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Abstract
Wepresent a series of algorithms for computing geometric and representation-theoretic
invariants of Calogero–Moser spaces and rational Cherednik algebras associated with
complex reflection groups. In particular, we are concerned with Calogero–Moser fam-
ilies (which correspond to the C

×-fixed points of the Calogero–Moser space) and
cellular characters (a proposed generalization by Rouquier and the first author of
Lusztig’s constructible characters based on a Galois covering of the Calogero–Moser
space). To compute the former, we devised an algorithm for determining generators
of the center of the rational Cherednik algebra (this algorithm has several further
applications), and to compute the latter we developed an algorithmic approach to the
construction of cellular characters via Gaudin operators. We have implemented all
our algorithms in the Cherednik Algebra Magma Package by the second author and
used this to confirm open conjectures in several new cases. As an interesting applica-
tion in birational geometry we are able to determine for many exceptional complex
reflection groups the chamber decomposition of the movable cone of a Q-factorial
terminalization (and thus the number of non-isomorphic relative minimal models) of
the associated symplectic singularity. Making possible these computations was also
a source of inspiration for the first author to propose several conjectures about the
geometry of Calogero–Moser spaces (cohomology, fixed points, symplectic leaves),
often in relation with the representation theory of finite reductive groups.
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1 Introduction

Let V be a finite-dimensional complex vector space and let W ⊆ GL(V ) be a finite
subgroup generated by reflections in V . The rational Cherednik algebras defined
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by Etingof and Ginzburg [33] yield a flat family of deformations Hc of the algebra
C[V ×V ∗]�W . Here,C[V ×V ∗] is the coordinate ring of the space V ×V ∗ considered
as an algebraic variety and C[V × V ∗] � W denotes the semi-direct product with the
group algebra of W , which incorporates the action of W on V × V ∗. Moreover, c is
a parameter from a complex vector space Cwhose dimension is equal to the number
of conjugacy classes of reflections contained in W . We note that in [33] a further
deformation parameter t ∈ C is considered but here we focus on the case t = 0. Since
their introduction, rational Cherednik algebras have attracted a tremendous amount
of interest. This stems from their diverse connections to other fields and problems,
especially in algebraic geometry and representation theory. We will mention two such
connections that serve as motivation for this paper.

The spectrum Zc of the center Zc of Hc is the Calogero–Moser space originating
from physics [26, 51]. It is a Poisson deformation of the quotient variety (V ×V ∗)/W ,
the latter being a symplectic singularity in the sense ofBeauville [1]. The representation
theory ofHc is closely tied to the geometry of Zc and plays a key role in the question
of whether (V × V ∗)/W admits a symplectic (equivalently, crepant) resolution, see
[7, 33, 35, 52], and in determining the chamber decomposition of the movable cone
of a Q-factorial terminalization (i.e. a relative minimal model) of (V × V ∗)/W , see
[6, 53].

The representation theory of Hc is furthermore (conjecturally) linked to (parts
of) Kazhdan–Lusztig theory [39] and provides a candidate for extending this theory
from finite Coxeter groups to complex reflection groups following the philosophy of
the “spetses” program [24]. It was noticed in [36] that Zc contains the subalgebra
P = C[V ]W ⊗ C[V ∗]W . This inclusion defines a finite C

×-equivariant morphism
ϒc : Zc → P. The quotient of Hc by the ideal generated by the origin in P is the
restricted rational Cherednik algebra Hc. Its blocks are in bijection with the fiber
of ϒc at the origin—which in turn is precisely the set of C

×-fixed points of Zc—
and the set of simple modules of Hc is naturally in bijection with the set Irr(W ) of
irreducible complex characters of W . In particular, the blocks of Hc yield a partition
of Irr(W ). These are the Calogero–Moser families. They are (conjecturally) related
to Rouquier families defined by the associated Hecke algebra, see [30, 38, 49], which
generalize Lusztig’s families of unipotent characters associated with finite Coxeter
groups [44, 45]. Rouquier and the first author [18, 19] noticed that the Galois group
of the Galois closure Rc → P of the covering Zc → P acts (non-canonically) on
the set W . By considering orbits in W under various subgroups of this Galois group,
they obtained a decomposition of W . These are the Calogero–Moser cells which are
conjectured to coincide with Kazhdan–Lusztig cells and thus potentially provides a
way to generalize them to complex reflection groups. This conjecture was recently
proven to be true for the symmetric group [22]. Associated to each Calogero–Moser
left cell [19] constructed a cellular character: several descriptions are available and,
in this paper, we will use the one involving Gaudin operators. They are expected to
coincide with Lusztig’s constructible characters [45] for Coxeter groups.
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1.1 Algorithms

According to the Shephard–Todd classification [56], the class of irreducible com-
plex reflection groups splits into two classes: the infinite series of groups G(d, m, n),
which are normal subgroups of the wreath product Cd � Sn , and 34 exceptional groups
G4, . . . , G37.Whereas the infinite series shows a common combinatorial pattern, each
of the exceptional groups is essentially unique and often needs separate treatment.

It is especially because of the exceptional groups that we wanted to find algorithms
allowing us to explicitly compute invariants of the associated Calogero–Moser spaces
and rational Cherednik algebras so that we can test conjectures and gather data to
drive the development of the theory. An important aspect of our approach is that we
wanted to compute invariants for all parameters c. This is why we usually work with
the generic rational Cherednik algebraH (and its center Z) defined over a polynomial
ring, i.e. our parameters c are indeterminates.

In this paper we present algorithms for computing the following:

1. The inverse of the natural truncation map Trunc : Z → C[C× V × V ∗]W , which
is an isomorphism of C[C]-modules (Algorithm 3.7). Our algorithm iteratively
deforms an element of C[C× V × V ∗]W to an element of Z.

2. A minimal system of algebra generators of Z (Algorithm 3.10).
3. A presentation of Z and thus of the Calogero–Moser space (Algorithm 3.14).
4. The Calogero–Moser families (Algorithm 5.7).
5. The Calogero–Moser hyperplanes (Algorithm 5.7). The complement of this hyper-

plane arrangement is precisely the locuswhere theCalogero–Moser families remain
generic. These hyperplanes play a similar role as the essential hyperplanes for
Rouquier families [30].

6. Cuspidal families (Algorithm 5.17). These are the families lying on a zero-
dimensional symplectic leaf of Zc, see [3, 8].

7. Cellular characters (Algorithm 6.2). Our approach uses the description of cellular
characters via Gaudin operators from [19].

1.2 Results and applications

Our algorithms are not just theoretical.We have implemented all of them in theChered-
nik Algebra Magma Package (CHAMP) created by the second author [58], which is
based on the computer algebra system MAGMA [46] and is available at

https://github.com/ulthiel/Champ.

Because of the complexity and wealth of data—there are many invariants and all of
them depend on parameters—we can in this paper only give a brief summary of what
is now actually computable. Some of the data is organized in a database which is
accessible from within CHAMP. The most striking results and applications presented
in this paper are the following:

1. An explicit minimal system of algebra generators of Z is now known for all excep-
tional complex reflection groups except G16 − G22 and G27 − G37; moreover, all
algebra generators of Z-degree 0 are known also for G27 and G28 (see Sect. 3.5).

https://github.com/ulthiel/Champ
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Knowing the degree-0 generators is the key to the following results on families and
hyperplanes.

2. The Calogero–Moser hyperplanes are now known for all exceptional complex
reflection groups except G16 − G19, G21, and G32 (see Table3). Applying results
of [6, 53] we thus know in all these cases the chamber decomposition of the mov-
able cone of a Q-factorial terminalization (i.e. a relative minimal model) of the
associated symplectic singularity (V × V ∗)/W and we know the number of non-
isomorphic relative minimal models. Particularly exciting is that we were able to
determine this for the Weyl group G28 = F4 (the computation took several days).

3. The Calogero–Moser families are now known for all exceptional complex reflec-
tion groups (and all parameters) except G16 − G19, G21, G29 − G37. In all cases
we confirmed a conjecture by Martino [49] stating that the Calogero–Moser fam-
ilies are unions of the Rouquier families (Theorem 5.15). Particularly exciting is
again the case G28 = F4 where the Rouquier families are the same as the Lusztig
families and the equality to Calogero–Moser families was conjectured previously
by Gordon and Martino [38]. In this last (big) case, we also prove that there is a
unique cuspidal Calogero–Moser family, confirming a conjecture by Bellamy and
the second author [8].

4. The Calogero–Moser cellular characters are now known for spetsial groups of rank
� 2 at spetsial parameters (see [47] for the definition of spetsial): in all known cases,
they coincide with the cellular characters defined byMalle and Rouquier [48] built
from the spetses philosophy [24].

Apart from the above results, making possible these computations was used in several
other papers where the first author is involved, to understand some symplectic singu-
larities [5] or to propose several conjectures about the geometry of Calogero–Moser
spaces (cohomology, fixed points, symplectic leaves), often in relation with the rep-
resentation theory of finite reductive groups [14–16]. Let us mention some of these
applications:

1. For dihedral groups of order 8 and 12 the symplectic singularity in the origin of
the associated Calogero–Moser space has been identified in [5] as the symplectic
singularity of the closure of the minimal orbit of a semisimple Lie algebra (see
Proposition 3.19). Basis for this identification was the computation of Z via our
algorithm, together with its Poisson bracket. We were now able to achieve the
identification also in case of the exceptional group G4 (Proposition 4.4).

