 = x20 + √

2i x21 − x22 = 0
}
,

{
x20 + x22 + √

2i x23 = √
2i x20 − x21 − x23

}
,

(5) the reducible curveC ′
12 that is a disjoint union of 3 smooth quartic elliptic curves

{
x20 − √

2i x21 − x22 = x21 − √
2i x22 − x23 = 0

}
,

{√
2i x20 + x21 + x23 = x20 − √

2i x21 − x22 = 0
}
,

{
x20 + x22 − √

2i x23 = √
2i x20 + x21 + x23

}
,

(6) the irreducible smooth curve C12 of degree 12 and genus 17 that is given by the
following system of equations:

⎧⎪⎪⎨
⎪⎪⎩

(2 + 2
√
2i)(x21 x

2
2 − x20 x

2
1 − x20 x

2
3 − x22 x

2
3 ) + 3(x40 − x41 + x42 − x43 ) = 0,

(2 + 2
√
2i)(x22 x

2
3 − x20 x

2
1 − x20 x

2
2 − x21 x

2
3 ) − 3(x40 − x41 − x42 + x43 ) = 0,

(2 + 2
√
2i)(x21 x

2
3 − x20 x

2
2 + x20 x

2
3 + x21 x

2
2 ) + 3(x40 + x41 − x42 − x43 ) = 0,

(7) the irreducible smooth curve C′
12 of degree 12 and genus 17 that is given by the

following system of equations:

⎧⎪⎪⎨
⎪⎪⎩

(2 − 2
√
2i)(x21 x

2
2 − x20 x

2
1 − x20 x

2
3 − x22 x

2
3 ) + 3(x40 − x41 + x42 − x43 ) = 0,

(2 − 2
√
2i)(x22 x

2
3 − x20 x

2
1 − x20 x

2
2 − x21 x

2
3 ) − 3(x40 − x41 − x42 + x43 ) = 0,

(2 − 2
√
2i)(x21 x

2
3 − x20 x

2
2 + x20 x

2
3 + x21 x

2
2 ) + 3(x40 + x41 − x42 − x43 ) = 0.
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Corollary 4.3 Let C be a G-irreducible curve in P
3 such that C is different from L6,

and let D be a linear subsystem in |OP3(n)| that has no fixed components, where
n ∈ Z>0. Then multC (D) � n

4 .

Proof Arguing as in the proof of Proposition 3.25, we may assume that deg(C) � 15.
Thus, we conclude that C is one of the G-irreducible curves described in Propo-
sition 4.2, which are different from L6. Moreover, arguing as in the proof of
Proposition 3.25 again, we obtain the required inequality if C = C8. Thus, we may
also assume that C �= C8. Then it follows from Proposition 4.2 that the curve C is
smooth, but it maybe reducible.

Let ϕ : X → P
3 be the blow up of the smooth curve C , let EC be the ϕ-exceptional

divisor, let D̂ be the proper transform on X of the linear system D, let D̂1 and D̂2
be two general surfaces in D̂. Then D̂1 · D̂2 is an effective one-cycle. On the other
hand, it follows from Proposition 4.2 that the linear system |ϕ∗(OP3(k))− EC | is base
point free for

k =
{
4 if C = C8 or C = C12 or C = C′

12,

6 if C = C12 or C = C ′
12.

In particular, the divisor ϕ∗(OP3(k)) − EC is nef. Then

0 �
(
ϕ∗(OP3(k)

)− EC

)
· D̂1

·D̂2 =
(
ϕ∗(OP3(k)

)− EC

)
·
(
ϕ∗(OP3(n)

)− multC
(
D
)
EC

)2 =
= (− E3 − kdeg(C)

)
mult2C
(
D
)− 2ndeg(C)multC

(
D
)+ kn2,

where

E3 =

⎧⎪⎨
⎪⎩

− 32 if C = C8,

− 48 if C = C12 or C = C ′
12,

− 80 if C = C12 or C = C′
12.

This implies that multC
(
D
)

� n
4 . �

Let us prove Proposition 4.2. Fix a G-irreducible curve C ⊂ P
3. Write C =

C1+· · ·+Cr , where eachCi is an irreducible curve in the spaceP
3, and r is the number

of irreducible components of the curve C . Let d be the degree of the curve C1. Then
deg(C) = rd. Suppose that d � 15. Let us show that C is one of the curves listed in
Proposition 4.2.

Lemma 4.4 If d = 1, then C = L6.

Proof The required assertion follows from the proof of Lemma 4.1. �
Hence, to complete the proof of Proposition 4.2, we may assume d � 2.
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Lemma 4.5 If C ⊂ T , then either C = L6 or C = C8.

Proof Left to the reader. �
Therefore, we may assume that C �⊂ T . Then, using Lemma 4.1, we conclude that

no irreducible component of the curve C is contained in a plane. In particular, we
have d � 3. Since dr � 15, we have the following possibilities:

(1) r = 1 and C = C1 is an irreducible curve,
(2) r = 2 and each Ci is an irreducible curve of degree d ∈ {3, 4, 5, 6, 7},
(3) r = 3 and each Ci is an irreducible curve of degree d ∈ {3, 4, 5},
(4) r = 4 and each Ci is a smooth rational cubic curve.

Lemma 4.6 One has r �= 4.

Proof If r = 4, the stabilizer of the curveC1 is a group of order 48. According to [21],
any subgroup of the groupG of order 48 is isomorphic either toA4�µ4 or toµ

2
4�µ3.

But none of these groups can act faithfully on a rational curve, since PGL2(C) does
not contain groups isomorphic toA4�µ4 orµ

2
4�µ3. Hence, we conclude that r �= 4.

�
Now, let us fix the subgroup � ⊂ G that is generated by

A =

⎛
⎜⎜⎝
0 0 0 i
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ , A2BA2BL =

⎛
⎜⎜⎝
0 −1 0 0
i 0 0 0
0 0 0 i
0 0 1 0

⎞
⎟⎟⎠ , A3BA2BLA3 =

⎛
⎜⎜⎝
0 0 0 i
0 0 −1 0
0 i 0 0
1 0 0 0

⎞
⎟⎟⎠ .

Using [21], we conclude that � ∼= µ2
4 � µ4, and the GAP ID of the subgroup � is

[64,34]. Note that P
3 contain neither �-fixed points nor �-invariant lines by Lem-

mas 4.1 and 4.4. Moreover, according to [21], the group G contains 3 subgroups that
are isomorphic to �, and all of them are conjugated.

Lemma 4.7 Suppose that r = 3. Then either C = C12 or C = C ′
12.

Proof The subgroup � is a stabilizer of C1, C2 or C3. Without loss of generality, we
may assume thatC1 is�-invariant. The group� acts faithfully onC1. This implies that
d �= 3, because � cannot leave invariant smooth rational cubic curve, since PGL2(C)

does not contain groups isomorphic to �.
Now, we claim that d �= 5. Indeed, suppose that d = 5. Then the curve C1 is

smooth. Namely, if C1 is singular, then it contains at least 4 singular points, so that,
intersecting the curve C1 with a plane passing through 3 of them, we conclude that
C1 is contained in this plane, which contradicts our assumption. Thus, we see that C1
is smooth, so that its genus does not exceed 2 by [28, Theorem 6.4]. But the order of
the automorphism group of a smooth curve of genus 2 does not exceed 48, and, as we
already mentioned, the group � cannot faithfully act on a rational curve. Thus, we see
that C1 is a smooth elliptic curve. Then the �-action on C1 gives an embedding

� ↪→ Aut
(
C1,OP3(1)|C1

)
.
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This is impossible, since the order of the group Aut(C1,OP3(1)|C1) is not divisible by
64, becauseAut(C1,OP3(1)|C1) is an extension of the groupµ

2
5 by one of the following

cyclic groups: µ2, µ6 or µ4. Hence, we see that d �= 5.
Thus,we see that d = 4.As above,we see thatC1,C2,C3 are smooth elliptic curves,

which implies that each of them is a complete intersection of two quadric surfaces
in P

3. Hence, there exists a �-invariant pencil of quadric surfaces in P
3 whose base

locus is C1. On the other hand, it is not hard to find all �-invariant pencils of quadric
surfaces in P

3. Namely, let �̂ be the the subgroup in GL4(C) that is generated by
the matrices

⎛
⎜⎜⎝
0 0 0 i
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 −1 0 0
i 0 0 0
0 0 0 i
0 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0 0 i
0 0 −1 0
0 i 0 0
1 0 0 0

⎞
⎟⎟⎠ .

Then � is the image of the group �̂ via the natural projection GL4(C) → PGL4(C),
and the GAP ID of the group �̂ is [256,420]. Now, going through all irreducible 4-
dimensional representations of the group �̂ in GAP [49], and checking their symmetric
squares, we see that P

3 contains three �-invariant pencils of quadrics. These pencils
are

(i) λ(x20 + √
2i x21 − x22 ) = μ(x21 + √

2i x22 − x23 ),
(ii) λ(x20 − √

2i x21 − x22 ) = μ(x21 − √
2i x22 − x23 ),

(iii) λx0x2 = μx1x3,

where [λ : μ] ∈ P
1. In case (iii), the base locus of the pencil is the union �12 ∪ �14 ∪

�23 ∪ �24. In case (i), the base locus of the pencil is C12. Finally, in case (ii), the base
locus is C ′

12. Hence, we conclude that either C = C12 or C ′
12. �

To complete the proof of Proposition 4.2, we may assume that r �= 3. Then
r ∈ {1, 2}. Observe that the group G contains unique subgroup of index two—the
normal subgroup isomorphic to µ3

2.A4 ∼= µ2
4 � µ6. This subgroup does not contain

�. Therefore, if r = 2, then � swaps the curves C1 and C2. Thus, we see that C is
�-irreducible.

Note that� leaves invariant T and the Fermat quartic {x40+x41+x42+x43 = 0} ⊂ P
3.

These are not all �-invariant quartic surfaces. Namely, the group � leaves invariant
every surface in the pencil P given by

λ(x21 x
2
2 − x20 x

2
1 − x20 x

2
3 − x22 x

2
3 ) + μ(x40 − x41 + x42 − x43 ) = 0,

where [λ : μ] ∈ P
1. One can show that these are all �-invariant surfaces in P

3.
Let P be a general point in C , let �P be its �-orbit, and let S be a surface in P

that passes through P . Then |�P | = 64, which implies that C ⊂ S. Indeed, if C �⊂ S,
then

60 � 4rd = S · C � |�P | = 64,
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which is absurd, hence C ⊂ S. Let a and b be complex numbers such that S is given
by

a(x21 x
2
2 − x20 x

2
1 − x20 x

2
3 − x22 x

2
3 ) + b(x40 − x41 + x42 − x43) = 0.

Note that the surface S is notG-invariant, because the onlyG-invariant quartic surfaces
are the surfaces T and {x40 + x41 + x42 + x43 = 0}. But C is G-invariant by assumption.
Thus, using the G-action, we see that C is contained in the subset in P

3 given by

⎧⎪⎨
⎪⎩

a(x21 x
2
2 − x20 x

2
1 − x20 x

2
3 − x22 x

2
3 ) + b(x40 − x41 + x42 − x43 ) = 0,

a(x22 x
2
3 − x20 x

2
1 − x20 x

2
2 − x21 x

2
3 ) − b(x40 − x41 − x42 + x43 ) = 0,

a(x21 x
2
3 − x20 x

2
2 + x20 x

2
3 + x21 x

2
2 ) + b(x40 + x41 − x42 − x43 ) = 0.

(4.8)

Lemma 4.9 Either 3a2 − 4ab + 4b2 = 0 or a + 2b = 0.

Proof Note that the subset (4.8) in P
3 is zero-dimensional for a general choice of a

and b. To find all possible values of a and b such that (4.8) is not zero-dimensional,
one can consider the subscheme in P

1 × P
3 defined over Q that is given by (4.8),

where a and b are considered as coordinates on P
1. Using Magma, we see that this

subscheme is reduced and one-dimensional, and we also find all its irreducible (over
Q) components.

Going through these irreducible components and checking which one is mapped
to a zero-dimensional subscheme of P

1 via the natural projection P
1 × P

3 → P
1, we

see that the subset (4.8) contains a curve if and only if either 3a2 − 4ab+ 4b2 = 0 or
a + 2b = 0. �

If 3a2 − 4ab+ 4b2 = 0, we may assume that b = 3 and a2 − 4a + 12. In this case,
the subscheme in P

3 given by (4.8) is a smooth irreducible curve of degree 12 and
genus 17. This can be checked using Magma. Now, taking two roots of the quadratic
a2 − 4a + 12, we get the curves C12 and C′

12. One can check that these curves are
disjoint.

Finally, if a + 2b = 0, the subscheme in P
3 given by (4.8) splits as a disjoint union

of the�-irreducible curvesC8 andC ′
8. This completes the proof of the Proposition 4.2.