2. Explicit equations of the Calogero–Moser spaces associated with dihedral groups
at equal parameters have been obtained in [13], together with the explicit Poisson
bracket. The pattern was found thanks to experiments for dihedral groups of order
8, 10, 12, 14. This was applied by Bellamy, Fu, Juteau, Levy, Sommers and the first
author to find a new family of isolated symplectic singularities with trivial local
fundamental group [5], answering an old question of Beauville [1].

3. It is conjectured in [14, Conj. B] that the normalization of the closure of a sym-
plectic leaf in the fixed point subvariety of the Calogero–Moser space under some
automorphism is also a Calogero–Moser space (associated with another complex
reflection group, perfectly identified). For G4 we could confirm this conjecture
(Theorem 4.7).
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4. The first author proposed an intriguing conjecture [16, Conj. 12.3] relating the
parameters involved in the previous conjecture [14, Conj. B] with the parameters
involved in the endomorphism algebra of the cohomology of a Deligne-Lusztig
variety. This was inspired by experiments in type B2 orG2 and, for people believing
in spetses (see Sect. 6.3), by explicit computations for G4 (see [16, Sect. 18]).

2 Calogero–Moser spaces and rational Cherednik algebras

We recall some basics about Calogero–Moser spaces and rational Cherednik algebras
from [33], keeping the notation of [19]. Throughout this paper, we abbreviate ⊗C

by ⊗. All varieties are complex algebraic, and for an affine variety Xwe denote its
coordinate ring by C[X]. For a group W we denote by Irr(W ) the set of complex
irreducible characters of W .

2.1 Reflection groups

We fix in this paper a complex vector space V of finite dimension n and a finite
subgroup W of GL(V ). For an element w ∈ W we denote by V w the fixed space of
w. By

Ref(W ) = {s ∈ W | dimC V s = n − 1}

we denote the set of reflections in W . We assume throughout this paper that W is
generated by its reflections, i.e. W is a reflection group. We denote by

ε : W → C
×, w �→ det(w),

the determinant character of W . Considering V and V ∗ as algebraic varieties, we
identify the coordinate ring C[V ] (resp. C[V ∗]) of V (resp. V ∗) with the symmetric
algebra S(V ∗) (resp. S(V )). If s ∈ Ref(W ), we denote by αs ∈ V ∗ (resp. α∨

s ∈ V )
an element such that (V s)⊥ = Cαs (resp. (V ∗s)⊥ = Cα∨

s ). Here, (V s)⊥ denotes the
space of linear forms whose kernel contains V s , and (V ∗s)⊥ is defined analogously.

We denote by A the set of reflecting hyperplanes of W , namely

A= {V s | s ∈ Ref(W )}.

If H ∈ A, we denote by WH the pointwise stabilizer of H , by αH an element of V ∗
such that H = Ker(αH ), and by α∨

H an element such that V = H ⊕ Cα∨
H and the

line Cα∨
H is WH -stable. For s ∈ Ref(W ), we set αs = αV s and α∨

s = α∨
V s . We set

eH = |WH |. Note that WH is cyclic of order eH and that

Irr(WH ) = {ResW
WH

ε j | 0 � j � eH − 1}.
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We denote by εH , j the (central) primitive idempotent of CWH associated with the
character ResW

WH
ε− j , namely

εH , j = 1

eH

∑

w∈WH

ε(w) jw ∈ CWH .

If � is a W -orbit of reflecting hyperplanes, we write e� for the common value of all
the eH , where H ∈ �. We denote by ℵ(W ) the set of pairs (�, j) where � ∈ A/W
and 0 � j � e� − 1.

2.2 Parameters

Let Cdenote the C-vector space of maps

c : Ref(W ) −→ C, s �→ cs,

which are invariant under W -conjugation. We denote by Ref(W )/∼ the set of conju-
gacy classes of reflections of W . For s ∈ Ref(W ) we denote by Cs ∈ C∗ the linear
form defined by Cs(c) = cs . Of course, Cs = Ct if s and t are conjugate. We identify
C[C] = C[(Cs)s∈Ref(W )/∼]. If c ∈ C, we denote by Cc the ideal of C[C] of functions
vanishing at c. This ideal is generated by (Cs − cs)s∈Ref(W )/∼.

Let Kdenote the space of maps

k : ℵ(W ) −→ C, (�, j) �→ k�, j ,

which satisfy k�,0 + k�,1 + · · ·+ k�,e�−1 = 0 for all � ∈ A/W . For k ∈ K, H ∈ A,
and 0 � j � eH − 1 we write kH , j = k�, j , where � is the W -orbit of H . The linear
map

γ : K→ C, γ (k)s =
eV s −1∑

j=0

ε(s) j−1kV s , j ,

is an isomorphism and we denote by

κ : C→ K

its inverse. Throughout the paper, we will identify C and K through these isomor-
phisms.

Let K�, j ∈ K∗ be the linear form defined by K�, j (k) = k�, j for all k ∈ K. Then
K�,0 + K�,1 + · · · + K�,e�−1 = 0. As before, we write K H , j = K�, j . Through the
identification K∗ � C∗, we have

Cs =
eV s −1∑

j=0

ε(s) j−1KV s , j . (2.1)
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Note that (K(�, j))(�, j)∈ℵ(W ), j �=0 is a basis of K∗ = C∗.

2.3 Rational Cherednik algebras at t = 0

We follow the convention of [19] and define the generic rational Cherednik algebra
H (at t = 0) to be the quotient of the C[C]-algebra C[C] ⊗ (T(V × V ∗) � W ), the
second factor being the semi-direct product of the tensor algebra T(V × V ∗) with the
group W , by the relations

⎧
⎪⎨

⎪⎩

[x, x ′] = [y, y′] = 0,

[y, x] =
∑

s∈Ref(W )

(ε(s) − 1)Cs
〈y, αs〉 · 〈α∨

s , x〉
〈α∨

s , αs〉 s, (2.2)

for all x , x ′ ∈ V ∗, y, y′ ∈ V . Here 〈 〉 : V × V ∗ → C is the standard pairing.
From (2.1), one deduces an equivalent presentation, namely

⎧
⎪⎪⎨

⎪⎪⎩

[x, x ′] = [y, y′] = 0,

[y, x] =
∑

H∈A

eH −1∑

j=0

eH (HH , j − K H , j+1)
〈y, αH 〉 · 〈α∨

H , x〉
〈α∨

H , αH 〉 εH , j ,
(2.3)

for all x , x ′ ∈ V ∗, y, y′ ∈ V .
The first commutation relations imply that we havemorphisms of algebrasC[V ] →

H and C[V ∗] → H. By [33, Theo. 1.3] we have an isomorphism of C-vector spaces

C[C] ⊗ C[V ] ⊗ CW ⊗ C[V ∗] ∼−→ H (2.4)

induced by multiplication. This is the so-called PBW-decomposition of H.

2.4 Calogero–Moser space

We denote by Z the center of the algebraH. It is well-known [33] that Z is an integral
domain which is integrally closed. Moreover, Z contains C[V ]W and C[V ∗]W as
subalgebras [36], hence it contains

P = C[C] ⊗ C[V ]W ⊗ C[V ∗]W ,

and Z is a free P-module of rank |W |. We denote by Z the affine algebraic variety
whose ring of regular functions C[Z] is Z. This is the generic Calogero–Moser space
associated with (V , W ). It is irreducible and normal.

We set

P= C× V /W × V ∗/W ,
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so C[P] = P. The inclusion P ↪→ Z induces a morphism of varieties

ϒ : Z−→ P (2.5)

which is finite and flat.
For c ∈ Cwe denote by

Hc = H/CcH

the specialization of H at c. Similarly, we write Zc = Z/CcZ and Pc = P/CcP. It
turns out [19, Coro. 4.2.7] that Zc is the center of Hc. We let Zc denote the variety
ϒ−1({c} × V /W × V ∗/W ), so C[Zc] = Zc.

2.5 Extra-structures on the center

The center Z is endowed with extra-structures (a bi-grading, a Poisson bracket, and a
special central element) which are described below.

2.5.1 Gradings andC
×-action

The C-algebra C[C] ⊗ (T(V × V ∗) � W ) can be (N × N)-graded in such a way that
the generators have the following bi-degrees

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

deg(Cs) = (1, 1) if s ∈ Ref(W )/∼,

deg(y) = (0, 1) if y ∈ V ,

deg(x) = (1, 0) if x ∈ V ∗,
deg(w) = 0 if w ∈ W .

This descends to an (N × N)-grading on H because the defining relations (2.2) are
bi-homogeneous. As a consequence, Z is also (N × N)-graded.

This bi-grading induces a Z-grading onH and Z, by saying that a bi-homogeneous
element of bi-degree (i, j) has Z-degree i − j . If c ∈ C, then the ideal Cc is not
bi-homogeneous (except if c = 0) but is Z-homogeneous. Therefore, Hc and Zc do
not inherit a bi-grading, but they inherit a Z-grading. Note finally that, by definition,
P = C[C] ⊗ C[V ]W ⊗ C[V ∗]W is clearly a bi-graded subalgebra of Z.

TheZ-grading onZ and onP induces aC
×-action onZand onP, and themorphism

ϒ : Z→ P is C
×-equivariant.
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2.5.2 Poisson structure

Let t ∈ C. One can define a deformation Ht of H as follows: Ht is the quotient of the
algebra C[C] ⊗ (T(V × V ∗) � W ) by the relations

⎧
⎪⎨

⎪⎩

[x, x ′] = [y, y′] = 0,

[y, x] = t〈y, x〉 +
∑

s∈Ref(W )

(ε(s) − 1)Cs
〈y, αs〉 · 〈α∨

s , x〉
〈α∨

s , αs〉 s, (2.6)

for all x , x ′ ∈ V ∗, y, y′ ∈ V . It is well-known [33] that the PBW-decomposition still
holds so that the family (Ht )t∈C is a flat deformation of H = H0. This allows one to
define a Poisson bracket { } on Z as follows. If z1, z2 ∈ Z, we denote by zt

1, zt
2 the

corresponding element of Ht through the PBW-decomposition and we set

{z1, z2} = lim
t→0

[zt
1, zt

2]
t

. (2.7)

The Poisson bracket is C[C]-linear.

2.5.3 Euler element

Let (y1, . . . , yn) be a basis of V and let (x1, . . . , xn) denote its dual basis. As in [19,
Sect. 4.1], we set

eu =
n∑

j=1

x j y j +
∑

s∈Ref(W )

ε(s)Cs s =
n∑

j=1

x j y j +
∑

H∈A

eH −1∑

j=0

eH K H , jεH , j .

Recall that eu does not depend on the choice of the basis of V . Also

eu ∈ Z, Frac(Z) = Frac(P)[eu], (2.8)

and

{eu, z} = dz (2.9)

if z ∈ Z is Z-homogeneous of degree d (see for instance [19, Prop. 3.3.3]).

2.6 Symplectic singularities and symplectic leaves

The following concept has been introduced by Beauville [1]: a normal variety X is
said to have symplectic singularities if its smooth locus Xsm carries a symplectic form
ω and for some (thus any) resolution of singularities π : Y → X the pull-back π∗(ω)

defined on π−1(Xsm) ⊆ Y extends to a (possibly degenerate) 2-form on all of Y .
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For any c ∈ C the Calogero–Moser spaceZc is a variety with symplectic singular-
ities by [37]. Moreover,Zc admits a stratification into smooth symplectic subvarieties
called the symplectic leaves of Zc, see [25]. If m denotes the maximal ideal in Zc

corresponding to a point p ∈ Zc, then the symplectic leaf Lc(p) containing p is
the subvariety defined by the largest ideal I contained in m which is Poisson, i.e.
{Zc, I } ⊂ I .

The zero-dimensional symplectic leaves are also called cuspidal points. A cuspidal
point p ∈ Zc corresponds to a maximal ideal m in Zc such that {m,m} ⊂ m. It
follows that the cotangent space m/m2 in p inherits a structure of a Lie algebra from
the Poisson bracket. We will denote this Lie algebra by Liec(p).

2.7 CHAMP

The rational Cherednik algebra is implemented in CHAMP. This means concretely
that it is realized as an algebra with a basis given by the PBW-decomposition (2.4) and
that products of elements will be rewritten in the basis (the algorithm is described in
[58]). Instead of working over the complex numbers it is (mostly) sufficient to work
over the defining field of the complex reflection group W , which is a number field.
CHAMP comes alongwith an extensive documentation andwe can just give aminimal
impression with the simple examples included in this paper. We note that because
all actions in MAGMA are from the right, it was conceptually more consistent to
implement inCHAMPtheopposite algebra of the rationalCherednik algebra as defined
here-this is only relevant when translating elements between paper and CHAMP.

Example 2.10 We verify that the Euler element in the generic rational Cherednik alge-
bra for the Weyl group of type B2 is indeed central (this simply works by checking
whether the element commutes with the generators x j , y j and with a set of generators
of the group).

> W := ComplexReflectionGroup (2,1,2);
> H := RationalCherednikAlgebra (W, 0 : Type :="BR");
> eu := EulerElement(H);
> IsCentral(eu);
true

3 Generators and presentation of the center

We describe algorithms for computing a minimal system of algebra generators and a
presentation of the center Z ofH. Since Zc = Z/CcZ, we automatically obtain in this
way also a (minimal) system of generators and a presentation of Zc for any c ∈ C.
We use these algorithms in the sequel to obtain new results about the Calogero–Moser
space for G4 (Sect. 4) and to compute families and hyperplanes (Sect. 5) for many
exceptional complex reflection groups.
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3.1 The truncationmap

The backbone of our algorithms is the computation of the inverse of the truncation
map: by the PBW-decomposition there is for any h ∈ H a unique family of elements
(hw)w∈W of C[C] ⊗ C[V ] ⊗ C[V ∗] such that

h =
∑

w∈W

hww.

We define the C[C]-linear map Trunc : H → C[C] ⊗ C[V ] ⊗ C[V ∗] by

Trunc(h) = h1.

It is easily seen that the map Trunc : H → C[C] ⊗ C[V ] ⊗ C[V ∗] is W -equivariant
and P-linear. Recall that C0 denotes the ideal of C[C] generated by (Cs)s∈Ref(W )/W .

Lemma 3.1 The restriction of the mapTrunc toZ induces an isomorphism of bi-graded
C[C]-modules

Trunc : Z ∼−→ C[C× V × V ∗]W

which satisfies

Trunc(z) − z ∈ C0H.

In other words, if f ∈ C[C× V × V ∗]W ⊂ C[C] ⊗ C[V ] ⊗ C[V ∗], then there exists
a unique element z = ∑

w∈W zww of Z (where zw ∈ C[C] ⊗ C[V ] ⊗ C[V ∗]) such
that

{
z1 = f ,

zw ≡ 0 mod C0 ⊗ C[V ] ⊗ C[V ∗] if w �= 1.

Proof The map Trunc : Z ∼−→ C[C× V × V ∗]W is a P-linear map between two
free P-modules of rank |W |. Since Z/C0Z = Z0, it is surjective modulo C0. By
the graded Nakayama lemma (see for instance [21, Lemma 2.24]) applied to graded
modules over the graded ring C[C], this shows that it is surjective. As any surjective
map between finitely generated free modules of the same rank is an isomorphism, the
proof is complete. ��

Note for future reference the following consequence:

Corollary 3.2 Let z ∈ Z, z �= 0 and let m be such that z ∈ Cm
0 Z. Write z =∑

w∈W zww, with zw ∈ C[C]⊗C[V ]⊗C[V ∗]. Then zw ∈ Cm+1
0 Z for all w ∈ W\{1}.

Proof The map Trunc is C[C]-linear, so it is sufficient to prove the result for m = 0.
But this follows from the fact that Z/C0Z = Z0. ��
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We shall now describe how to compute the inverse map

Trunc−1 : C[C× V × V ∗]W → Z.

If s ∈ Ref(W ) and ϕ ∈ C[V ], we set

�s(ϕ) = ϕ − s(ϕ)

αs
∈ C[V ].

If f ∈ C[C] ⊗ C[V ] ⊗ C[V ∗] ⊂ H, then

[y, f ] =
∑

s∈Ref(W )

ε(s)〈y, αs〉Cs(IdC[C] ⊗�s ⊗ s)( f )s. (3.3)

A proof of this relation can be found in [36, Sect. 3.6].
We define

V reg = V \
⋃

H∈A
H = {v ∈ V | wv �= v for all w ∈ W\{1}}. (3.4)

Let yreg ∈ V reg and use the notation of Lemma 3.1. Then

[yreg, z] = 0

and, by (3.3), we get

∑

w∈W

(
zw(yreg − w(yreg))w +

∑

s∈Ref(W )

ε(s)〈yreg, αs〉Cs(IdC[C] ⊗�s ⊗ s)(zw)sw
)

= 0.

Therefore,

zw(yreg − w(yreg)) = −
∑

s∈Ref(W )

ε(s)〈yreg, αs〉Cs(IdC[C] ⊗�s ⊗ s)(zs−1w) (3.5)

for all w ∈ W . If we denote by z<r>
w the reduction modulo Cr+1

0 ⊗ C[V ] ⊗ C[V ∗] of
zw, the formula (3.5) implies (by reduction modulo Cr+1

0 ) that

z<r>
w (yreg−w(yreg))= −

∑

s∈Ref(W )

ε(s)〈yreg, αs〉Cs(IdC[C] ⊗�s ⊗ s)(z<r−1>
s−1w

) (3.6)

for all w ∈ W . This formula yields the following algorithm for computing Trunc−1.
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Algorithm 3.7 Computation of Trunc−1

Let f ∈ C[C× V × V ∗]W be bi-homogeneous of bi-degree (d, e) and set
δ = min(d, e). Let z = Trunc−1( f ) and write z = ∑

w∈W zww with zw ∈
C[C] ⊗ C[V ] ⊗ C[V ∗]. Then:
(1) For all w ∈ W , we define inductively a sequence (z[r ]

w )0�r�δ of elements of
C[C] ⊗ C[V ] ⊗ C[V ∗] as follows: z[r ]

1 = f for all r and, if w �= 1, then

⎧
⎨

⎩

z[0]
w = 0,

z[r ]
w (yreg − w(yreg)) = −

∑

s∈Ref(W )

ε(s)〈yreg, αs〉Cs(IdC[C] ⊗�s ⊗ s)(z[r−1]
s−1w

).

Note that, at each step, z[r ]
w is bi-homogeneous of bi-degree (d, e).

(2) The formula (3.5) implies that the right-hand side of the above formula is
divisible by yreg − w(yreg), which is non-zero. It also implies that z[r ]

w ≡ zw

mod Cr+1
0 ⊗ C[V ] ⊗ C[V ∗].

(3) Since δ = min(d, e), we get z[δ]
w = zw.

Therefore, z = ∑
w∈W z[δ]

w w.

Example 3.8 ContinuingExample 2.10,we compute Trunc−1( f ) for f = x1y1+y2x2.
The result is the Euler element. Recall that CHAMP implements the opposite of the
rational Cherednik algebra and therefore the variables in f are reversed.