5 Equivariant geometry of projective space: large groups

Let us use assumptions and notations of Sect. 2. Recall from Sect. 2 that

P1 = [1 : 0 : 0 : 0], P2 = [0 : 1 : 0 : 0], P3 = [0 : 0 : 1 : 0], P4 = [0 : 0 : 0 : 1],
and G is a finite subgroup in PGL4(C) such that the following conditions are satisfied:

(1) the group G does not have fixed points in P
3,

(2) the group G does not leave a union of two skew lines in P
3 invariant,

(3) the group G leaves invariant the subset {P1, P2, P3, P4}.
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Recall from Sect. 2 that υ : G → S4 is the homomorphism induced by the G-action
on the set {P1, P2, P3, P4}, and T is the kernel of this homomorphism. Then T is not
trivial, and either the homomorphism υ is surjective, or its image is A4. Suppose, in
addition, that the group G is not conjugate to any of the following eight subgroups:

G48,50,G48,3,G96,70,G96,72,G96,227,G
′
96,227,G192,955,G192,185.

Moreover, if G is conjugate to any subgroup among G324,160, G ′
324,160, G648,704 or

G ′
648,704, we will always assume that G is this subgroup.
For every 1 � i < j � 4, let �i j be the line in P

3 that passes through Pi and Pj .
Let

F1 = {x0 = 0}, F2 = {x1 = 0}, F3 = {x2 = 0}, F4 = {x3 = 0}.

Let �4 = {P1, P2, P3, P4}, let L6 = �12 + �13 + �14 + �23 + �24 + �34, let T =
F1 + F2 + F3 + F4.

Lemma 5.1 Let � be a G-orbit in P
3. Then

|�| �

⎧⎪⎨
⎪⎩

|T | if � �⊂ T ,

4n2 if � ⊂ T \ L6,

6n if � ⊂ L6 \ �4.

Proof The required assertion follows from the explicit description of the subgroup T ,
which has been given in the proofs of Lemmas 2.1 and 2.3. �

Let C be a G-irreducible curve in P
3 of degree d � 15. Our goal is to classify all

possibilities for the curve C . Firstly, we show that C ⊂ T .

Lemma 5.2 Suppose that C �⊂ T . Then �4 �⊂ C.

Proof We suppose that C contains �4. Let σ : X → P
3 be the blow up of the G-

orbit �4, let Gi be the σ -exceptional surface that is mapped to the point Pi , let F̃i
be the proper transform on X of the plane Fi , let C̃ be the proper transform on X of
the curveC , and let �̃i j be the proper transform on X of the line �i j . Then the G-action
lifts to X , the curve C̃ is G-invariant, and

F̃4 · C̃ =
(
σ ∗(F4
)− G1 − G2 − G3

)
· C̃ = d − 3C̃ · G1 � 15 − 3C̃ · G1,

so that 1 � |C̃ ∩ G1| � C̃ · G1 � 5.
The surface G1 is StabG(P4)-invariant, and the induces StabG(P4)-action on it is

faithful. Moreover, the surface G1 ∼= P
2 does not contain StabG(P4)-orbits of length

1, 2, 4, 5, and the only StabG(P4)-orbit of length 3 is formed by the points G1 ∩ �̃12,
G1 ∩ �̃13 and G1 ∩ �̃14. Thus, we conclude that |C̃ ∩ G1| = C̃ · G1 = 3, and C̃
intersects the surface G1 transversally in the points G1 ∩ �̃12, G1 ∩ �̃13 and G1 ∩ �̃14.
Similarly, we see that the curve C̃ intersects the surface G2 transversally in the points
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G2 ∩ �̃12, G2 ∩ �̃23 and G2 ∩ �̃24, and C̃ intersects the surface G3 transversally in
the points G3 ∩ �̃13, G1 ∩ �̃23 and G1 ∩ �̃34.

Note that F̃4 is a smooth del Pezzo surface of degree 6, and its (−1)-curves are �̃12,
�̃13, �̃23,G1∩ F̃4,G2∩ F̃4,G3∩ F̃4. Note also that the curves �̃12, �̃13, �̃23 are pairwise
disjoint, and each of them contains at least two points of the intersection F̃4 ∩ C̃ . This
gives

6 � |F̃4 ∩ C̃ | � F̃4 · C̃ =
(
σ ∗(F4
)− G1 − G2 − G3

)
· C̃ = d − 3C̃ · G1 = d − 9 � 6.

Thus, we conclude that d = 15, |F̃4∩C̃ | = F̃4 ·C̃=6, and C̃ intersects F̃4 transversally
at the points G1 ∩ �̃12, G1 ∩ �̃13, G2 ∩ �̃12, G2 ∩ �̃23, G3 ∩ �̃13, G1 ∩ �̃23. In particular,
we see that the curve C̃ is smooth at these six intersection points. Note also that
C ∩ T = �4.

Let P = G1 ∩ �̃12. Then T ⊂ StabG(P), and T is not cyclic by Lemmas 2.1
and 2.3. In particular, we conclude that StabG(P) is not cyclic. This implies that C
is reducible. Indeed, if C were irreducible, then StabG(P) would act faithfully on
C , so it would act faithfully on C̃ , which would imply that StabG(P) is cyclic [26,
Lemma 2.7], because the curve C̃ is smooth at the point P . Contradiction.

Let C = C1 + · · · + Cr , where r is the number of irreducible components of
the curve C , and each Ci is an irreducible curve. Since d = 15, one of the following
cases holds:

• r = 15 and each Ci is a line;
• r = 5 and each Ci is a cubic curve;
• r = 3 and each Ci is a quintic curve.

Let k be the number of irreducible components of the curve C that passes through P1,
and let l be the numbers of points in �4 that are contained in C1. Then

4k = rl,

so that r = k = 3 and l = 4, i.e. C is a union of three irreducible quintic curves
C1, C2, C3, and each of these quintic curves contains �4. In particular, these curves
are not planar. Moreover, since C̃ · G1 = 3, we conclude that C1, C2, C3 are smooth
at P1, so that these curves are smooth at the points of the G-orbit �4.

The group StabG(C1) acts faithfully onC1, so T �⊂ StabG(C1) by [26, Lemma 2.7],
because the group T fixes the point P1, but the group T is not cyclic. Therefore, since
StabG(C1) is a subgroup in G of index 3, we conclude that

υ
(
StabG(C1)

) = im(υ),

whereυ : G → S4 is the group homomorphism induced by theG-action on the set�4.
Thus, we see that the group StabG(C1) acts transitively on the points of theG-orbit�4,
and the stabilizer in StabG(C1) of the plane F4 acts transitively on the set {P1, P2, P3}.
On the other hand, we know that C ∩ T = �4, hence C ∩ F4 = P1 ∪ P2 ∪ P3. Then

5 = F4 · C1 = (F4 · C1)P1 + (F4 · C1)P2 + (F4 · C1)P3 = 3
(
F4 · C1)P1 ,
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which is absurd. The obtained contradiction completes the proof of the lemma. �
Lemma 5.3 Suppose that C �⊂ T . Then C ∩ L6 = ∅.

Proof Suppose C ∩ L6 �= ∅. Let k = |C ∩ �12|. By Lemma 5.2, �4 �⊂ C , hence
k � n � 3. Then C ∩ F4 ⊂ �12 ∪ �13 ∪ �23. Indeed, if F4 ∩ C contains a point
P /∈ �12 ∪ �13 ∪ �23, then

15 � d = F4 · C � |F4 ∩ C | � |C ∩ �12| + |C ∩ �13| + |C ∩ �23| + |Orb�(P)|
= 3k + |Orb�(P)| � 3k + n2 � 3n + n2 � 18,

where � = StabG(F4). Similarly, we see that 3 � n � k � 5, and the curve C
is smooth at the points of the intersection C ∩ �12. Therefore, we conclude that
C ∩ T = C ∩L6, and the curve C is smooth at the points of the intersection C ∩L6.

Let P be a point inC∩�12. SinceC is smooth at P , there exists a unique irreducible
component of the curveC that contains P . Denote this curve by Z . Let K = StabG(Z).
Then Z is smooth at P , and StabG(P) = StabK (P), hence Z is StabG(P)-invariant.
However, if n ∈ {3, 5}, then it follows from the proofs of Lemmas 2.1 and 2.3 that

T ∩ StabG(P) ∼= µ2
n,

and T ∩StabG(P) acts faithfully on Z , because Z is not contained in T by assumption.
This is impossible by [26, Lemma 2.7], since Z is smooth at P . Hence, we have n = 4.

Arguing as above and using the proofs of Lemmas 2.1 and 2.3, we see that T ∼= µ2
4

and

T ∩ StabG(P) = 〈(i, i,−1)〉 ∼= µ4.

On the other hand, if |StabG(P)| = 4, then |OrbG(P)| � 48, hence 5 � k =
|C ∩ �12| � 8. Therefore, if im(υ) = A4, then υ(StabG(P)) = 〈(12)(34)〉 ⊂ A4.
Similarly, if im(υ) ∼= S4, then |StabG(P)| � 16, which immediately implies that
υ(StabG(P)) = 〈(12), (34)〉 ⊂ S4. Thus, there exists θ ∈ StabG(P) such that
υ(θ) = (12)(34) and θ2 ∈ 〈(i, i,−1)〉. Then

θ =

⎛
⎜⎜⎝

0 b2 0 0
b1 0 0 0
0 0 0 1
0 0 b3 0

⎞
⎟⎟⎠

for some non-zero numbers b1, b2, b3 such that b1b2 = ±b3. Hence, conjugating G
by an appropriate element of the torus T, we may assume that b1 = 1, b2 = 1 and
b3 = ±1. In both cases, the subgroup 〈(i, i,−1), θ〉 ⊂ StabG(P) is not cyclic. In fact,
one has

〈(i, i,−1), θ〉 ∼=
{
D8 if b3 = 1,

Q8 if b3 = −1.
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On theother hand, the subgroup 〈(i, i,−1)〉 ∼= µ4 acts faithfully on Z , because Z �⊂ T .
This implies that the whole group 〈(i, i,−1), θ〉 also acts faithfully on Z , because
neither the dihedral group D8 nor the quaternion group Q8 have quotients isomorphic
to µ4. Therefore, as above, we obtain a contradiction with [26, Lemma 2.7]. �
Lemma 5.4 If G is not conjugate to G ′

324,160, then C ⊂ T . If G = G ′
324,160 and

C �⊂ T , then C is one of the following smooth irreducible curves of degree nine and
genus ten:

{
(1 + ζ3)x

3
1 + ζ3x

3
2 + x33 = x30 + ζ3x

3
1 − (1 + ζ3)x

3
2 = 0
}
, (5.5){

ζ3x
3
1 + (1 + ζ3)x

3
2 − x33 = x30 − (1 + ζ3)x

3
1 + ζ3x

3
2 = 0
}
. (5.6)

Proof Suppose that C �⊂ T . Then C ∩ L6 = ∅ by Lemma 5.3, hence Lemma 5.1
gives

60 � 4d = T · C � |T ∩ C | � 4n2,

which gives n � 3. Then G is one of the subgroups G324,160, G ′
324,160,

G648,704 or G ′
648,704. Recall from Sect. 2 that G324,160 ⊂ G648,704 and G ′

324,160 ⊂
G ′

648,704. Hence, to proceed, we may assume that G = G324,160 or G = G ′
324,160,

since G ′
648,704 swaps (5.5) and (5.6).

Let � = StabG(F4). Then � ∼= µ2
3 � µ3 and � is generated by

(
ζ3, 1, 1

)
,
(
1, ζ3, 1

)
,

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ .

Since 15 � d = F4 · C � |F4 ∩ C | and F4 ∩ C is a �-invariant subset in F4 \ (�12 ∪
�13 ∪ �23), we conclude that F4 ∩ C is the �-orbit of one of the following points:

[1 : 1 : 1 : 0], [1 : ζ3 : ζ 23 : 0], [1 : ζ 23 : ζ3 : 0].

Moreover, in both cases, we have d = F4 · C = |F4 ∩ C | = 9, which implies, in
particular, that the curve C is smooth in every intersection point C ∩ T .

Suppose thatG = G324,160. Let S be theFermat cubic {x30+x31+x32+x33 = 0} ⊂ P
3.

Then S is G-invariant, and S does not contain [1 : 1 : 1 : 0], [1 : ζ3 : ζ 23 : 0],
[1 : ζ 23 : ζ3 : 0]. Thus, we conclude that C �⊂ S, and the intersection S ∩ C is
a G-invariant finite subset, which is disjoint from the surface T . Moreover, since
|S ∩ C | � S · C � 27, it follows from Lemma 5.1 that S ∩ C must be a G-orbit of
length 27, which is not contained in T . This implies that S∩C = OrbG([1 : 1 : 1 : 1]).
But [1 : 1 : 1 : 1] /∈ S.