> R<y1 ,y2 ,x1 ,x2 > := PolynomialRing(Rationals () ,4);
> f := y1*x1 + y2*x2;
> fH := TruncationInverse (H, f);
> fH eq EulerElement(H);
true

3.2 System of generators

Now that we can compute Trunc−1 it is easy to find a system of generators of Z.

Proposition 3.9 Let (z(0)
i )i∈I be a family of bi-homogeneous generators of the C-

algebra C[V × V ∗]W . Let zi = Trunc−1(z(0)
i ) (for i ∈ I ). Then (zi )i∈I is a family of

bi-homogeneous generators of the C[C]-algebra Z.

Proof Let red0 : Z → C[V × V ∗]W denote the reduction modulo C0. Then, by
construction, red0(zi ) = z(0)

i and so the result follows from the graded Nakayama
Lemma. ��
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Algorithm 3.10 Minimal system of generators

A minimal system of generators of Z is obtained as follows:

(1) Compute a minimal system of bi-homogeneous generators (z(0)
i )i∈I of the C-

algebraC[V ×V ∗]W (this is “just” computational invariant theory and there are
algorithms for this inMAGMA already, specifically the algorithm [40] by King
which is implemented via the command FundamentalInvariants).

(2) Use Algorithm 3.7 to compute zi = Trunc−1(z(0)
i ).

Then (zi )i∈I is a minimal system of bi-homogeneous generators of Z.

Example 3.11 Wecontinue Example 2.10 and compute aminimal system of generators
of Z. In CHAMP, a minimal system of bi-homogeneous generators of C[V × V ∗]W is
computedvia the commandSymplecticDoublingFundamentalInvariants
and the computation of the generators of Z via Algorithm 3.10 proceeds and stores
the elements in the same order. In this example there are 8 generators, their bi-degrees
are as listed below.

> Zgen := CenterGenerators(H);
> SymplecticDoublingFundamentalInvariants(W)[2];
y1*x1 + y2*x2
> Zgen [2] eq EulerElement(H);
true
> [ Bidegree(f) : f in SymplecticDoublingFundamental
Invariants(W) ];
[ <0, 2>, <1, 1>, <2, 0>, <0, 4>, <1, 3>, <2, 2>, <3, 1>, <4, 0> ]

Remark 3.12 We discovered a bug in the computation of fundamental invariants in
MAGMA that resulted in the return value not necessarily being a minimal system of
generators (which contradicts the definition of a system of fundamental invariants and
also contradicts the algorithm in [40]). After reporting this bug, we were informed by
MAGMA developer Allan Steel that this bug existed since V2.22 (May 2016). It was
fixed after our report in V2.26-9 (October 2021). �

3.3 Presentation

We now come to the computation of a presentation of Z, i.e. to the computation of the
relations between a (minimal) system of generators of Z.

We fix a minimal system of bi-homogeneous generators (z(0)
i )i∈I of C[V × V ∗]W

and we set zi = Trunc−1(z(0)
i ) for i ∈ I . We fix a family of indeterminates (zi )i∈I and

we denote by π0 : C[(zi )i∈I ] −→ C[V × V ∗]W (resp. π : C[C]⊗C[(zi )i∈I ] −→ Z)
the unique morphism of C-algebras (resp. C[C]-algebras) such that π0(zi ) = z(0)

i
(resp. π(zi ) = zi ). We endow C[(zi )i∈I ] with the (N × N)-grading such that zi has
the same bi-degree as zi (or z(0)

i ), so that π0 and π are bi-graded morphisms.
By definition, π0 is surjective and by Proposition 3.9, π is surjective. Our aim is

to compute a (minimal) set of generators of Ker(π). We first explain how to compute
preimages under the surjective morphism π .
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Algorithm 3.13 Preimages under π

Let z ∈ Z be bi-homogeneous of bi-degree (d, e) and let δ = min(d, e). A
bi-homogeneous element of bi-degree (d, e) in π−1(z) is computed by induction
on δ as follows:

(1) Let z0 denote the image of z inC[V ×V ∗]W � Z/C0Z . Let F0 ∈ C[(zi )i∈I ] be
bi-homogeneous such that π0(F0) = z0 (this is “just” computational commu-
tative algebra and there are algorithms for this inMAGMA already, specifically
one can compute the relations between a system of generators of C[V × V ∗]W

given by primary invariants and irreducible secondary invariants via the com-
mand Relations and can translate this to relations between the fundamental
invariants using the function HomogeneousModuleTest).

(2) Then π(F) ≡ z mod C0Z . Write π(F) − z = ∑
s∈Ref(W )/W Cshs , with hs ∈

Z, bi-homogeneous of bi-degree (d − 1, e − 1). By induction, we can find a
family (Fs)s∈Ref(W )/W of bi-homogeneous elements of C[(zi )i∈I ] of bi-degree
(d − 1, e − 1) such that π(Fs) = hs .

Then F +∑
s∈Ref(W )/W Cs Fs is bi-homogeneous of bi-degree (d, e) and its image

under π is equal to z.

Using Algorithm 3.13, one can lift relations between the z(0)
i ’s in C[V × V ∗]W to

relations between the zi ’s in Z:

Algorithm 3.14 Relations

Let ρ(0) ∈ Ker(π0) be bi-homogeneous of bi-degree (d, e) and let δ =
min(d, e). Then:

(1) π(ρ(0)) ≡ 0 mod C0Z , so we can write π(ρ(0)) = ∑
s∈Ref(W )/W Cshs where

hs ∈ Z is bi-homogeneous of bi-degree (d − 1, e − 1).
(2) By Algorithm 3.13, we can find a family (Fs)s∈Ref(W )/W of bi-homogeneous

elements of C[(zi )i∈I ] of bi-degree (d − 1, e − 1) such that π(Fs) = hs .
(3) Set ρ = ρ(0) − ∑

s∈Ref(W )/W Cs Fs .

Then π(ρ) = 0 by construction, ρ is bi-homogeneous of bi-degree (d, e) and
ρ ≡ ρ(0) mod C0 ⊗ C[(zi )i∈I ].
The next theorem shows how one can use Algorithms 3.7, 3.10, 3.13, and 3.14 to

obtain a presentation of the algebra C[C]-algebra Z:
Theorem 3.15 Let (ρ

(0)
j ) j∈J be a family of bi-homogeneous generators of the ideal

Ker(π0) and, for j ∈ J , let ρ j ∈ Ker(π) be bi-homogeneous (of the same bi-degree

as ρ
(0)
j ) and such that ρ j ≡ ρ

(0)
j mod C0 ⊗ C[(zi )i∈I ] (such a ρ j is produced by

Algorithm 3.14). Then Ker(π) is generated by (ρ j ) j∈J .

Proof Let A denote the quotient of C[C] ⊗ C[(zi )i∈I ] by the ideal a generated by
the family (ρ j ) j∈J . The morphism π induces a surjective morphism ofC[C]-algebras
π̃ : A � Z. By construction, thismorphism induces an isomorphism π̃0 : A/C0A

∼−→
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Z/C0Z � C[V × V ∗]W . Since Z is a free C[C]-module, there exists a sub-C[C]-
module Z′ of A such that A = Ker(π̃) ⊕ Z′. By reduction modulo C0, we get that
Ker(π̃)/C0 Ker(π̃) = 0. This forces Ker(π̃) = 0, thanks to the graded Nakayama
Lemma. ��

Example 3.16 WecontinueExample 2.10 and compute a presentation ofZ. InCHAMP,
the command SymplecticDoublingInvariantRingPresentation com-
putes the relations of the invariant ring and the computation of the relations for Z via
Algorithm 3.14 proceeds and stores the relations in the same order. In this example,
Z is a quotient of a polynomial ring in 8 variables (corresponding to the 8 elements in
the minimal system of generators that we computed previously) by an ideal generated
by 9 relations.

> Zpres := CenterPresentation(H);
> Universe(Zpres);
Polynomial ring of rank 8 over Polynomial ring of rank 2

over Rational Field
Order: Lexicographical
Variables: z1 , z2 , z3 , z4 , z5 , z6 , z7 , z8
> Zpres;
[
3*z1^2*z3 - z1*z2^2 - z1*z6 + 2*C1^2*z1 + z2*z5 - 2*z3*z4

,
-4*z1*z2*z3 + 2*z1*z7 + z2^3 + 2*z2*z6 - 4*C2^2*z2 - z3*

z5 ,
2*z1*z8 + z2^2*z3 - 2*z2*z7 - z3*z6 + 2*C1^2*z3 ,
8*z1^3*z3 - 3*z1^2*z2^2 - 4*z1^2*z6 + (4*C1^2 + 8*C2^2)*

z1^2 + 2*z1*z2*z5 - 8*z1*z3*z4 + 4*z1*z3*z8 + 2*z2^2*
z3^2 + 2*z2^2*z4 - 4*z2*z3*z7 - 2*z3^2*z6 + 4*C1^2*z3
^2 + 4*z4*z6 - 8*C2^2*z4 - z5^2,

-7*z1^2*z2*z3 + 6*z1^2*z7 + z1*z2^3 + 3*z1*z2*z6 + (2*C1
^2 - 4*C2^2)*z1*z2 + 2*z2*z3*z4 - 4*z4*z7 - z5*z6 + 2*
C1^2*z5 ,

8*z1^2*z3^2 - 8*z1^2*z8 - 10*z1*z2^2*z3 + 6*z1*z2*z7 +
(8*C1^2 - 4*C2^2)*z1*z3 + 2*z2^4 + 3*z2^2*z6 + (-6*C1
^2 - 8*C2^2)*z2^2 + z2*z3*z5 - 8*z3^2*z4 + 8*z4*z8 -
2*z5*z7 + (-4*C1^2 + 4*C2^2)*z6 + 8*C1^4 - 8*C1^2*C2
^2,

-6*z1^2*z3^2 + 10*z1^2*z8 + 8*z1*z2^2*z3 - 8*z1*z2*z7 -
z2^4 - 2*z2^2*z6 + (4*C1^2 + 4*C2^2)*z2^2 + 4*z3^2*z4
- 4*z4*z8 - z6^2 + 4*C1^2*z6 - 4*C1^4,

-4*z1*z2*z3^2 + 2*z1*z2*z8 + 4*z1*z3*z7 + 3*z2^3*z3 - 4*
z2^2*z7 + z2*z3*z6 + (-2*C1^2 - 4*C2^2)*z2*z3 - 2*z3
^2*z5 + 2*z5*z8 - 2*z6*z7 + 4*C1^2*z7 ,

-4*z1*z3^3 + 4*z1*z3*z8 - 2*z2^2*z3^2 - 2*z2^2*z8 + 8*z2*
z3*z7 + 4*z3^2*z6 - 4*C2^2*z3^2 - 4*z6*z8 - 4*z7^2 +
8*C2^2*z8

]
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3.4 Poisson brackets on Z

Algorithm 3.13 allows us to express Poisson brackets {u, v} of elements u, v ∈ Z in
terms of the generators zi so that we can algorithmically work with Z as a Poisson
algebra.

Algorithm 3.17 Poisson brackets on Z

Let u, v ∈ Z.

(1) Compute the commutator [ut , vt ] in Ht , see Sect. 2.5.2, and project to H by
specializing t = 0. Denote this element by w. Note that w ∈ Z.

(2) Compute w′ = π−1(z3) using Algorithm 3.13

Then w′ is an expression of {u, v} in terms of the generators (zi )i∈I of Z.

Example 3.18 We continue Example 2.10 and compute the Poisson brackets {zi , z j }
of all generators zi , z j of Z. This is done in CHAMP with the command
PoissonMatrix.We note that because of the opposite algebra convention, the Pois-
son brackets in CHAMP are the negatives of what we have on paper. Since z2 = eu
by Example 3.11, the second row of the matrix gives the (negatives) of the Poisson
brackets {zi , eu}. Recall that {zi , eu} = degZ zi by (2.9).

> pmatZ := PoissonMatrix(H);
> pmatZ [2];
( 2*z1 0 -2*z3 4*z4 2*z5 0 -2*z7 -4*z8)

3.5 Summary of what is computable

Our Algorithm 3.7 for computing the inverse of the truncation map performs very
well in practice. In particular, we were able to compute a complete minimal system of
generators of Z for all exceptional complex reflection groups except G16 − G22 and
G27−G37. All these elements are stored in the database of CHAMP and can be loaded
quickly.Togive an impressionof the performance—but also of the complexity involved
in these computations—we note that we were able to compute, e.g., the inverse image
of a generator z(0)

i of (N × N)-degree (6, 6) for the Weyl group of type F4 (equal to
the exceptional complex reflection group G28) which has 6,010 monomials and the
total number of monomials in the various coefficients of the inverse image zi in Z is
569,936. This single computation took about 6h.

The higher the degree of the element of which we want to compute the inverse
image, the more iterations Algorithm 3.7 will take—and each iteration will be more
complicated than the previous. This is one of the reasons why we were not able to
compute a complete systemof generators ofZ for all the exceptional complex reflection
groups. Another problem arises even before we can come to the iteration part of the
algorithm: the invariant theory of the action of W on V × V ∗ is very complicated and
for the higher rank cases we were not even able to compute a system of generators of
C[V × V ∗]W . The first in the series of exceptional complex reflection groups where



Computational aspects of Calogero–Moser spaces Page 19 of 46 79

Table 1 Overview of the
performance of the algorithms in
the case of dihedral groups of
order 2d for 3 � d � 8

d A (s) B C D (s) E (s) F G (s)

3 0.02 7 1 0.02 0.03 5 0.05

4 0.02 8 2 0.02 0.04 9 0.42

5 0.03 9 2 0.15 0.09 14 4.33

6 0.01 10 3 0.12 0.18 20 29.9

7 0.07 11 3 1.38 0.39 27 211

8 0.06 12 4 4.00 15.5 35 9222

The meaning of the columns is as follows. A: computation time of

(z(0)
i )i∈I . B: cardinality of I . C:maximumof δ among the z(0)

i .D: com-
putation time of (zi )i∈I via Algorithm 3.10. E: computation time of

the relations between the z(0)
i . F: number of relations. G: computation

time of the relations between the zi via Algorithm 3.14

this was not possible anymore is the group G30, which is also the Coxeter group of
type H4 and therefore very interesting.

In our algorithm for computing families and hyperplanes that we present in Sect. 5
we do not need a complete (minimal) system of generators of Z but only the sub-
system consisting of generators of Z-degree 0. We were able to compute this also for
G27 and G28. Unfortunately, for the interesting case G30 we are so far not able to do
this because we do not even know how many generators of Z-degree 0 there are in the
invariant ring. We think this case poses a very interesting problem—both theoretically
and computationally.

Finally, we note that computing a presentation of Z via Algorithm 3.14 is compu-
tationally very challenging and works only in the smallest cases: dihedral groups up
to order 16 and the exceptional group G4. Nonetheless, even these few cases led to
important insight and results, see Sects. 3.6 and 4. In Table1 we provide an overview
of the performance of the algorithms in the case of small dihedral groups.

3.6 Case of dihedral groups

We mention some new results about the Calogero–Moser space for dihedral groups
that grew out of the fact that we were able to compute an explicit presentation of Z in
small cases (see Table1).

Assume that dimC V = 2 and that W is the dihedral group of order 2d, with d � 3.
Write W = 〈s, t〉 where s, t are Coxeter generators. Fix c ∈ C and write a = cs

and b = ct . We assume that ab �= 0. Recall that Zc has dimension 4 and that a = b
whenever d is odd. Note the following facts:

• If d � 4 and a = b, then Zc has a unique singular point p, which is necessarily
cuspidal [12, Tab. 5.2].

• If d � 6 is even and a �= b, then Zc has a unique singular point q, which is
necessarily cuspidal [12, Tab. 5.2].

Recall from Sect. 2.6 that we denote by Liec(p) the Lie algebra in a cuspidal point p
of Zc. If g is a simple Lie algebra, we denote by Omin(g) the minimal nilpotent orbit
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of g. The following facts have been proved in [12, Prop. 8.4 and 8.8] and [5], and rely
on the fact that we were able to compute an explicit presentation of the center Z:

Proposition 3.19 With the above notation:

(a) If d = 4 and a = b, then Liec(p) � sl3(C) and the symplectic singularity (Zc, p)

is equivalent to (Omin(sl3(C)), 0).
(b) If d = 6 and a �= b, thenLiec(p) � sp4(C) and the symplectic singularity (Zc, q)

is equivalent to (Omin(sp4(C)), 0).

Themain application of our algorithms in case of dihedral groups is givenby the next
theorem [5]. It has been obtained through an explicit description of a presentation ofZc

whenever a = b for any d � 3 (see [13]) whichwas obtained after computing the cases
3 � d � 8 with our algorithms and finding some general patterns. So, even though
this does not appear finally in the proof of the main results in [13] and [5], it is fair to
say that these two papers owe their existence to the algorithms developed here. Before
stating the result, let us introduce some notation: we set gd = sl2(C) ⊕ Symd(C2),
and we endow it with the Lie algebra structure such that Symd(C2) is a commutative
ideal of gd and the adjoint action of sl2(C) on Symd(C2) coincides with the natural
action.

Theorem 3.20 If d � 5 and a = b, then Liec(p) � gd and the isolated symplectic
singularity (Zc, p) has trivial local fundamental group.

This gives a new family of examples of isolated symplectic singularities with trivial
local fundamental group, answering a question of Beauville [1, (4.3)].

4 The Calogero–Moser space forG4

In this section, we use our algorithms to investigate Calogero–Moser spaces for the
exceptional complex reflection group G4: we give an explicit presentation, identify
the symplectic singularity in the origin, and confirm a conjecture about symplectic
leaves.

4.1 The group and parameters

We assume that V = C
2 and that W is the subgroup ofGL2(C) = GLC(V ) generated

by

s =
(
1 0
0 ζ

)
and t = 1

3

(
2ζ + 1 2(ζ − 1)
ζ − 1 ζ + 2

)
,

where ζ is a primitive third root of unity. Then W is a primitive complex reflection
group of type G4. Note that

|W | = 24, |Z(W )| = 2, and NGLC(V )(W ) = W · C
×. (4.1)
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We denote by (y1, y2) the canonical basis of C
2 and by (x1, x2) its dual basis. Let

Hs denote the reflecting hyperplane of s (note that |A/W | = 1 and eHs = 3). For
simplification, we set K j = K Hs , j . Recall that K0 + K1 + K2 = 0. We also fix
c ∈ C and set k = κ(c) for the corresponding parameter in K (see Sect. 2.2). For
simplification, we set k j = kHs , j . Note that k0 + k1 + k2 = 0.

4.2 Presentation of Z

The computation of a presentation ofZ in CHAMP takes about 2min and is performed
by the following commands:

> W:= ComplexReflectionGroup (4);
> H:= RationalCherednikAlgebra (W,0 : Type :="BR -K");
> Zpres:= CenterPresentation(H);

The presentation is also stored in the database and can be retrieved in an instance. This
returns a family (z j )1� j�8 of 8 generators of Zk and a family (E′

j )1� j�9 of 9 equa-
tions. To describe this presentation explicitly, we rename and reorder the generators
as follows:

(X1, Y1, X2, Y2, A, B, C, eu) = (z2, z5, z6, z8, z3, z4, z7, z1).