Thus, we see that G = G ′
324,160. If C is one of the curves (5.5) or (5.6), we are

done. Hence, we assume that C is not one of them. Let us seek for a contradiction.
We claim that C is irreducible. Suppose it is not. Then C is a union of three cubics,

or C is a union of nine lines. In the former case, the cubic curves must be non-planar,
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because P
3 does not haveG-orbits of length 3. Moreover, the groupG contains unique

subgroup of index three up to conjugation [21], and this subgroup is isomorphic to
µ3
3 � µ2

2. Since µ
3
3 � µ2

2 cannot faithfully act on P
1, we see that C is not a union of

three cubics. Similarly, if the curve C is a union of nine lines, then it follows from
[21] that their stabilizers are isomorphic toS3 ×S3. The group G contains nine such
subgroups [21], but all of them are conjugate. One of these nine subgroups is generated
by

⎛
⎜⎜⎝
ζ3 0 0 0
0 1 0 0
0 0 ζ3 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
ζ3 0 0 0
0 ζ3 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0 0 −1
0 0 −1 0
0 1 0 −1
1 0 1 0

⎞
⎟⎟⎠

Now, one can verify that this particular subgroup does not leave any line inP
3 invariant.

The obtained contradiction shows that the curve C is irreducible.
We claim that C is smooth. Suppose C is not smooth. Let P be its singular point,

and let S be a surface in the pencil of cubic surfaces that pass through (5.5) such
P ∈ S. Then the surface S is given by the equation

λ
(
(1 + ζ3)x

3
1 + ζ3x

3
2 + x33
) = μ
(
x30 + ζ3x

3
1 − (1 + ζ3)x

3
2

)

for some [λ : μ] ∈ P
1. This surface is notG-invariant, but StabG(S) contains T ∼= µ3

3.
One the other hand, we have |OrbP (G)| � 27, because P /∈ T . Thus, if C �⊂ S, then

27 = S · C �
∑

O∈OrbP (G)

(
S · C)O �

∑
O∈OrbP (G)

multO (S)multO (C) � 2|OrbP (G)| � 54,

which is absurd.Hence,we see thatC ⊂ S. Thus, since the surface S is notG-invariant,
the curve C is contained in another cubic surface in the pencil of cubic surfaces that
pass through the curve (5.5), which implies that C is contained in the base locus of
this pencil. But the base locus of this pencil is the irreducible curve (5.5), hence C is
the curve (5.5), which contradicts our assumption. Therefore, we conclude that C is
smooth.

Let g be the genus of the curve C . Now, using Castelnuovo bound, we see that
g � 12. Moreover, arguing exactly as in the proof of Lemma 3.2, we can easily prove
that g = 10. Namely, recall that the stabilizer in the group G of a point in C is cyclic
[26, Lemma 2.7], which implies that theG-orbits in the curveC can be only of lengths
36, 54, 108, 162, because cyclic subgroups inG are isomorphic toµ9,µ6,µ3,µ2 (see,
for example, [21]). As in the proof of Lemma 3.2, let Ĉ = C/G, let ĝ be the genus
of the quotient curve Ĉ , and let a36, a54, a108, a162 be the number of G-orbits in C of
length 36, 54, 108, 162. Then

22 � 2g − 2 = 48
(
2ĝ − 2
)+ 288a36 + 270a54 + 216a108 + 162a162

by the Hurwitz’s formula. This gives g = 10 or g = 1. But g �= 1, since G cannot
act faithfully on a smooth elliptic curve, because our group G ∼= µ3

3 � A4 does not
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have abelian subgroups of index at most 6—the largest abelian subgroup in G is
the subgroup T ∼= µ3. Therefore, we conclude that g = 10.

Let M3 be the linear system consisting of all cubic surfaces in P
3 that pass

through C . Then M3 is G-invariant. But a priori M3 may be empty. We claim that
M3 is not empty, it is a pencil, and C is its base locus. Indeed, let IC be the ideal
sheaf of the curve C ⊂ P

3. Then we have the following exact sequence:

0 −→ H0(OP3(3) ⊗ IC
) −→ H0(OP3(3)

) −→ H0(OP3(3)
∣∣
C

)
.

On the other hand, it follows from the Riemann–Roch theorem and Serre duality that

h0
(
OP3(3)

∣∣
C

) = 3d − g + 1 + h0
(
KC − OP3(3)

∣∣
C

) = 3d − g + 1 = 18.

Thus, since h0(OP3(3)) = 20, we conclude that M3 is not empty, and it is at least
a pencil. Moreover, the linear system M3 does not have fixed components, because
P
3 does not contain G-invariant planes and G-invariant quadrics. Therefore, since C

is contained in the base locus of the linear system M4 and d = 9, we conclude that
M3 is a pencil, and the curve C is its base locus.

On the other hand, the only G-invariant pencils in |OP3(3)| are the pencils of cubic
surfaces that pass through (5.5) or (5.6). This can be shown explicitly or by using GAP.
This shows thatC is one of the curves (5.5) or (5.6), which contradicts our assumption.

�
Now, we are ready to state the main result of this section:

Proposition 5.7 Suppose that C �= L6. Then G is conjugate to one of the following
four subgroups: G324,160, G ′

324,160, G648,704, G ′
648,704. Moreover, if G = G648,704 or

G = G ′
648,704, then C is the reducible curve of degree 9 whose irreducible component

is the cubic

{
x30 + x31 + x32 = x4 = 0

}
.

Similarly, if G = G324,160 or G = G ′
324,160, then either C is a curve of degree 9whose

irreducible component is

{
x30 + ζ r3 x

3
1 + ζ 3−r

3 x32 = x4 = 0
}

for r ∈ {0, 1, 2}, or G = G ′
324,160 and C is one of the curves (5.5) and (5.6).

Proof Using Lemma 5.4, we may assume that T contains C . Let Z be the union of all
components of the curve C that are contained in the plane F4, and let � = StabG(F4).
Then Z is �-invariant, but the degree of the curve Z is at most 3, because d � 15.

Observe that the group � acts transitively on the subset {P1, P2, P3}, and this
action induces a homomorphism � → S3, whose image is either µ3 or S3. More-
over, it follows from the description of the subgroup T given in the proofs of
Lemmas 2.1 and 2.3 that the kernel of this homomorphism contains the subgroup
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〈(ζn, 1, 1), (1, ζn, 1)〉 ∼= µ2
n , which implies that either Z is a smooth conic or Z is

a smooth cubic.
Our assumption on the group G implies that n � 3. Thus, the curve Z is not

a conic, since the group µ2
n cannot act faithfully on P

1 for n � 3. Hence, we see that
Z is a cubic. Then n = 3, since Aut(P2, Z) does not contain subgroups isomorphic to
µ2
n for n � 4.
Now, it follows fromour assumption onG and the results proved in the end of Sect. 2

that the group G is conjugate to one of the subgroups G324,160, G ′
324,160, G648,704,

G ′
648,704. The remaining assertions are elementary computations. �

Corollary 5.8 Let C be a G-irreducible curve in P
3 such that C is different from L6,

and let D be a linear subsystem in |OP3(n)| that has no fixed components, where
n ∈ Z>0. If the subgroup G is not conjugate to G ′

324,160, then

multC
(
D
)

� n

4
.

If G = G ′
324,160 and C is not one of the curves (5.5) or (5.6), then multC (D) � n

4 .

Proof Arguing as in the proof of Proposition 3.25, we obtain the required assertion. �
Let us conclude this section by proving the following technical result:

Lemma 5.9 Let S be a cubic surface inP
3 that contains one of the curves (5.5) or (5.6),

let � be the stabilizer of the surface S in the group G ′
324,160, and let D be a �-

invariant effective Q-divisor on the surface S such that D ≡ −KS. Then (S, D) has
log canonical singularities away from from singular points (if any) of the surface S.

Proof Suppose that S is smooth. In this case, the required assertion means α�(S) � 1,
where α�(S) is the α-invariant of the surface S [12, 51], which we define as

α�(S) = sup

{
λ ∈ Q

∣∣∣∣∣
the pair (S, λD) is log canonical for every

effective �-invariant Q-divisor D ∼Q −KS

}
.

This is well-known. Indeed, the group� contains the subgroup T ∼= µ3
2, which implies

that S does not have �-fixed points. On the other hand, if (S, D) is not log canonical,
then there exists a point P ∈ S such that the log pair (S, D) is log canonical away
from P . This follows from [8, Lemma 3.7] or from [10] and the Kollár–Shokurov
connectedness. Thus, the point P must be fixed by �, which is a contradiction.

Thus, we may assume that S is singular. Then there are exactly eight possibilities
for the surface S, and all of them are similar. So, without loss of generality, we may
assume that the surface S is given by the equation

(1 + ζ3)x
3
1 + ζ3x

3
2 + x33 = 0.
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This is the cone with vertex at [0 : 0 : 0 : 1] over the curve {(1+ ζ3)x31 + ζ3x32 + x33 =
x4 = 0}. Observe that � ∼= µ3

3 � µ3, since � is the subgroup in G ′
324,160 that is

generated by

⎛
⎜⎜⎝
ζ3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
1 0 0 0
0 ζ3 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 ζ3 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ .

Suppose that (S, D) is not log canonical at some point O ∈ S such that S �= [0 : 0 :
0 : 1]. Let us seek for a contradiction.

Let L be the ruling of the cone S that passes through O , and let L be �-irreducible
curve in S whose irreducible components is the line L . Then deg(L) � 9, because
�-orbits in the cubic curve {(1+ ζ3)x31 + ζ3x32 + x33 = x4 = 0} have length at least 9.
Let

D′ = (1 + μ)D − 3μ

deg(L)L,

where μ is the largest positive rational number μ such that Supp(D′) does not contain
L. It follows from the proof of [10, Lemma 2.2] that such positive rational number μ
exists. Moreover, since deg(L) � 9, the singularities of the log pair

(
S,

3

deg(L)L
)

are log canonical at O . Therefore, the log pair (S, D′) is not log canonical at O ,
because

D = μ

1 + μ

( 3

deg(L)L
)

+ 1

1 + μ
D′.

Observe that D′ ≡ D ≡ −KS by construction, hence 1 = D′ · L � (D′ · L)O �
multO(D′), so the pair (S, D′) is log canonical at O by [34, Theorem 4.5] or [19,
Exercise 6.18]. �

6 Rational Fano–Enriques threefold of degree 24

Let us use assumptions and notations of Sect. 2. Recall from this section that

P1 = [1 : 0 : 0 : 0], P2 = [0 : 1 : 0 : 0], P3 = [0 : 0 : 1 : 0], P4 = [0 : 0 : 0 : 1],

and G is a finite subgroup in PGL4(C) such that the following conditions are satisfied:

(1) the group G does not have fixed points in P
3,

(2) the group G does not leave a union of two skew lines in P
3 invariant,
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(3) the group G leaves invariant the subset {P1, P2, P3, P4}.
Suppose that G conjugate neither to G48,3 nor to G96,72. Moreover, if G is conjugate
to one of the subgroups G48,50, G96,70, G96,227, G ′

96,227, G192,955, G192,185, G ′
324,160,

G ′
648,704, then we will always assume that G is this subgroup. Recall that G48,50 �

G96,70�G192,955,G48,50�G96,227�G192,955,G48,50�G ′
96,227�G192,955 andG ′

324,160�
G ′

648,704.
For every 1 � i < j � 4, we let �i j be the line in P

3 that passes through Pi and
Pj . Set

F1 = {x0 = 0}, F2 = {x1 = 0}, F3 = {x2 = 0}, F4 = {x3 = 0}.

We let �4 = {P1, P2, P3, P4}, L6 = �12 + �13 + �14 + �23 + �24 + �34, T =
F1+F2+F3+F4. ByCorollary 2.6, there exists aG-birational involution ι : P

3 ��� P
3

that is given by

[x0 : x1 : x2 : x3] 
→ [λ1x1x2x3 : λ2x0x2x3 : λ3x0x1x3 : x0x1x2]

for some non-zero complex numbers λ1, λ2, λ3. This involution is well-defined away
from the curve L6, and it contracts F1, F2, F3, F4 to the point P1, P2, P3, P4, respec-
tively. Observe also that the involution ι fits the following G-commutative diagram:

Ṽ4
π φ

ν
Ṽ4

πφ

P
3

ι

V4
σ

V4 P
3

(6.1)

where V4 is an intersection of two quadrics in P
5 that has six ordinary double points,

the map π is the blow up of the orbit �4, the map φ is the contraction of the proper
transforms of the lines �12, �13, �14, �23, �24, �34 to the singular points of the three-
fold V4, the map σ is a G-biregular involution, and ν is a G-birational non-biregular
involution, which is a composition of six Atiyah flops.

Moreover, it follows from [9, 16] that the involution ι fits the following G-
commutative diagram:

X̃24

! ϕ

X̃24

!ϕ

P
3

ι

X24
ς

X24 P
3

(6.2)
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where X24 is the toric Fano–Enriques threefold described in Example 1.1, which has
eight quotient singular points of type 1

2 (1, 1, 1), the morphism ! is a birational G-
extremal contraction that contracts six irreducible surfaces to the lines �12, �13, �14, �23,
�24, �34, the morphism ϕ is the contraction of the proper transforms of the planes F1,
F2, F3, F4 to four singular points of the threefold X24, and ς is a biregular involution.