Moreover, we replace the equations (E′
j ) by the equations (Ej ) defined as follows:

E1 = E′
1, E2 = −1

2
E′
4, E3 = 2E′

5, E4 = −1

2
E′
2, E5 = −2E′

3, E6 = −E′
6,

E7 = 1

4
(E′

7 − 8E′
9), E8 = −E′

8 − E′
6, E9 = −10E′

9.

We then obtain the following theorem.

Theorem 4.2 We have:

(a) C[V ]W = C[X1, X2] and C[V ∗]W = C[Y1, Y2], so that

P = C[X1, Y1, X2, Y2].

(b) The Z-degrees of the generators are given by

deg(X1, Y1, X2, Y2, A, B, C, eu) = (4,−4, 6,−6, 2,−2, 0, 0).

(c) The C[C]-algebra Z admits the following presentation:

{
Generators: X1, Y1, X2, Y2, A, B, C, eu.

Relations: see Table 2.
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Table 2 Relations for Z in type G4

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2X1Y1 − 15eu4 + 702(K 2
1 + K1K2 + K 2

2 )eu2 + 12euC + 2592K1K2(K1 + K2)eu + AB = 0

2X1Y2 + 3Y1euA − 9eu3B + 378(K 2
1 + K1K2 + K 2

2 )euB + 4BC = 0

9X1eu3 − 324(K 2
1 + K1K2 + K 2

2 )X1eu − 8X1C + 2X2B − 3euA2 = 0

3X1euB + 2X2Y1 − 9eu3A + 378(K 2
1 + K1K2 + K 2

2 )euA + 4AC = 0

9Y1eu3 − 324(K 2
1 + K1K2 + K 2

2 )Y1eu − 8Y1C + 2Y2A − 3euB2 = 0

2X2
1 B − 3X1eu2A + 144(K 2

1 + K1K2 + K 2
2 )X1A + 10X2eu3 − 468(K 2

1 + K1K2 + K 2
2 )X2eu

−8X2C − 1728K1K2(K1 + K2)X2 + 2Y 2
1 A − 3Y1eu2B + 144(K 2

1 + K1K2 + K 2
2 )Y1B

+10Y2eu3 − 468(K 2
1 + K1K2 + K 2

2 )Y2eu − 8Y2C − 1728K1K2(K1 + K2)Y2 − A3 − B3 = 0

9X1Y1eu2 + 2X2Y2 − 27eu6 + 11664K1K2(K1 + K2)eu3 + 61236(K 2
1 + K1K2 + K 2

2 )2eu2

+2160(K 2
1 + K1K2 + K 2

2 )euC + 16C2 = 0

2Y 2
1 A − 3Y1eu2B + 144(K 2

1 + K1K2 + K 2
2 )Y1B + 10Y2eu3 − 468(K 2

1 + K1K2 + K 2
2 )Y2eu − 8Y2C

−1728K1K2(K1 + K2)Y2 − B3 = 0

60X1Y1eu2 + 1944(K 2
1 + K1K2 + K 2

2 )X1Y1 + 5X1B2 + 10X2Y2 + 5Y1A2 − 360eu6 + 280eu3C

+97200K1K2(K1 + K2)eu3 + 798984(K 2
1 + K1K2 + K 2

2 )2eu2 + 14544(K 2
1 + K1K2 + K 2

2 )euC

+1819584K1K2(K1 + K2)(K 2
1 + K1K2 + K 2

2 )eu + 1332(K 2
1 + K1K2 + K 2

2 )AB

−17280K1K2(K1 + K2)C = 0

4.3 The symplectic singularity in the origin

Further to the dihedral group case mentioned in Sect. 3.6, we are able to identify a
symplectic singularity in the Calogero–Moser space for G4.

Theorem 4.4 Assume the parameter is (k0, k1, k2) = (0, 1,−1). Then the origin is
the unique singular point of Zc and the symplectic singularity (Zc, 0) is equivalent
to (Omin(sl3(C)), 0).

Remark 4.5 By the Harish-Chandra theory of symplectic leaves [3], the Calogero–
Moser spaceZc may admit an isolated singularity only if (k0+k1)(k0+k2)(k1+k2) =
0 and (k0, k1, k2) �= (0, 0, 0). Since the equations are symmetric in the ki ’s, we must
focus on the casewhere k1+k2 = 0 and, aftermultiplying by a scalar, the only possible
case is the one considered in the above Theorem. �

Proof The proof is obtained via explicit computations. First, we specialize the presen-
tation of Z in the fixed parameter c to obtain a presentation of Zc and then create Zc

as a scheme:

// Specialization morphism for the fixed parameter
> phi := hom <BaseRing(H)->Rationals () | [1,-1] >;
//Base ring of relations of Zc
> A8ring <X1,Y1,X2,Y2 ,A,B,C,eu> := PolynomialRing(Rationals(), 8);
// Variable change morphism
> psi := hom <CenterSpace(H) -> A8ring | [eu, X1, A, B, Y1, X2, C, Y2]>;
// Presentation of Zc
> Zcpres := [ psi(ChangeRing(f, phi)) : f in CenterPresentation(H) ];
> A8 := AffineSpace(A8ring );
> Zc := Scheme(A8,Zcpres );

Next, we compute the singular locus of Zc as a (reduced) scheme:
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> Zcsing := SingularSubscheme (Zc);
> Zcsing := ReducedSubscheme(Zcsing );
> Zcsing := Scheme(A8 ,MinimalBasis(Zcsing ));

Now, we show that 0 ∈ Zc ⊂ C
8 is the unique singular point of Zc.

> Zcsing;
Scheme over Rational Field defined by
eu ,
C,
B,
A,
Y2 ,
X2 ,
Y1 ,
X1

Note that even though we compute over Q, the result shows that also over C the
singular locus just consists of the origin. Next, we show that the projective tangent
cone of Zc at 0 is smooth (the computation takes about 2min):

> cone := TangentCone(Zc, Zc ! [0,0,0,0,0,0,0,0]);
> projcone := Scheme(Proj(CoordinateRing(A8)), MinimalBasis(cone ));
> IsSingular(projcone );
false

It thus follows from [1, Intro.] that the symplectic singularity (Zc, 0) is equivalent to
(Omin(g), 0) for some simple Lie algebra g. Now, g is the tangent space of Omin(g) at
0. Its dimension is equal to 8 by the following command:

> Dimension(TangentSpace(Zc , Zc ! [0,0,0,0,0,0,0,0]));
8

But sl3(C) is the only simple Lie algebra of dimension 8, so we have proved the claim.
��

4.4 Confirming a conjecture about symplectic leaves

For the moment, let W be an arbitrary complex reflection group. For a variety Xwe
denote by Xnor its normalization. If moreover X is affine and irreducible, then Xnor

is also affine and C[Xnor] is the integral closure of C[X] in its fraction field C(X).
We fix an element of finite order τ of NGLC(V )(W ) and a parameter c ∈ C such

that τc = c. Then τ also acts on the Calogero–Moser space Zc and we denote by Zτ
c

the closed subvariety of fixed points under the action of τ (endowed with its reduced
structure). As explained in [14], the variety Zτ

c inherits a partition into symplectic
leaves and we recall a conjecture about their structure [14, Conj. B]:

Conjecture 4.6 (Bonnafé) Let L be a symplectic leaf of Zτ
c and let L denote its

closure in Zτ
c . Then L

nor
is isomorphic, as a Poisson variety endowed with a C

×-
action, to some Calogero–Moser space associated with another pair (VL, WL) and
some parameter kL ∈ ℵ(WL).
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In fact, [14, Conj. B] is somewhatmore precise, as it explains how to recover the pair
(VL, WL). However, the parameter kL is quite a mystery. Note that, even if τ = IdV ,
this conjecture is still unproved. Let us give some known cases:

• If k = 0 (see [14, Sect. 4]: note that kL = 0 in this case).
• IfZc is smooth, thenZτ

c is also smooth and its symplectic leaves are its irreducible
components. It has been proved in [17, Theo. 1.3] that, whenever τ is the scalar
multiplication by a root of unity, then these irreducible components are isomorphic,
as varieties endowed with a C

×-action, to Calogero–Moser spaces. This proves
part of Conjecture 4.6 (it remains to check that the isomorphism constructed in [17,
Theo. 1.3] respects the Poisson structure). Note however that precise formulas are
given for the value of kL in [17, Theo. 4.21(b)].

• If W is a Weyl group of type B and τ = IdV , then Conjecture B is proved
by Bellamy–Maksimau–Schedler (work in preparation). As explained in [14,
Coro. 10.7], we can easily deduce from their result that this also implies Con-
jecture B for Weyl groups of type D, with τ being the identity or a non-trivial
involutive graph automorphism.

We will now add one more example to this list:

Theorem 4.7 Assume that W is of type G4. Then Conjecture 4.6 holds.

Proof We assume that W is the group G4 as in Sect. 4.1. Note that W acts trivially on
Zc, so replacing τ bywτ for somew ∈ W , does not change the fixed point subvariety.
Therefore, since the normalizer of W is W · C

×, we may, and we will, assume that τ
is the scalar multiplication by a root of unity. Since − IdV ∈ W , we may also assume
that the order of τ is even: let us denote it by 2d. Then

C[Zτ
c ] = Zc/

√
Iτ ,

where Iτ is the ideal generated by those of the generators (X1, Y1, X2, Y2, A, B, C, eu)

whose Z-degree is not divisible by 2d. In particular, if d � 4, then Iτ =
〈X1, Y1, X2, Y2, A, B〉 and so Zτ

c is zero-dimensional. In this case, there is nothing
to prove. This means that we may, and we will, assume that d ∈ {1, 2, 3}.