As we already mentioned in Example 1.1, the threefold X24 can also be obtained
as the quotient P

1 × P
1 × P

1/τ , where τ is the involution in Aut(P1 × P
1 × P

1) given
by

([u1 : v1], [u2 : v2], [u3 : v3]
) 
→ ([u1 : −v1], [u2 : −v2], [u3 : −v3]

)
.

Then Sing(X24) consists of 8 singular points of type 1
2 (1, 1, 1)—the images of

the points

([0 : 1], [0 : 1], [0 : 1]), ([0 : 1], [0 : 1], [1 : 0]), ([0 : 1], [1 : 0], [0 : 1]), ([0 : 1], [1 : 0], [1 : 0]),([1 : 0], [0 : 1], [0 : 1]), ([1 : 0], [0 : 1], [1 : 0]), ([1 : 0], [1 : 0], [0 : 1]), ([1 : 0], [1 : 0], [1 : 0]).

To match this description of the threefold X24 with the description given by (6.2),
we set

V2 = {w2 = x0x1x2x3
} ⊂ P(1, 1, 1, 1, 2).

Let ξ : V2 → P
3 be the projection that is given by [x0 : x1 : x2 : x3 : w] 
→ [x0 : x1 :

x2 : x3], where x0, x1, x2 and x3 are coordinates of weight 1, and w is a coordinate of
weight 2. Then it follows from [9] that there is a birational map ζ : V2 → P

1×P
1×P

1

such that the following diagram commutes:

V2

ξ

ζ

X̃24

! ϕ

P
1 × P

1 × P
1

ω

priP
3

ψ
X24

ηi

P
1

(6.3)

where ω is the quotient map by τ , ! and ϕ are the birational morphisms defined
in (6.2), the map ψ is given by the linear system of all sextic surfaces singular along
the curve L6, the map pri is the projection to the i-th factor, and ηi is the morphism
induced by pri .
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It follows from [9] that the maps ζ , ω, ψ in the diagram (6.3) can be described in
coordinates as follows: the birational map ζ is given by

[
x0 : x1 : x2 : x3 : w] 
→

([
x0x1 : w], [x0x2 : w], [x1x2 : w]

)
,

the quotient map ω is induced by the map P
1 × P

1 × P
1 → P

13 given by

([u1 : v1], [u2 : v2], [u3 : v3]
)


→
[
u21u

2
2u

2
3 : u21u22v23 : u21u2v2u3v3 : u21v22u23 : u21v22v23 : u1v1u22u3v3 :

: u1v1u2v2u23 : u1v1u2v2v23 : u1v1v22u3v3 : v21u22u23 : v21u22v23
: v21u2v2u3v3 : v21v22u23 : v21v22v23

]
,

and the birational map ψ is induced by the map P
3 ��� P

13 given by

[
x0 : x1 : x2 : x3

] 
→
[
x20 x

2
1 x

2
2 : x30 x1x2x3 : x20 x21 x2x3 : x0x31 x2x3 : x20 x21 x23 : x20 x1x22 x3 :

: x0x21 x22 x3 : x20 x1x2x23 : x0x21 x2x23 : x0x1x32 x3 : x20 x22 x23 : x0x1x22 x23 : x21 x22 x23 : x0x1x2x33
]
.

Using this, we see that the biregular involution ς in (6.2) is induced by the biregular
involution of P

1 × P
1 × P

1 that is given by

([
u1 : v1
]
,
[
u2 : v2
]
,
[
u3 : v3
]) 
→ ([λ1λ2v1 : λ3u1

]
,
[
λ1λ3v2 : λ2u2

]
,
[
λ2λ3v3 : λ1u3

])
.

Similarly, we see that

• the map η1 ◦ ψ : P
3 ��� P

1 is given by [x0 : x1 : x2 : x3] 
→ [x0x1 : x2x3],
• the map η2 ◦ ψ : P

3 ��� P
1 is given by [x0 : x1 : x2 : x3] 
→ [x0x2 : x1x3],

• the map η3 ◦ ψ : P
3 ��� P

1 is given by [x0 : x1 : x2 : x3] 
→ [x1x2 : x0x3].
Using ψ , we can define the G-action on X24 such that ψ is G-equivariant. Note

that

ψ(F1) = [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0] = ω
([0 : 1], [0 : 1], [1 : 0]),

ψ(F2) = [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0] = ω
([0 : 1], [1 : 0], [0 : 1]),

ψ(F3) = [0 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0] = ω
([1 : 0], [0 : 1], [0 : 1]),

ψ(F4) = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0] = ω
([1 : 0], [1 : 0], [1 : 0]).

Thus, the locus Sing(X24) splits into two G-orbits: the orbit {ψ(F1), ψ(F2), ψ(F3),
ψ(F4)}, and the orbit that consists of the points

ω
([0 : 1], [0 : 1], [0 : 1]), ω([0 : 1], [1 : 0], [1 : 0]),
ω
([1 : 0], [0 : 1], [1 : 0]), ω([1 : 0], [1 : 0], [0 : 1]).
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The involution ς swaps these two G-orbits.
Let E11, E12, E21, E22, E31, E32 be the images in X24 of the surfaces inP

1×P
1×P

1

that are given by the equations u1 = 0, v1 = 0, u2 = 0, v2 = 0, u3 = 0, v3 = 0,
respectively. Then E11, E12, E21, E22, E31 and E32 are singular toric del Pezzo surfaces
of degree 4, and ψ induces an isomorphism

P
3 \ (F1 ∪ F2 ∪ F3 ∪ F3

) ∼= X24 \ (E11 ∪ E12 ∪ E21 ∪ E22 ∪ E31 ∪ E32
)
.

Let Ẽ11, Ẽ12, Ẽ21, Ẽ22, Ẽ31, Ẽ32 be the proper transforms on X̃24 of the surfaces E11,
E12, E21, E22, E31, E32, respectively. Then Ẽ11, Ẽ12, Ẽ21, Ẽ22, Ẽ31, Ẽ32 are smooth
del Pezzo surfaces of degree 6. Moreover, we have

!
(
Ẽ11
) = �34,!

(
Ẽ12
) = �12,!

(
Ẽ21
) = �24,

!
(
Ẽ22
) = �13,!

(
Ẽ31
) = �14,!

(
Ẽ32
) = �23.

Let E = E11 + E12 + E21 + E22 + E31 + E32, and let Z12 = Sing(E). Then E is
a G-irreducible surface, and Z12 is a G-irreducible curve in X24 that consists of 12
distinct lines in P

13, which are all lines contained in Supp(E). Note that Sing(Z12) =
Sing(X24).

If the subgroup G is conjugate to none of the groups G48,50 and G96,227, then it
follows from Lemmas 3.5, 4.1, 5.1 that the G-orbit �4 is the unique G-orbit in P

3 of
length four. On the other hand, if G = G48,50 or G = G96,227, then it follows from
Lemma 3.5 that the space P

3 contains exactly three G-orbits of length four: �4, �′
4

and �′′
4 , where

�′
4 =
{
[1 : 1 : 1 : −1], [1 : 1 : −1 : 1], [1 : −1 : 1 : 1], [−1 : 1 : 1 : 1]

}
�⊂ T

and also

�′′
4 =
{
[1 : 1 : 1 : 1], [1 : 1 : −1 : −1], [1 : −1 : −1 : 1], [−1 : −1 : 1 : 1]

}
�⊂ T .

Therefore, if G = G48,50 or G = G96,227, then ψ(�′
4) and ψ(�′′

4 ) are G-orbits of
length 4.

Similarly, if G is conjugate to none of the groups G48,50 and G96,227, it easily
follows from Lemmas 3.5, 4.1 and 5.1, that P

3 \ T does not contain G-orbits of
length < 16. On the other hand, if G = G48,50 or G = G96,227, then it follows from
Lemma 3.5 that the G-orbits of length < 16 contained in P

3 \ T can be described as
follows:

�′
4, �

′′
4 , �

′′
12 = OrbG([i : i : 1 : 1]),�′′′

12 = OrbG([−i : i : 1 : 1]).

Keeping in mind that ψ gives an isomorphism P
3\T ∼= X24\E , we get

Corollary 6.4 Let � be a G-orbit in X24 such that |�| � 15, and � is not con-
tained in E . Then G = G48,50 or G = G96,227, and � is one of the orbits ψ(�′

4),
ψ(�′′

4 ), ψ(�′′
12), ψ(�′′′

12).
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Let H be a general hyperplane section of the threefold X24 ⊂ P
13. Then

ϕ∗(H) ∼ ! ∗(OP3(6)
)− 2
(
Ẽ11 + Ẽ12 + Ẽ21 + Ẽ22 + Ẽ31 + Ẽ32

)
.

Let F̃1, F̃2, F̃3, F̃4 be the proper transform on X̃24 of the planes F1, F2, F3, F4,
respectively. Then ! ∗(OP3(2)) ∼ ϕ∗(H) − F̃1 − F̃2 − F̃3 − F̃4, because

F̃1 + F̃2 + F̃3 + F̃4 ∼ ! ∗(OP3(4)
)− 2
(
Ẽ11 + Ẽ12 + Ẽ21 + Ẽ22 + Ẽ31 + Ẽ32

)
.

Thus, we conclude that there exists G-commutative diagram

X24

P
3

ψ

P
9

,

where P
3 ↪→ P

9 is the second Veronese embedding, and X24 ��� P
9 is the rational

map which is given by the linear projection P
13 ��� P

9 from the three-dimensional
linear subspace in P

13 that contains the points ϕ(F̃1), ϕ(F̃2), ϕ(F̃3), ϕ(F̃4). As above,
we can translate these maps into equations as follows: the projection X24 ��� P

9 is
given by

[z0 : z1 : z2 : z3 : z4 : z5 : z6 : z7 : z8 : z9 : z10 : z11 : z12 : z13]

→ [z1 : z2 : z3 : z5 : z6 : z7 : z8 : z9 : z11 : z13],

and the second Veronese embedding P
3 ↪→ P

9 is given by

[x0 : x1 : x2 : x3] 
→ [x20 : x0x1 : x21 : x0x2 : x1x2 : x0x3 : x1x3 : x22 : x2x3 : x23
]
.

Aswe alreadymentioned, the six surfaces E11, E12, E21, E22, E31, E32 are singular
toric del Pezzo surfaces of degree 4, and each of them has four isolated ordinary double
points. The singular locus of each of these surfaces consists of 4 points in Sing(X24),
and exactly two of them are contained in {ϕ(F̃1), ϕ(F̃2), ϕ(F̃3), ϕ(F̃4)}. For instance,
one has

Sing
(
E11
) =
{
ϕ
(
F̃1
)
, ϕ
(
F̃2
)
, ω
([0 : 1], [0 : 1], [0 : 1]), ω([0 : 1], [1 : 0], [1 : 0])

}
,

and the map X24 ��� P
9 induces the rational map E11 ��� P

9 that whose image is
a conic, which is the Veronese image of the line �34.

Lemma 6.5 Let S be one of the toric del Pezzo surfaces E11, E12, E21, E22, E31, E32,
and let � be the image of the natural homomorphism StabG(S) → Aut(S). Set

α�(S) = sup

{
λ ∈ Q

∣∣∣∣∣
the pair (S, λD) is log canonical for every

effective �-invariant Q-divisor D ∼Q −KS

}
,
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i.e. the number α�(S) is the α-invariant of the surface S [12, 51]. Then α�(S) = 1.

Proof Wemay assume that S = E11. Note that StabG(S) does not always act faithfully
on the surface S, hence we may have � � StabG(S). For instance, if G = G48,50,
then

StabG(S) = StabG(�34) = 〈M, N , B
〉 ∼= µ3

2,

where M , N and B are involutions in G48,50 described in Sect. 3. However, using
(6.3), one can check that the involution N acts trivially on S, and � ∼= µ2

2.
Let us describe geometry of the surface S. To do this, we let

L1 = ω
({u1 = u3 = 0}), L ′

1 = ω
({u1 = v3 = 0}),

L2 = ω
({u1 = u2 = 0}), L ′

2 = ω
({u1 = v2 = 0}).

Then L1, L ′
1, L2, L ′

2 are smooth rational curves in S such that 2L1 ∼ 2L ′
1 and

2L2 ∼ 2L ′
2. Note that L1 ∩ L ′

1 = ∅, L2 ∩ L ′
2 = ∅ and

L1 ∩ L ′
2 = ϕ
(
F̃2
)
, L1 ∩ L2 = ω

([0 : 1], [0 : 1], [0 : 1]),
L ′
1 ∩ L2 = ϕ

(
F̃1
)
, L ′

1 ∩ L ′
2 = ω
([0 : 1], [1 : 0], [1 : 0]).

The intersections of these curves on the surface S are contained in following table:

L1 L ′
1 L2 L ′

2

L1 0 0 1
2

1
2

L ′
1 0 0 1

2
1
2

L2
1
2

1
2 0 0

L ′
2

1
2

1
2 0 0

Note that H |E11 ∼ 2L1 + 2L2 and −KS ∼ L1 + L ′
1 + L1 + L ′

1. In particular, since
the divisor L1 + L ′

1 + L1 + L ′
1 is �-invariant, we see that α�(S) � 1.

Observe that L1 is the unique curve in |L1|, the curve L ′
1 is the unique curve in

|L ′
1|, the curve L2 is the unique curve in |L2|, and L ′

2 is the unique curve in |L ′
2|.

Note that L1 + L2 ∼ L ′
1 + L ′

2, and the linear system |L1 + L2| is a �-invariant
pencil, whose base locus consists of the points ϕ(F̃1) and ϕ(F̃2). This pencil gives
a �-rational map S ��� P

1, which is the map S ��� �34 induced by the birational
map ψ−1 : X24 ��� P

3. Then |L1 + L2| does not have �-invariant curves, since �34
has no StabG(�34)-fixed points, because P

3 does not have G-orbits of length 6 by
Lemmas 3.5, 4.1, 5.1.

Similarly, we see that |L1 + L ′
2| is a �-invariant pencil generated by L1 + L ′

2
and L ′

1 + L2, and its base locus consists of the points ω([0 : 1], [0 : 1], [0 : 1])
and ω([0 : 1], [1 : 0], [1 : 0]). This pencil gives a rational map S ��� �12, which
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is induced by the birational map ψ−1 ◦ σ , where σ is the involution from (6.2). As
above, we conclude that |L1 + L ′

2| also does not contain �-invariant curves.
Since neither |L1+L2| nor |L1+L ′

2| containsG-invariant curves, we also conclude
that none of the curves L1, L ′

1, L2, L ′
2 is �-invariant, which can be checked directly.

We claim that S does not have �-fixed points. Indeed, the stabilizer StabG(�34)
swaps the planes F1 and F2, so that the group � swaps the singular points ϕ(F̃1) and
ϕ(F̃2). Thus, if S contained a �-fixed point P , then |L1 + L2| would contain a unique
curve that passes through this point, so that this curve would be �-invariant. But we
already proved that the pencil |L1 + L2| has no �-invariant curves. So, the surface S
has no �-fixed points.

Now, we ready to prove that α�(S) = 1. We suppose that α�(S) < 1. Then S
contains a�-invariant effectiveQ-divisor D such that D ∼Q −KS , but the pair (S, λD)

is not log canonical for some rational number λ < 1. Note that the locusNklt(S, λD) is
�-invariant. Therefore, if this locus is zero-dimensional, then using Kollár–Shokurov
connectedness theorem [34, Corollary 5.49], we conclude that Nklt(S, λD) consists
of a single point, which is impossible, because S does not have �-fixed points.

Since the locus Nklt(S, λD) is not zero-dimensional, it contains a �-irreducible
curve C . Then D = μC + �, where μ ∈ Q>0 such that μ � 1

λ
> 1, and � is an

effective divisor. Using [11, Lemma 2.9], we see thatC ∼ a1L1+a2L ′
1+a3L2+a4L ′

2
for some non-negative integers a1, a2, a3, a4. Then−KS ∼Q μ(a1L1+a2L ′

1+a3L2+
a4L ′

2) + �, hence

1 = μ
(
a1L1 + a2L

′
1 + a3L2 + a4L

′
2

) · L1 + � · L1

= μ
a3 + a4

2
+ � · L1 � μ

a3 + a4
2

>
a3 + a4

2
,

so that a3 + a4 < 2. Hence, we have (a3, a4) ∈ {(0, 0), (1, 0), (0, 1)}. Similarly,
intersecting the divisor D with L2, we see that (a1, a2) ∈ {(0, 0), (1, 0), (0, 1)}.

If (a3, a4) = (0, 0), then (a1, a2) �= (0, 0), hence (a1, a2) = (1, 0) or (a1, a2) =
(0, 1), which is impossible, since L1 is the unique curve in |L1|, and L ′

1 is the unique
curve in |L ′

1|, but none of these two curves is �-invariant. Therefore, we conclude
that (a3, a4) �= (0, 0). Similarly, we see that (a1, a2) �= (0, 0). Hence, we see that
C ∈ |L1 + L2| or C ∈ |L1 + L ′

2|, which is impossible, because neither |L1 + L2| nor
|L1 + L ′

2| contains G-invariant curves. �

Let us conclude this section by proving the following result.

Lemma 6.6 Let C be a G-irreducible curve in X24 such that C �⊂ E and deg(C) < 24.
Then G is one of the groups G48,50, G96,70, G96,227, and the following assertions hold:

• if G = G48,50, then C is one of the curves ψ(L′
6), ψ(L′′

6), ψ(L′′′
6 ), ψ(L′′′′

6 ),
• if G = G96,70, then C is one of the curves ψ(L′′′

6 ), ψ(L′′′′
6 ),

• if G = G96,227, then C is one of the curves ψ(L′
6), ψ(L′′

6),

where L′
6, L′′

6 , L′′′
6 , L′′′′

6 are G48,50-irreducible curves in P
3 introduced in Sect.3.
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Proof Let C̃ be the proper transform of the curve C on the threefold X̃ . Since C �⊂ E ,
we conclude that !(C̃) is a G-irreducible curve in P

3 which is not contained in T .
Then

2deg
(
!(C̃)
) = ! ∗(OP3(2)) · C̃ = H · C − (F̃1 + F̃2 + F̃3 + F̃4

) · C̃ � deg(C) < 24.

So, the degree of the curve !(C̃) is at most 11. Now, using Lemma 5.7 and our
assumption, we see that G is one of the groups G48,50, G96,70, G96,227, G ′

96,227,
G192,955, G192,185, G ′

324,160.

If G = G192,185, then it follows from Proposition 4.2 that the curve !(C̃) is
a disjoint union of two smooth quartic elliptic curves that are both disjoint from
the curve L6. If G = G ′

324,160, it follows from Lemma 5.7 that !(C̃) is one of
the curves (5.5) and (5.6), which are also disjoint fromL6. Therefore, if G = G192,185
or G = G ′

324,160, then

24 > deg(C) = ϕ∗(H) · C̃
=
(
! ∗(OP3(6)

)− 2
(
Ẽ11 + Ẽ12 + Ẽ21 + Ẽ22 + Ẽ31 + Ẽ32

)) · C̃
= ! ∗(OP3(6)

) · C̃ = OP3(6) · !(C̃) = 6deg
(
!(C̃)
)

� 48.

Thus, we see that G is one of the groups G48,50, G96,70, G96,227, G ′
96,227, G192,955,

G192,185.
Note that all groups G96,70, G96,227, G ′

96,227, G192,955, G192,185 contains the group
G48,50. Moreover, each finite group G96,70, G ′

96,227, G192,955, G192,185 swaps
the curvesL′

6 andL′′
6, and each finite group amongG96,227,G ′

96,227,G192,955,G192,185

swaps the curvesL′′′
6 andL′′′′

6 . Therefore, to complete the proof of the lemma, we may
assume that G = G48,50.

Now, using results of Sect. 3, we conclude that either !(C̃) is a smooth irre-
ducible curve of degree 8 and genus 9 contained in the quadric Q1, or !(C̃) is
one of the reducible curves L4, L′

4, L′′
4, L′′′

4 , L6, L′
6, L′′

6, L′′′
6 , L′′′′

6 , which have been
introduced in Sect. 3. In the former case, the curve !(C̃) does not intersect the curve
L6, because L6 ∩ Q1 = �′

12, but smooth G-invariant irreducible curves contain no
G-orbits of length 12 by Lemma 3.2. Similarly, all curves L4, L′

4, L′′
4, L′′′

4 are disjoint
from L6. Hence, if the curve !(C̃) is not one of the curves L′

6, L′′
6, L′′′

6 , L′′′′
6 , then

!(C̃) ∩ L6 = ∅, hence

24 > deg(C) = ϕ∗(H) · C̃
=
(
! ∗(OP3(6)

)− 2
(
Ẽ11 + Ẽ12 + Ẽ21 + Ẽ22 + Ẽ31 + Ẽ32

)) · C̃ � 24,

which is absurd. So, we conclude that !(C̃) is one of the curves L′
6, L′′

6, L′′′
6 , L′′′′

6 .
�
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7 The proof of Main Theorem

Let us use assumptions and notations of Sects. 5 and 6. In particular, we have

P1 = [1 : 0 : 0 : 0], P2 = [0 : 1 : 0 : 0], P3 = [0 : 0 : 1 : 0], P4 = [0 : 0 : 0 : 1],

and G is a finite subgroup in PGL4(C) such that

(1) G does not have fixed points in P
3,

(2) G does not leave a union of two skew lines in P
3 invariant,

(3) G leaves invariant the subset {P1, P2, P3, P4},
(4) G is conjugate neither to G48,3 nor to G96,72.

If the subgroup G is conjugate to a subgroup among G48,50, G96,70, G96,227, G ′
96,227,

G192,955, G192,185, G ′
324,160, then we will always assume that G is this subgroup.

If G is not conjugate to G48,50 and G96,227, then �4 is the unique G-orbit of
length four. On the other hand, if G = G48,50 or G = G96,227, then the projective
space P

3 contains two additional orbits of length four:�′
4 and�

′′
4 , which are described

in Sects. 3 and 6. Note that �4, �′
4, �

′′
4 are transitively permuted by the following

element of order three:

R = 1

2

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1

−1 1 1 −1

⎞
⎟⎟⎠ ∈ G576,8654, (7.1)

where G576,8654 is the subgroup in PLG4(C) generated by

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , R.

By Lemma 3.6, the subgroup G576,8654 is the normalizer of the groups G48,50 and
G96,227.

Remark 7.2 In Sect. 6, we have constructed a non-biregular involution ι ∈ BirG(P3).
Moreover, if G = G48,50 or G = G96,227, we can choose ι such that it is given by

[x0 : x1 : x2 : x3] 
→ [x1x2x3 : x0x2x3 : x0x1x3 : x0x1x2].

In these two cases, the group BirG(P3) also contains two birational involutions ι′ and
ι′′, which can be defined as follows: ι′ = R ◦ ι ◦ R2 and ι′′ = R2 ◦ ι ◦ R. Note that
the birational involution ι′ maps [x0 : x1 : x2 : x3] to the point
[
x30 − (x21 + x2 + x23 )x0 − 2x1x2x3 : x31 − (x20 + x22 + x23 )x1 − 2x0x3x2 :
: x32 − (x20 + x21 + x23 )x2 − 2x0x3x1 : x33 − (x20 + x21 + x22 )x3 − 2x1x2x0

]
.
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Similarly, the birational involution ι′ maps [x0 : x1 : x2 : x3] to the point
[
x30 − (x21 + x22 + x23 )x0 + 2x1x2x3 : x31 − (x20 + x22 + x23 )x1 + 2x0x3x2 :
: x32 − (x20 + x21 + x23 )x2 + 2x0x3x1 : x33 − (x20 + x21 + x22 )x3 + 2x1x2x0

]
.

If G = G48,50 or G = G96,227, then 〈ι, ι′, ι′′〉 � 〈ι,G576,8654〉, where 〈ι,G576,8654〉 ⊂
BirG(P3).

Let � be the subgroup in BirG(P3) generated by the involution ι described in
Sect. 6 and the normalizer of the group G in PGL4(C). We will see later that � =
BirG(P3). Let ϕ ◦ !−1 : P

3 ��� X24 be the G-birational map from the commutative
diagram (6.2), where X24 is the toric Fano–Enriques threefold from Example 1.1.

Theorem 7.3 Suppose that for every non-empty G-invariant linear system M on
the projective space P

3 that does not have fixed components, there exists ρ ∈ �

such that one of the log pairs (P3, λρρ(M)) or (X24, λ$$(M)) has at most canonical
singularities, where $ = ϕ ◦ !−1 ◦ ρ, and λρ and λ$ are positive rational numbers
defined by

{
λρρ(M) ∼Q −KP3 ,

λ$$(M) ∼Q −KX24 .

Then P
3 and X24 are the only G-Mori fibred spaces that are G-birational to the space

P
3. Moreover, one also has BirG(P3) = �.

Proof The proof is essentially the same as the proof of [15, Theorem 3.3.1]. �
To applyTheorem7.3,we need two technical results aboutP3 and X24.As in Sect. 3,

let L6, L′
6, L′′

6 be the curves in P
3 that consist of six lines in P

3 that contain two points
in �4, �′

4, �
′′
4 , respectively. Two technical results we need are Propositions 7.4 and

7.8.