If d ∈ {2, 3}, then the computation of Zτ
c has been done in [17, Sect. 5] and it has

been checked in both cases that there is only one irreducible component of dimension
2 (the other being of dimension 0) and it has been checked that it is isomorphic, as a
variety endowed with a C

×-action, to the Calogero–Moser space associated with the
pair (C,μ2d), as expected from [14, Conj. B]. However, it has not been checked in [17,
Sect. 5] that the isomorphism respects the Poisson bracket, but this can be easily done
in CHAMP.We will explain how precisely in the more difficult situation where d = 1,
see below.

Consequently, this means that we may assume that d = 1, so that Zτ
c = Zc. We

will now prove that the symplectic leaves of Zc satisfy Conjecture 4.6.
Let L be a symplectic leaf of Zc. First, note that dim(Zc) = 4 so that L has

dimension 0, 2 or 4. If dim(L) = 4, then L = Zc and there is nothing to prove. If
dim(L) = 0, thenL is a point and there is again nothing to prove. So we may assume
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that dim(L) = 2. Note also that we may assume that k �= 0 since the case k = 0 has
been treated for any group.

By the theory of Bellamy [3, Prop. 4.9], L is parametrized by a pair (P, p) where
P is a parabolic subgroup of W and p is a cuspidal point of Zc(V /V P , P). Since
dim(L) = 2, [3, Prop. 4.7] forces dim(V P ) = 1 and so we may assume that P = 〈s〉.
But, by [19, Sect. 18.5.A],Zc(V /V P , P) admits a cuspidal point if and only if at least
two of the k j ’s are equal. As the isomorphism class of Zc depends on k0, k1, k2 only
up to permutation, we may assume that k1 = k2. Since k �= 0 and k0 + k1 + k2 = 0
and since we can rescale the parameters, this means that we may assume that

(k0, k1, k2) = (−2, 1, 1).

As in the proof of Theorem 4.4 and continuing with these computations, we createZc

as a scheme in CHAMP as follows:

> phi := hom <BaseRing(H)->Rationals () | [1,1] >;
> Zcpres := [ psi(ChangeRing(f, phi)) : f in CenterPresentation(H) ];
> Zc := Scheme(A8,Zcpres );

Next, we compute the reduced singular subscheme Zsing
c of Zc and check that it is of

dimension 2 and irreducible:

> Zcsing := SingularSubscheme (Zc);
> Zcsing := ReducedSubscheme(Zcsing );
> Dimension(Zcsing );
2
> IsIrreducible(Zcsing );
true

We conclude that Zsing
c is irreducible over Q but not necessarily geometrically irre-

ducible. However, this also implies at least that it is of pure dimension 2. But
its irreducible components (over C) are symplectic leaves of dimension 2: since
Zc(V /V P , P) has only one cuspidal point, [3, Prop. 4.9] implies thatZc has only one
symplectic leaf of dimension 2, and this forces Zsing

c to be geometrically irreducible.
In other words,

Z
sing
c = L.

Since NW (P)/P � μ2 acting on V P � C by scalar multiplication, we need to find
kL ∈ ℵ(NW (P)/P) = ℵ(μ2) and aC

×-equivariant isomorphism of Poisson varieties

L
nor ∼−→ ZkL(C,μ2).

Looking at the equations of Zc in CHAMP we see that among them we have the
two following ones:

X3
1 = X2

2 and Y 3
1 = Y 2

2 .
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This means that the elements X = X2/X1 and Y = Y2/Y1 belong to the integral
closure of the ring C[L]. Let A = C[Zsing

c ][X , Y ]. We create the affine scheme L0
with coordinate ring A in CHAMP as follows:

> A6 <A,B,C,X,Y,E>:= AffineSpace(Rationals () ,6);
> L0:= Scheme(A6 ,[ Evaluate(f,[X^2,Y^2,X^3,Y^3,A,B,C,E]) :
f in Basis(Ideal(Zcsing ))]);

We see that L0 is not reduced and define L1 to be its reduced subscheme:

> IsReduced(L0);
false
> L1:= ReducedSubscheme(L0);
> MinimalBasis(L1);
[
X*Y - E^2 + 6*E + 72,
B - Y*E + 12*Y,
B*X - C + 45/2*E^2 - 351/2*E - 648,
A - X*E + 12*X
]

We see that A, B and C can be expressed as polynomials in X , Y and eu. Therefore,

L1 � {(x, y, e) ∈ C
3 | (e − 6)(e + 12) = xy}.

As it is a smooth, hence normal, variety this shows that L1 = L
nor

. In other words,
setting e′ = e + 3 we obtain:

L
nor � {(x, y, e′) ∈ C

3 | (e′ − 9)(e′ + 9) = xy}. (4.8)

Now, let kL ∈ ℵ(C,μ2) be defined by (kL)0 = −9 and (kL)1 = 9. Note also that X
and Y have degree 2 and −2 respectively. Using the description of Calogero–Moser
spaces in rank 1 given by [19, Theo. 18.2.4], we get that we have a C

×-equivariant
isomorphism of varieties

L
nor ∼−→ ZkL(C,μ2). (4.9)

It remains to show that this isomorphism respects the Poisson bracket. For degree
reasons, it respects the Poisson bracket with the Euler element, see (2.9). So, it remains
to compute the Poisson bracket {X , Y } on both sides. On the right-hand side of (4.9),
we have

{X , Y } = −4eu# + 12,

where eu# denotes the image of eu under the isomorphism (4.9). On the left-hand side
of (4.9), we have

{X , Y } =
{ X2

X1
,

Y2

Y1

}
= 1

X2
1Y 2

1

(X1Y1{X2, Y2}
−X1Y2{X2, Y1} − X2Y1{X1, Y2} + X2Y2{X1, Y1}).
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Since C[Zsing
c ] is an integral domain, it is sufficient to show that

(?) X1Y1{X2, Y2} − X1Y2{X2, Y1} − X2Y1{X1, Y2} + X2Y2{X1, Y1}
= X2

1Y 2
1 (−4eu + 12)

in C[Zsing
c ]. The matrix whose entries are the Poisson brackets {u, v} for u and v

running over the generators X1, Y1, X2, Y2, A, B, C , eu of Zc is obtained in CHAMP
using Algorithm 3.17 as follows (recall that Poisson brackets in CHAMP are the
negatives of our Poisson brackets because of the opposite algebra convention):

> pmatZ := PoissonMatrix(H);

> pmatZc := Matrix(A8ring , 8, 8, [ -psi(ChangeRing(f,phi)) :

f in Eltseq(pmatZ) ]);

// Permute rows and columns to account for change in ordering of generators

> pmatZc := Permute(pmatZc , [2,5,6,8,3,4,7,1]);

Finally, we confirm that equation (?) indeed holds:

> lhs := CoordinateRing(Zcsing )!(X1*Y1*pmatZc [3,4] - X1*Y2*pmatZc [3,2]
- X2*Y1*pmatZc [1,4] + X2*Y2*pmatZc [1 ,2]);

> rhs := CoordinateRing(Zcsing )!(X1^2*Y1^2*( -4*eu +12));
> lhs eq rhs;
true

This completes the proof. ��

5 Families and hyperplanes

In this section we describe algorithms for computing the Calogero–Moser families
(which correspond to theC

×-fixed points ofZc) and an associated hyperplane arrange-
ment which plays an important role in geometry (Sect. 5.4) and representation theory
(Sect. 5.5). We furthermore give an algorithm for computing the cuspidal points (i.e.
the zero-dimensional symplectic leaves) of the Calogero–Moser space.

5.1 Restricted algebras, families, and hyperplanes

Throughout, let W be an arbitrary complex reflection group. Let m0 be the maximal
ideal in C[V ]W ⊗ C[V ∗]W corresponding to the origin of V /W × V ∗/W . The C[C]-
algebra H = H/m0H is called the generic restricted rational Cherednik algebra. We
can specialize H in c ∈ C to obtain the C-algebra Hc = H/CcH. Since H is a free
P-module of rank |W |3, it follows thatH is a free C[C]-module of rank |W |3 and that
Hc is a C-algebra of dimension |W |3. The algebras Hc were studied by Gordon [36].

The PBW-decomposition of H induces a triangular decomposition of Hc and this
leads to a theory of standard modules similar to the theory for finite-dimensional
complex semisimple Lie algebras. Specifically, for each λ ∈ Irr(W ) there is an asso-
ciated Hc-module �c(λ) which has simple head Lc(λ) and {Lc(λ) | λ ∈ Irr W } is
a complete set of representatives of isomorphism classes of simple Hc-modules. The
details are given in Gordon [36]. Since Hc is a finite-dimensional C-algebra, it has a
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block decomposition and each simple Hc-module belongs to exactly one block. Via
the bijection λ �→ Lc(λ) this block decomposition yields a partition of Irr W that we
denote by CMc. The parts of this partition are called the Calogero–Moser c-families.

Letϒc : Zc → Pc be the fiber of the morphismϒ : Z→ P from (2.5) in c, i.e.ϒc

is the morphism defined by the inclusion Pc ⊆ Zc. This morphism is C
×-equivariant

and by [36] the blocks ofHc, and thus the Calogero–Moser c-families, are naturally in
bijection with the C

×-fixed points ofZc. Denoting byZC
×

c the set of C
×-fixed points

of Zc we define

N = max
c∈C

∣∣∣ZC
×

c

∣∣∣ and CCM =
{

c ∈ C |
∣∣∣ZC

×
c

∣∣∣ < N
}

. (5.1)

The set CCM is known to be a union of (finitely many) hyperplanes (see below): these
are the Calogero–Moser hyperplanes.