Proposition 7.4 LetM be a non-empty G-invariant linear systemM on P
3 that does

not have fixed components, let λ be a positive rational number such that λM ∼Q

−KP3 . Suppose that (P3, λM) is not canonical. If G is not conjugate to G48,50,
G96,227, G ′

324,160, then multL6(λM) > 1 or mult�4(λM) > 2. Similarly, if G =
G48,50 or G = G96,227, then

max
(
multL6

(
λM
)
,multL′

6

(
λM
)
,multL′′

6

(
λM
))

> 1 (7.5)

or

max
(
mult�4

(
λM
)
,mult�′

4

(
λM
)
,mult�′′

4

(
λM
))

> 2. (7.6)

Finally, if G = G ′
324,160, then multL6(λM) > 1 or mult�4(λM) > 2 or

multC(λM) > 1, where C is one of the G-invariant irreducible curves (5.5) or (5.6).
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Proof Let P be a point in the G-orbit �4. Then the group StabG(P) faithfully and
linearly acts on the Zariski tangent space TP (P3), and this action is an irreducible
representation. Therefore, if P is a center of non-canonical singularities of the log
pair (P3, λM), then

mult�4

(
λM
)
> 2

by [1, Lemma 2.4]. Thus, we may assume that no point in �4 is a center of non-
canonical singularities of the pair (P3, λM). Likewise, ifG = G48,50 orG = G96,227,
then wemay assume that no point in�′

4∪�′′
4 is a center of non-canonical singularities

of our log pair.
If G is conjugate to none of the groups G48,50, G96,70, G96,227, G ′

96,227, G192,955,
G ′

324,160, it follows from Corollaries 4.3 and 5.8 that

multC
(
λM
)

� 1

for every G-irreducible curve C ⊂ P
3 such that C �= L6. If G = G48,50 or G =

G96,227, then it follows from Proposition 3.25 that we have multC (λM) � 1 for every
G-irreducible curve C which is different from the G-irreducible curves L6, L′

6, L′′
6.

If G = G ′
324,160, then it follows from Corollary 5.8 that multC (λM) � 1 for every

G-irreducible curve C ⊂ P
3 such that C is not one of the curves L6, (5.5) or (5.6).

Observe that G96,70, G ′
96,227, G192,955 swap the G48,50-irreducible curves L′

6 and
L′′
6. Therefore, if G is one of these three groups, then it follows from Proposition 3.25

that we also have multC (λM) � 1 for every G-irreducible curve C ⊂ P
3 that is

different from L6.
Thus, to complete the proof, we may assume that multC (λM) � 1 for every C ⊂

P
3. Then (P3, λM) is canonical outside of finitely many points by [34, Theorem 4.5].
Let P be a point in P

3 such that (P3, λM) is not canonical at P . Then every point
in the orbit OrbG(P) must be a center of non-canonical singularities of the log pair
(P3, λM). Recall that P /∈ �4. Similarly, if G = G48,50 or G = G96,227, then
P /∈ �′

4 ∪ �′′
4 .

Now, we claim that |OrbG(P)| � 12. Indeed, if G = G48,50 or G = G96,227, this
follows from Lemma 3.5. Similarly, if we have G = G192,185, then |OrbG(P)| � 12
by Lemma 4.1. If G is not conjugate to any group among G48,50, G96,70, G96,227,
G ′

96,227, G192,955, G192,185, then |OrbG(P)| � 12 by Lemma 5.1. If G is one of
the subgroups G96,227, G ′

96,227, G192,955, and |OrbG(P)| � 12, then it follows from
Lemma 3.5 that

OrbG(P) = �′
4 ∪ �′′

4 .

Let υ : V → P
3 be the blow up of the points �′

4 ∪ �′′
4 , let F be the sum of

all υ-exceptional surfaces, and let M̃ be the proper transform on V of a sufficiently
general surface inM. Note that the linear system |υ∗(OP3(2))−F | is two-dimensional
and has no base points. Let S1 and S2 be general surfaces in this linear system. If
OrbG(P) = �′

4 ∪ �′′
4 , then
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0 � λM̃ · S1 · S2 = 16 − 8multP
(
λM
)
,

which is impossible, since we already proved that multP (λM) > 2, because the linear
system M is G48,50-invariant. Therefore, we see that |OrbG(P)| � 12.

Now, we claim that P is not contained in a G-invariant curve in P
3 of degree at

most 8. To prove this claim, we may assume that G = G48,50 or G = G192,185
or G is conjugate to none of the finite subgroups G48,50, G96,70, G96,227, G ′

96,227,
G192,955, G192,185, because the subgroups G96,70, G96,227, G ′

96,227, G192,955 contain
the subgroup G48,50.

Let C be some G-irreducible curve in P
3 of degree d � 8. If G = G48,50, then

it follows from Corollary 3.15 and Lemmas 3.16, 3.17, 3.21 and 3.22 that either C
is a smooth irreducible G-invariant curve described in Example 3.19, or C is one of
the curves

L4,L′
4,L′′

4,L′′′
4 ,L6,L′

6,L′′
6,L′′′

6 ,L′′′′
6 , C18 , C28 , C38 , C

1,′
8 , C2,′8 , C3,′8 , C1,′′8 , C2,′′8 , C3,′′8

described in Sect. 3. Similarly, if G = G192,185, then C is one of the curves L6,
C8, C8, which are described in Proposition 4.2. Finally, if the group G is not conjugate
to a group among G48,50, G96,70, G96,227, G ′

96,227, G192,955, G192,185, then C =
L6 by Proposition 5.7. Among all these curves, only the curves C18 , C

1,′
8 , C1,′′8 are

singular.
Let D be the linear system on P

3 consisting of surfaces of degree k that contain
C , where

k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 if C is one of the curves L6,L′
6,L′′

6,

4 if C is one of the curves L4,L′
4,L′′

4,L′′′
4 ,

4 if C is one of the curves C18 , C28 , C38 , C
1,′
8 , C2,′8 , C3,′8 , C1,′′8 , C2,′′8 , C3,′′8 ,

4 if C is a smooth irreducible curve described in Example 3.19,

4 if C is the curve C8 described in Proposition 4.2,

6 if C is one of the curves L′′′
6 or L′′′′

6 described in Section 3,

8 if C is the curve C8 described in Proposition 4.2.

Then the linear system D is non-empty. Furthermore, it does not have fixed compo-
nents. Moreover, if C is not one of the curves C28 , C38 , C

2,′
8 , C3,′8 , C2,′′8 , C3,′′8 , thenD does

not have base points away from the curve C . If C is one of the curves C28 , C38 , C
2,′
8 ,

C3,′8 , C2,′′8 , C3,′′8 , we can describeD explicitly. For instance, if C = C28 or C = C38 , then
D is the pencil

λx0x1x2x3 + μ(x20 x
2
1 + x20 x

2
2 + x20 x

2
3 + x21 x

2
2 + x21 x

2
3 + x22 x

2
3 ) − μ(x40 + x41

+ x42 + x43) = 0,

where [λ : μ] ∈ P
1. Note that the base locus of this pencil consists of the curves

C28 and C38 . Similarly, if C = C2,′8 or C = C3,′8 , then the linear system D is a pencil

of quartic surfaces, and its base locus is the union C2,′8 ∪ C3,′8 . Finally, if C = C2,′′8 or
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C = C3,′′8 , then the linear system D is a pencil of quartic surfaces whose base locus is

the union C2,′′8 ∪ C3,′′8 .
Now, we suppose that P ∈ C , hence OrbG(P) ⊂ C as well. Let M1 and M2 be

two general surfaces inM. Write

λ2M1 · M2 = mC + �,

where m is a non-negative rational number, and � is an effective one-cycle whose
support does not contain C . Then m � 4, since λ2M1 · M2 is a one-cycle of degree
16, and d � 4. On the other hand, it follows from [46] or [18, Corollary 3.4] that
λ2(M1 · M2)P > 4. Therefore, if the curve C is smooth at P , then

multP
(
�
)
> 4 − m.

Let S be a general surface in D. If C is not one of the curves C28 , C38 , C
2,′
8 , C3,′8 , C2,′′8 ,

C3,′′8 , then the base locus of the linear systemD does not contain curves different from
C , which implies that S does not contains curves in the support of the one-cycle �,
hence

16k − kdm = S · � � |OrbG(P)|multP
(
�
)

> |OrbG(P)|(4 − m) � 12(4 − m) (7.7)

provided that the curve C is smooth at P . This immediately gives us a contradiction
in the case when C is one of the curves L6, L′

6, L′′
6. Thus, we conclude that P /∈

L6 ∪ L′
6 ∪ L′′

6. In particular, we obtain our local claim in the case when G is not
conjugate to any group among G48,50, G96,70, G96,227, G ′

96,227, G192,955, G192,185.
Thus, to proceed, we may assume that either G = G48,50 or G = G192,185.

If G = G192,185 and C is the curve C8 described in Proposition 4.2, then it follows
from the inequality (7.7) and Lemma 4.1 that

64 − 32m > |OrbG(P)|(4 − m) � 16(4 − m) = 64 − 16m,

which is a contradiction. If G = G192,185 and C is the curve C8 described in Propo-
sition 4.2, then (7.7) implies that 128 − 64m > |OrbG(P)|(4 − m), so that we have
|OrbG(P)| < 32. Recall from Proposition 4.2 that the curve C8 is a disjoint union of
four irreducible conics, and C1 = {x3 = x20 − x21 − x22 = 0} is one of them. Then
StabG192,185(C1) is generated by

(−1, 1, 1), (1,−1, 1), (1, 1,−1),

⎛
⎜⎜⎝
0 0 0 i
i 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 i 0
0 0 0 1

⎞
⎟⎟⎠ ,

so that StabG192,185(C1) ∼= A4 � µ4, and the StabG192,185(C1)-action on the curve C1
gives a homomorphism StabG192,185(C1) → Aut(C1), whose image is isomorphic to
S4. Then
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• the curve C1 has a unique StabG192,185(C1)-orbit of length 6,
• the unique StabG192,185(C1)-orbit in C1 of length 6 is C1 ∩ (�12 ∪ �13 ∪ �23),
• other StabG192,185(C1)-orbits in C1 have length at least 8.

Therefore, we conclude that C8 ∩L6 is the unique G192,185-orbit in C8 that has length
24, and other G192,185-orbits in C8 has length at least 32. Hence, if G = G192,185 and
C = C8, then P ∈ C8∩L6, which is impossible, since we already proved that P /∈ L6.

Thus, we have G = G48,50. Recall that we already proved that P /∈ L6 ∪L′
6 ∪L′′

6.
Therefore, either C is a smooth irreducible curve of degree 8 described in Exam-
ple 3.19, or C is one of the curves L4, L′

4, L′′
4, L′′′

4 , L′′′
6 , L′′′′

6 , C18 , C28 , C38 , C
1,′
8 , C2,′8 ,

C3,′8 , C1,′′8 , C2,′′8 , C3,′′8 . In the former case, it follows from (7.7) and Lemma 3.2 that

64 − 32m > |OrbG(P)|(4 − m) � 16(4 − m),

which is absurd. Similarly, if C is one of the curves L4, L′
4, L′′

4, L′′′
4 , then (7.7) gives

64 − 16m > |OrbG(P)|(4 − m),

which implies that |OrbG(P)| < 16, hence it follows from Lemma 3.5 that P is
contained in one of the four G48,50-orbits �12, �′

12, �
′′
12, �

′′′
12, which are described

earlier in Sect. 3. But�12∪�′
12 ⊂ L6,�′′

12 ⊂ L′′
6, and�

′′′
12 ⊂ L′′′

6 , which is impossible,
since P /∈ L6 ∪ L′

6 ∪ L′′
6. Likewise, if either C = L′′′

6 or C = L′′′′
6 , then (7.7) and

Lemma 3.5 give |OrbG(P)| = 16, because P /∈ �12 ∪�′
12 ∪�′′

12 ∪�′′′
12. But L′′′

6 and
L′′′′
6 contain no G48,50-orbits of length 16. Thus, as above, we conclude that C �= L′′′

6
and C �= L′′′′

6 .

If C is one of the curves C18 , C
1,′
8 , C1,′′8 , then C is smooth at the point P , because

the singular loci of the curves C18 , C
1,′
8 , C1,′′8 are contained in the curves L6, L′

6, L′′
6,

respectively. Therefore, in this case, it follows from (7.7) that

64 − 32m > |OrbG(P)|(4 − m)

which implies that |OrbG(P)| < 16, hence P /∈ �12∪�′
12∪�′′

12∪�′′′
12 by Lemma 3.5.

But P /∈ �12 ∪ �′
12 ∪ �′′

12 ∪ �′′′
12, so that C is not one of the curves C18 , C

1,′
8 , C1,′′8 .

We see that C is one of the curves C28 , C38 , C
2,′
8 , C3,′8 , C2,′′8 , C3,′′8 . Without loss of

generality, we may assume that C = C28 , because G96,227 and G144,184 transitively
permutes these six curves. Recall that D is a pencil, and its base locus consists of
the curves C = C28 and C38 . As above, we write

λ2M1 · M2 = mC + m′C38 + �′,

where m′ is a non-negative rational number, and �′ is an effective one-cycle whose
support contains none of the curves C28 and C38 . Then m + m′ � 2, since λ2M1 · M2
has degree 16. Since λ2

(
M1 · M2

)
P > 4, if P /∈ C28 ∩ C38 , then multP (�) > 4 − m,

hence
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64 − 32m � 64 − 32m − 32m′ = S · � � |OrbG(P)|multP
(
�
)
> |OrbG(P)|(4 − m)

for a general surface S ∈ D. Therefore, if P /∈ C28 ∩C38 , then we have |OrbG(P)| < 16,
which contradicts Lemma 3.5, because we have P /∈ �4 ∪ �′

4 ∪ �′′
4 ∪ �12 ∪ �′

12 ∪
�′′

12 ∪ �′′′
12. Hence, we see that P /∈ C28 ∩ C38 . Then OrbG(P) is the G48,50-orbit of

the point [1 : 1 : 1 : 0], which gives |OrbG(P)| = 16. Observe that this G48,50-orbit
is cut out by cubic surfaces, because it is a singular locus of the surface

{
x20 x

2
1 + x20 x

2
2 + x20 x

2
3 + x21 x

2
2 + x21 x

2
3 + x22 x

2
3 = x40 + x41 + x42 + x43

} ⊂ P
3.

Thus, if S3 is a general cubic surface in P
3 that contains OrbG(P), then S3 does not

contain curves that are contained in the support of the one-cycle λ2M1 · M2, hence

48 = λ2M1 · M2 · S3 �
∑

O∈OrbG (P)

(
λ2M1 · M2

)
O > 4|OrbG(P)| = 64,

which is absurd. So, we conclude that our point P is not contained in anyG-irreducible
curve in P

3 whose degree is at most 8.
Observe that (P3, 3

2λM) is not log canonical at P . Let μ be the largest rational
number such that (P3, μM) is log canonical at P . Then μ < 3

2λ and OrbG(P) ⊆
Nklt(P3, μM). Observe that the locus Nklt(P3, μM) is at most one-dimensional,
because M does not have fixed components. Moreover, this locus is G-invariant,
sinceM is G-invariant.

We claim that the locus Nklt(P3, μM) does not contain curves that passes through
P . Indeed, suppose this is not true. Then Nklt(P3, μM) contains a G-irreducible
curve Z that passes through P . As above, for two general surfaces M1 and M2 inM,
we write

μ2M1 · M2 = δZ + �,

where δ is a non-negative rational number, and � is an effective one-cycle whose
support does not contain the curve Z . Then δ � 4 by [18, Theorem 3.1]. Now, taking
into account that the degree of the one-cycle μ2M1 · M2 is less that 36, we conclude
that deg(Z) < 9. But we already proved that P is not contained in any G-irreducible
curve in P

3 whose degree is at most 8. Thus, the locus Nklt(P3, μM) contains no
curves passing through P , so that this locus does not contain curves that pass through
any point in OrbG(P).

LetI be themultiplier ideal sheaf of the pair (P3, μM), and letL be the correspond-
ing subscheme in P

3. Applying [41, Theorem 9.4.8], we get h1(P3, I ⊗OP3(2)) = 0.
Then

10 = h0
(
P
3,OP3(2)

)
� h0
(
OL ⊗ OP3(2)

)
� |OrbG(P)| � 12,
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because the subscheme L contains at least |OrbG(P)| � 12 disjoint zero-dimensional
components, since OrbG(P) ⊆ Nklt(P3, μM), and Nklt(P3, μM) does not contain
curves that are not disjoint from OrbG(P). The obtained contradiction completes
the proof. �

Recall from (6.2) that we have the following G-commutative diagram:

X̃24

! ϕ

P
3

ψ
X24

where ! , ϕ and ψ are birational maps described in Sect. 6.

Proposition 7.8 Let M be a non-empty G-invariant linear system on X24 that has
no fixed components. Choose λ ∈ Q>0 such that λM ∼Q −KX24 . If (X24, λM) is
canonical at every point in Sing(X24), then (X24, λM) is canonical.

Proof Suppose that the singularities of the log pair (X24, λM) are not canonical, and
the log pair (X24, λM) is canonical at every point in Sing(X24). Let us seek for a con-
tradiction. Let Z be a center of non-canonical singularities of the pair (X24, λM) that
has the largest dimension. Since the linear system M does not have fixed compo-
nents, we conclude that either Z is an irreducible curve, or Z is a smooth point of
the threefold X24.

Let E = E11 + E12 + E21 + E22 + E31 + E32, where E11, E12, E21, E22,
E31, E32 are surfaces in the threefold X24 defined in Sect. 6. If Z ⊆ E , then
(E11, λM|E11) is not log canonical by the inversion of adjunction [34, Theorem 5.50],
which is impossible by Lemma 6.5, because λM|E11 ∼Q −KE11 by the adjunction
formula. Thus, we conclude that Z � E .

If G is one of the groups G48,50, G96,70, G96,227, G ′
96,227, G192,955, we can use

Lemma 3.3 to show that Z is not contained in the locus

ψ
(
Q5
) ∪ ψ
(
Q6
) ∪ ψ
(
Q7
) ∪ ψ
(
Q8
) ∪ ψ
(
Q9
) ∪ ψ
(
Q10
)
, (7.9)

whereQ5,Q6,Q7,Q8,Q9,Q10 are quadric surfaces inP
3, which are defined in Sect. 3.

Indeed, suppose that G is one of the subgroups G48,50, G96,70, G96,227, G ′
96,227,

G192,955, and there is a surface S among ψ(Q5), ψ(Q6), ψ(Q7), ψ(Q8), ψ(Q9),
ψ(Q10) that contains Z . Recall that G contains the subgroup H ∼= µ4

2 defined in
Sect. 3, the quadrics Q5, Q6, Q7, Q8, Q9, Q10 are H-invariant, and the subgroup H

acts faithfully on each of them. Furthermore, the rational mapψ : P
3 ��� X24 induces

H-equivariant isomorphisms

Q5 ∼= ψ
(Q5
)
,Q6 ∼= ψ

(Q6
)
,Q7 ∼= ψ

(Q7
)
,Q8 ∼= ψ

(Q8
)
,Q9 ∼= ψ

(Q9
)
,Q10 ∼= ψ

(Q10
)
.

Moreover, one can also check that
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• ψ(Q7) and ψ(Q10) are the fibers of the morphism η1 over [1 : −1] and [1 : 1],
• ψ(Q5) and ψ(Q8) are the fibers of the morphism η2 over [1 : −1] and [1 : 1],
• ψ(Q6) and ψ(Q9) are the fibers of the morphism η3 over [1 : −1] and [1 : 1].

Thus, it follows from the inversion of adjunction that (S, λM|S) is not log canonical,
which is impossible by Lemma 3.3, because λM|S ∼Q −KS .

Now, we are ready to show that Z is a point. Namely, we suppose that Z is a curve.
Let H be a hyperplane section of the threefold X24 ⊂ P

13, let M1 and M2 be two
general surfaces in the linear systemM. Then deg(Z) < 24, since

24 = λ2H · M1 · M2 � λ2deg(Z)
(
M1 · M2

)
Z � deg(Z)mult2Z

(
λD
)
> deg(Z).

Therefore, it follows from Lemma 6.6 that G is one of the groups G48,50, G96,70,
G96,227, and Z is one of the curvesψ(L′

6),ψ(L′′
6),ψ(L′′′

6 ),ψ(L′′′′
6 ), whereL′

6,L′′
6,L′′′

6 ,
L′′′′
6 are curves in the projective space P

3 introduced in Sect. 3. But this is impossible,
since all these curves are contained in (7.9). This shows that Z is a point.

Observe that (X24,
3
2λM) is not log canonical at Z . Let μ be the largest rational

number such that (X24, μM) is log canonical at Z . Then μ < 3
2λ and OrbG(Z) ⊆

Nklt(X24, μM). Note that the locus Nklt(X24, μM) is at most one-dimensional,
because M does not have fixed components. Moreover, this locus is G-invariant,
sinceM is G-invariant.

Now, we claim that the locus Nklt(X24, μM) does not contain curves passing
through Z . Indeed, we suppose that the locus Nklt(X24, μM) contains some G-
irreducible curve C . As above, we let M1 and M2 be two general surfaces in M.
Write

μ2M1 · M2 = δC + �,

where δ is a non-negative rational number, and � is an effective one-cycle whose
support does not contain the curve C . Then δ � 4 by [18, Theorem 3.1]. Now, taking
into account that the degree of the one-cycle μ2M1 · M2 is less that 54, we conclude
that deg(C) � 13. Therefore, it follows from Lemma 6.6 that G is one of the groups
G48,50, G96,70, G96,227, and C is one of the curves ψ(L′

6), ψ(L′′
6), ψ(L′′′

6 ), ψ(L′′′′
6 ).

But all of these four curves are contained in the subset (7.9), so that none of them
contains Z , since Z is not in (7.9).

We conclude that all curves in Nklt(P3, μM) are disjoint from OrbG(Z).
Let I be the multiplier ideal sheaf of the pair (X24, μM), and let L be the cor-

responding subscheme in X24. Applying [41, Theorem 9.4.8], we get H1(X24, I ⊗
OX24(H)) = 0. Then

14 = h0
(
X24,OX24(H)

)
� h0
(
OL ⊗ OX24(H)

)
� |OrbG(Z)|,

since the subscheme L contains at least |OrbG(Z)| disjoint zero-dimensional compo-
nents. Therefore, since Z /∈ E , it follows from Corollary 6.4 that either G = G48,50
or G = G96,227, and OrbG(Z) is one of the orbits ψ(�′

4), ψ(�′′
4 ), ψ(�′′

12), ψ(�′′′
12),

which is a contradiction, because these orbits are contained in (7.9), while Z is not
contained in this locus. �
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Now, arguing as in the proof of [9, Proposition 6.11], we can prove our Main Theo-
rem using Theorem 7.3, Propositions 7.4 and 7.8. Similarly, we can prove Theorem 1.4
using both Propositions 7.4 and 7.8 together with the following lemma:

Lemma 7.10 Let C be one of the two G ′
324,160-invariant irreducible curves (5.5) or

(5.6), and let ϑ : X → P
3 be the blow up of the curve C. There is a G ′

324,160-
equivariant diagram

X
ϑ κ

P
3

P
1

where κ is a fibration into cubic surfaces. Now, let M be a non-empty G-invariant
linear system on X that does not have fixed components such that

KX + λM ∼Q κ∗(D)

for some λ ∈ Q>0, and some Q-divisor D on P
1. Then (X , λM) is canonical.

Proof Suppose the pair (X , λM) is not canonical. Let Z be its center of non-canonical
singularities. Then

multZ
(
M
)
>

1

λ

by [34, Theorem 4.5] or [19, Exercise 6.18].
First, we suppose that Z is a curve that is not contained in the fibers of the mor-

phism κ . Let F be a general fiber of κ , let M1 and M2 be general surfaces in M.
Then

3

λ2
= M1 · M2 · F �

(
F · Z)(M1 · M2

)
Z �
(
F · Z)mult2Z

(
M
)
>

F · Z
λ2

= |F ∩ Z |
λ2

,

so that |F∩Z | = 1 or |F∩Z | = 2. One the other hand, we have StabG ′
324,160

(F) ∼= µ3
3,

and the surface F does not have StabG ′
324,160

(F)-orbits of length 1 and 2. Contradiction.
Thus, we conclude that there exists a fiber S of the morphism κ such that Z ⊂ S.
Suppose that the surface S is singular and Z is its singular point. Then S is a cubic

cone in P
3 with vertex at Z . Let M be a general surface in M, and let � be a general

ruling of the cone S. Then � �⊂ M , hence

1

λ
= 1

λ

(− KX
) · � = 1

λ

(− KX + κ∗(D)
) · � = M · � � multZ

(
MX
)
>

1

λ
,

which is absurd. This shows that Z is not a singular point of the surface S.
Using the inversion of adjunction [34, Theorem 5.50], we conclude that (S, λM|S)

is not log canonical at general point of the subvariety Z . But this is impossible by
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Lemma 5.9, because we have λM|S ≡ −KS . This completes the proof of the lemma.
�

In the remaining part of this section, let us present a combined proof of Main
Theorem and Theorem 1.4 that does not use Theorem 7.3. We decided to include this
proof for convenience of the reader and for one application (see Corollary 7.15 below).

Theorem 7.11 Let f : P
3 ��� Y be a G-birational map such that Y is a threefold with

terminal singularities, and there is a G-morphism ϕ : Y → Z that is a G-Mori fiber
space. If G is not conjugate to G ′

324,160, then Z is a point, and Y is G-isomorphic to

P
3 or X24. Similarly, if G = G ′

324,160, then one of the following possibilities holds:

• Z is a point, and Y is G-isomorphic to P
3;

• Z is a point, and Y is G-isomorphic to X24 from Example 1.1;
• Z = P

1, and Y is G-isomorphic to the threefold X from Lemma 7.10.

Moreover, one hasBirG(P3) = �, where� is the subgroup inBir(P3) that is generated
by the involution ι constructed in Sect.6 and the stabilizer of the subgroup G in
PGL4(C).

Proof Recall from Sect. 6, that there exists the following G-commutative diagram:

X̃24
ϕ

!

X24

χ

ς
X24

χ

P
3 ι

P
3

Ṽ4

π

ν
Ṽ4

π

For the detailed description of the G-birational maps π , ϕ,! , ς , χ and ν, see Sect. 6.
Let C be one of the two G ′

324,160-invariant curves (5.5) and (5.6). If G = G ′
324,160,

then we also have the following G-equivariant diagram:

X
ϑ κ

P
3

P
1

where ϑ is a blow up of the curve C, and κ is a fibration into cubic surfaces. Using [7,
50], one can show that

Aut
(
C
) = G ′

324,160,

which implies that the normalizer in PGL4(C) of the group G ′
324,160 is the group

G ′
648,704. Observe that G

′
648,704 swaps the curves (5.5) and (5.6).
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If G is not conjugate to G ′
324,160, it is enough to prove that there exists γ ∈ � such

that one of the maps f ◦ γ , f ◦ γ ◦ χ or f ◦ ι is an isomorphism. If G = G ′
324,160,

it is enough to prove that there exists γ ∈ � such that f ◦ γ , f ◦ γ ◦ χ , f ◦ γ ◦ ϑ is
an isomorphism. To complete the proof, we suppose that none of these assertions are
true.

Let HP3 = OP3(1), let HX24 be the hyperplane section of the Fano threefold X24 ⊂
P
13, let Eπ , Eϕ , E! , Eϑ be the G-irreducible exceptional divisors of π , ϕ, ! , ϑ ,

respectively, and let F be a fiber of the cubic fibration κ . Then

2ϕ∗(HP3
) ∼ ! ∗(HX24

)− E! ,

! ∗(HX24

) ∼ 6ϕ∗(HP3
)− 2Eϕ,

(π ◦ ν)∗
(
HP3
) ∼ 3π∗(HP3

)− 2Eπ ,

Eϕ ∼Q ! ∗(HX24

)− 3

2
E! ,

E! ∼Q 4ϕ∗(HP3
)− 2Eϕ,

Eπ ∼Q 4(π ◦ ν)∗
(
HP3
)− 3ν∗(Eπ

)
,

F ∼ 3ϑ∗(HP3
)− Eϑ .

(7.12)

Note also that HX24 generates the group Cl
G(X24)⊗Q. In fact, it is not hard to see that

every G-invariant Weil divisor on X24 is Q-rationally equivalent to kHX24 for k ∈ 1
2Z.

Fix a sufficiently large integer n � 0. Let DZ be a sufficiently general very ample
divisor on Z , and let MY = | − nKY + ϕ∗(DZ )|. For every γ ∈ �, we let

Mγ

P3
= ( f ◦ γ )−1∗ (MY ),

Mγ

X24
= ( f ◦ γ ◦ χ)−1∗ (MY ).

Similarly, if G = G ′
324,160, then we let

Mγ

X = ( f ◦ γ ◦ ϑ)−1∗ (MY )

for every element γ ∈ �. Now, for every element γ ∈ �, let nγ be the positive
integer such that Mγ

P3
∼ nγ HP3 , and let kγ be the positive half-integer such that

Mγ

X24
∼Q kγ HX24 . It follows from the Noether–Fano inequality [15, 17, 32] that

the singularities of the pair

(
P
3,

4

nγ
Mγ

P3

)

are not canonical for every γ ∈ �, because f ◦ γ is not an isomorphism by our
assumption. Similarly, we see that the singularities of the log pair

(
X24,

1

kγ
Mγ

X24

)
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are also not canonical for every γ ∈ �, since we assumed that f ◦ γ ◦ χ is not an
isomorphism.

Moreover, if G = G ′
324,160, then

KX + 1

nγ − 3multC(Mγ

P3
)
Mγ

X ∼Q

nγ − 4multC(Mγ

P3
)

nγ − 3multC(Mγ

P3
)
F,

where multC(Mγ

P3
) < nγ

3 . Thus, if G = G ′
324,160 and n

γ − 4multC(Mγ

P3
) � 0, then

it follows from the Noether–Fano inequality that the singularities of the log pair

(
X ,

1

nγ − 3multC(Mγ

P3
)
Mγ

X

)

are not canonical for every γ ∈ �, because we assumed that f ◦ γ ◦ ϑ is not an
isomorphism. However, we already proved in Lemma 7.10 that this log pair have
canonical singularities. Hence, if G = G ′

324,160, then multC(Mγ

P3
) < nγ

4 for every
γ ∈ �.

Now, for every γ ∈ �, we let mγ

L6
= multL6(M

γ

P3
) and mγ

�4
= mult�4(M

γ

P3
).

Similarly, let mγ

Eφ
be the non-negative rational number such that

φ−1∗
(
Mγ

X24

) ∼Q φ∗(Mγ

X24

)− m′
Eφ

Eφ.

Then, using (7.12), we see that

nγ = 6kγ − 4mγ

Eφ
;

nγ ◦ι = 3nγ − 4mγ
�4

;
kγ = nγ

2
− mγ

L6
.

(7.13)

Then, we let

δ = min
γ∈�

{nγ
4
, kγ
}
.

Note that this minimum is attained for some γ ∈ �.
Suppose that δ = nγ

4 for some γ ∈ �. If G is not conjugate to G48,50, G96,227,
G ′

324,160, then it follows from Proposition 7.4 that

mγ

L6
>

nγ

4

or

mγ
�4

>
nγ

4
,
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therefore (7.13) gives

δ � kγ = nγ

2
− mγ

L6
<

nγ

4
= δ

or

δ � nγ ◦ι = 3nγ − 4mγ
�4

<
nγ

4
= δ,

which is a contradiction. Similarly, if G = G ′
324,160, it follows from Proposition 7.4

that at least one of the following strict inequalities holds:

mγ

L6
>

nγ

4
,

mγ
�4

>
nγ

4
,

multC
(
Mγ

P3

)
>

nγ

4
,

multC
(
Mγ ◦K

P3

)
>

nγ

4

for

K =

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ ∈ G ′

648,704 ⊂ �,

since C and K (C) are the G ′
324,160-invariant curves (5.5) and (5.6). But we already

proved earlier that multC(Mγ

P3
) < nγ

4 and multC(Mγ ◦K
P3

) < nγ
4 , which implies that

mγ

L6
>

nγ

4

or

mγ
�4

>
nγ

4
,

and (7.13) gives

δ � kγ <
nγ

4
= δ

or

δ � nγ ◦ι < nγ

4
= δ.
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Thus, we see that either G = G48,50 or G = G96,227. Then it follows from Proposi-
tion 7.4 that at least one of the following inequalities holds:

mγ

L6
>

nγ

4
,

mγ ◦R
L6

>
nγ

4
,

mγ ◦R2

L6
>

nγ

4
,

mγ
�4

>
nγ

4
,

mγ ◦R
�4

>
nγ

4
,

mγ ◦R
�4

>
nγ

4
,

because R(L6) = L′
6, R

2(L6) = L′′
6, R(�4) = �′

4, R
2(�4) = �′′

4 , and R ∈
G576,8654 ⊂ �. Here, R is one of the generators of the group G576,8654 defined in
(7.1), see Remark 7.2. As above, we obtain a contradiction with δ = nγ

4 , because

nγ = nγ ◦R = nγ ◦R2
.

Hence, we conclude δ = kγ for some γ ∈ �. Then it follows from Proposition 7.8
that the log pair (X24,

1
kγ MXγ

24
) is not canonical at some singular point of the three-

fold X24.
Recall from Sect. 6 that Sing(X24) is a union of twoG-orbits: ϕ(Eϕ) and ς ◦ϕ(Eϕ),

where ς = χ−1 ◦ ι ◦ χ . If (X24,
1
kγ MX24) is not canonical at ϕ(Eϕ), then

mγ

Eφ
>

kγ

2

by Kawamata’s theorem [33]. Likewise, if (X24,
1
kγ MX24) is not canonical at ς ◦

ϕ(Eϕ), then

mγ ◦ι
Eφ

>
kγ

2
.

Therefore, using (7.13), we see that

δ � nγ

4
=

6kγ − 4mγ

Eφ

4
< kγ = δ

or

δ � nγ ◦ι

4
=

6kγ − 4mγ ◦ι
Eφ

4
< kγ = δ.

The obtained contradiction completes the proof of Theorem 7.11. �
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Corollary 7.14 If G is not conjugate to G48,50 or G96,227, then BirG(P3) is finite.

Proof Let N be the normalizer of the group G in PGL4(C). Then

BirG
(
P
3) = 〈ι,N〉

by Theorem 7.11. The centralizer of the group G in PGL4(C) is trivial by Schur’s
lemma, so we have an embedding N ↪→ Aut(G), which implies that N is finite.

Observe that �4 is a N-orbit, because �4 is a unique G-orbit of length 4.
Let ι be the involution in BirG(P3) described in Sect. 6. Note that ι isN-equivariant,

since �4 is a N-orbit. This implies that ι also normalizes N, so 〈ι,N〉 is finite. �
If G = G48,50 or G = G96,227, it follows from Theorem 7.11 that BirG(P3) =

〈ι,G576,8654〉. In these two cases, the group BirG(P3) is infinite (but discrete) by
the following result.

Corollary 7.15 Suppose that G = G48,50 or G = G96,227. Then 〈ι, ι′, ι′′〉 ∼= μ2 ∗μ2 ∗
μ2, and there exists the following split exact sequence of groups:

1 −→ 〈ι, ι′, ι′′〉 −→ BirG
(
P
3) −→ G576,8654 −→ 1,

where ι, ι′, ι′′ are birational involutions in BirG(P3) described in Remark 7.2.

Proof It follows from Theorem 7.11 that BirG(P3) is generated by ι, ι′, ι′′ and
G576,8654. Using this, it is not very difficult to check that 〈ι, ι′, ι′′〉 is a normal subgroup
in BirG(P3). Recall from Lemma 3.6 that G576,8654 is the normalizer of the subgroup
G in PGL4(C).

Fix a G-birational map g ∈ 〈ι, ι′, ι′′〉. Let us show that g can be uniquely written
as a composition of ι, ι′, ι′′. The proof of this fact is similar to the proof of [32,
Theorem 3.10]. More precisely, the proof of Theorem 7.11 provides an algorithm how
to decompose g as a composition of ι, ι′, ι′′. Let us remind this algorithm. To start
with, we let

MP3 = g−1∗
(|OP3(1)|

)
,

and let n ∈ Z>0 such that MP3 ⊂ |OP3(n)|. The number n is known as the degree
of g. Then, arguing as in the proof of Theorem 7.11, we see that either n = 1 and
g ∈ G576,8654, or n > 1 and the singularities of the log pair

(
P
3,

4

n
MP3

)

are not canonical. Now, using Proposition 7.4, we see that at least one inequality holds
among the following three inequalities:

max
(
4multL6

(
MP3
)
, 2mult�4

(
MP3
))

> n, (7.16)
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max
(
4multL′

6

(
MP3
)
, 2mult�′

4

(
MP3
))

> n, (7.17)

max
(
4multL′′

6

(
MP3
)
, 2mult�′′

4

(
MP3
))

> n. (7.18)

Moreover, if the inequality (7.16) holds, then it follows from the proof of Theorem7.11
that the degree of the composition g ◦ ι is strictly smaller than n. Similarly, if (7.17)
holds, then the degree of the composition g ◦ ι′ is strictly smaller than n. Finally, if
(7.18) holds, then the degree of the composition g◦ ι′′ is smaller than n. Thus, iterating
this process, we decompose g into a composition of involutions ι, ι′, ι′′ and an element
in G576,8654.

To prove that 〈ι, ι′, ι′′〉 ∼= μ2 ∗μ2 ∗μ2, we must prove that precisely one birational
map among g ◦ ι, g ◦ ι′, g ◦ ι′ has degree (strictly) smaller than the degree of the bira-
tional map g, so the described algorithm decomposes g in a unique way. To prove this,
it is enough to show that precisely one inequality among (7.16), (7.17), (7.18) holds.

Without loss of generality, it is enough to show that both inequalities (7.17) and
(7.18) cannot hold simultaneously. By Proposition 3.25, we have

multL′
6

(
MP3
)+ multL′′

6

(
MP3
)

� n

2
.

Similarly, it follows from the proof of Proposition 7.4 that

mult�′
4

(
MP3
)+ mult�′′

4

(
MP3
)

� n.

Moreover, if multL′
6
(MP3) >

n
4 , then it follows from the proof of Proposition 7.4 that

the degree of the composition g ◦ ι′ is strictly less than n, so (7.13) gives

mult�′
4

(
MP3
)
>

n

2
.

Likewise, if multL′′
6
(MP3) >

n
4 , then

mult�′′
4

(
MP3
)
>

n

2
.

Therefore, if (7.17) holds, then the inequality (7.18) does not hold. �
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