Remark 5.2 The original purpose of CHAMP, as presented in [58], was to com-
pute decomposition matrices of standard modules for restricted rational Cherednik
algebras-fromwhichone can easily deduce theCalogero–Moser families. Thedatabase
of CHAMP contains a wealth of such information for several exceptional complex
reflection groups. We note that the algorithm for computing Calogero–Moser families
we will present below (Algorithm 5.7) is much more efficient and allows to cover
many more cases than the computation via decomposing standard modules (which,
on the other hand, yields much more information). �

5.2 Families and hyperplanes via central characters

The Calogero–Moser families and hyperplanes admit an explicit description via cen-
tral characters that-combined with the fact that we can compute generators of Z via
Algorithm 3.10-immediately yields an algorithm for computing these invariants. We
denote by

�H : H −→ C[C] ⊗ CW

the unique C[C]-linear map which, through the isomorphism (2.4) of vector spaces
given by the PBW-decomposition, sends an element f ∈ C[V ] (resp. f ∗ ∈ C[V ∗])
to f (0) (resp. f ∗(0)), and which is the identity on C[C] and CW . This map is W -
equivariant, so its restriction to Z induces a map

� : Z −→ C[C] ⊗ Z(CW ),

which is a morphism of C[C]-algebras by [19, Coro. 4.2.11]. For a prime ideal C of
C[C] we denote by

�C : Z → (C[C]/C) ⊗ Z(CW )



Computational aspects of Calogero–Moser spaces Page 29 of 46 79

the composition of � with the scalar extension of the quotient map C[C] → C[C]/C
to Z(CW ). Note that �(0) = � for the zero ideal (0) in C[C]. For c ∈ Cwe set

�c = �Cc : Z → Z(CW ).

For χ ∈ Irr(W ) we denote by ωχ : Z(CW ) −→ C the associated central character
and also denote by ωχ : (C[C]/C) ⊗ Z(CW ) −→ C[C]/C its scalar extension to
C[C]/C. We then set

�C
χ = ωχ ◦ �C : Z → C[C]/C. (5.3)

It follows from [59, Theorems 1.1 and 1.5] that two characters χ, χ ′ are in the same
Calogero–Moser c-family if and only if �c

χ = �c
χ ′ . We will therefore say more

generally that for a prime ideal C in C[C] two characters χ, χ ′ are in the same
Calogero–Moser C-family if �C

χ = �C
χ ′ . We denote by CC the set of Calogero–

Moser CCM-families. The Calogero–Moser C-families for C = (0) are called the
generic Calogero–Moser families. These are determined by the condition �χ = �χ ′ .
It is clear that if C′ ⊆ C is an inclusion of prime ideals of C[C], then the C-families
are unions of C′-families, i.e. specializing yields coarser families. In particular, the
number of C′-families is less than or equal to the number of C-families. Let

C̃CM = {C ∈ Spec(C[C]) | �χ �= �χ ′ but �C
χ = �C

χ ′ for some χ, χ ′} (5.4)

be the locus of all C where the C-families are not equal to (and thus coarser than) the
generic families. It follows from [59, Theorem 1.3] that this locus is a closed subset of
Spec(C[C])which is either empty or pure of codimension 1. It is obviously contained
in

C̃Eu = {C ∈ Spec(C[C]) | �χ (eu) �= �χ ′(eu) but �C
χ (eu) = �C

χ ′(eu) for some χ, χ ′}.

This set is the union of the zero sets of the polynomials �χ (eu) − �χ ′(eu) ∈ C[C]
for characters χ, χ ′ with �χ (eu) �= �χ ′(eu). Note that �χ (eu) ∈ C[C] is a linear
polynomial. It thus follows that C̃Eu is a union of (finitely many) hyperplanes: we
call them the Euler hyperplanes. In particular, C̃Eu is non-empty and thus pure of
codimension 1. This shows that there is c ∈ C such that the c-families are equal to
the generic families and this implies that the set CCM from (5.1) is equal to (the set of
closed points of) C̃CM. It has been proven in [19, Coro. 7.8.3] that C̃CM is a union of
Euler hyperplanes. In particular, C̃CM is a union of hyperplanes.

Given two partitions P,P′ of Irr W we denote by P∧ P′ the partition of Irr W
whose parts are the unions of all parts of P and P′ having non-empty intersection.
Let H1, . . . , Hr be the Calogero–Moser hyperplanes and for each j let C j be the
corresponding prime ideal inC[C]. It follows from [59, Lemma 3.6] that for c ∈ CCM
we have

CMc =
∧

j=1,...,r
c∈Hj

CMC j , (5.5)
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i.e. the c-families are obtained by taking the meet of the C j -families for all i such that
c is contained in Hi .

Our discussion yields an immediate algorithm for computing the Calogero–Moser
hyperplanes and the c-families for all parameters c ∈ C at once. Before stating this
we record an elementary fact that simplifies the computations.

Lemma 5.6 Let z ∈ Z be Z-homogeneous of non-zero degree. Then �(z) = 0.

Proof Indeed, themorphism� : Z → C[C]⊗Z(CW ) respects the (N×N)-bigrading,
so respects the Z-grading. But C[C] ⊗ Z(CW ) is concentrated in Z-degree 0. ��

Algorithm 5.7 Families and hyperplanes

(1) Let (z(0)
i )i∈I be a system of bi-homogeneous generators of the C[C]-algebra

C[V × V ∗]W . Let I0 = {i ∈ I | degZ(z(0)
i ) = 0}. Compute the corresponding

elements (zi )i∈I0 of Z via Algorithm 3.10.
(2) Compute the generic Calogero–Moser families: these are the fibers of the map

Irr(W ) −→ C
I0

χ �−→ (
�χ (zi )

)
i∈I0

.

(3) Compute the Calogero–Moser hyperplanes: for any two characters χ, χ ′ with
�χ �= �χ ′ compute the primary decomposition of the radical of the ideal in
C[C] generated by the elements �χ (zi ) − �χ ′(zi ) for i ∈ I0. In MAGMA
this can be done via the command RadicalDecomposition, which is
more efficient than first computing the radical and then computing its primary
decomposition. The collection of the hyperplanes obtained in this way are the
Calogero–Moser hyperplanes.

(4) Compute the Calogero–Moser families on the hyperplanes: let H1, . . . , Hr be
the Calogero–Moser hyperplanes and for each j let C j be the corresponding
prime ideal in C[C]. The C j -families are the fibers of the map

Irr(W ) −→ C
I0

χ �−→ (
�

C j
χ (zi )

)
i∈I0

.

(5) For arbitrary c ∈ C the Calogero–Moser c-families are computed as follows.
Since CCM was computed in (3), we can test whether c ∈ CCM. If c /∈ CCM,
the c-families are equal to the generic families computed in (2). If c ∈ CCM,
the c-families are given by

CMc =
∧

j=1,...,r
c∈Hj

CMC j ,

where CMC j was computed in (4).
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Example 5.8 We compute in CHAMP the Calogero–Moser hyperplanes and families
for the Weyl group of type B2.

> W:= ComplexReflectionGroup (2,1,2);
> H:= RationalCherednikAlgebra (W,0 : Type :="BR -K");
> hyp := CalogeroMoserHyperplanes (H); hyp;
[
K2_1 ,
K1_1 ,
K1_1 + K2_1 ,
K1_1 - K2_1
]
// The families on the hyperplane K1_1 - K2_1
> CalogeroMoserFamilies (H)[hyp [4]];
{
{ 1, 2, 5 },
{ 3 },
{ 4 }
}

5.3 Summary of what is computable

Remember from Sect. 3.5 that we could compute (zi )i∈I0 for all exceptional complex
reflection groups except G16 − G22 and G29 − G37. In all these cases, we could
successfully run Algorithm 5.7 and we thus know the Calogero–Moser hyperplanes
and the c-families for all c ∈ C. The results are contained in the database of CHAMP.
It is particularly exciting that we were able to compute this for G28 because it is a
Weyl group (of type F4). Table 3 gives a brief summary of results about the Calogero–
Moser hyperplane arrangement for exceptional complex reflection groups (we have
published this table previously in [6]). In the following two subsections we mention
important results that follow from these computations.

5.4 Applications in birational geometry

Let X = (V × V ∗)/W . This variety is normal. Recall that the vector space V × V ∗
carries a natural symplectic form and the action of W on this space is symplectic.
Since the symplectic group is contained in the corresponding special linear group, it
follows from the Reid–Tai criterion that X has canonical singularities (see, e.g., [41,
Theorem 3.21]). An application of [2, Corollary 1.4.3] thus shows that X admits a
Q-factorial terminalization, i.e. a crepant projective birational morphism π : Y → X
from a normal Q-factorial variety Y with terminal singularities (the projectivity of
the morphism follows from the proof of [2, Corollary 1.4.3]). Since X has trivial
canonical class by a result byWatanabe (see, e.g. [10, Theorem 4.6.2]), theQ-factorial
terminalizations are the same as relative minimal models of X (relative to a log-
resolution of X ).
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Table 3 Some data about the Calogero–Moser hyperplane arrangement for exceptional complex reflection
groups: the number of hyperplanes, the Poincaré polynomial of the arrangement, and the number of Q-
factorial terminalizations of the associated symplectic singularity (see Sect. 5.4)

Group #Hyp Poincaré polynomial QFT

G4 6 (5t+1)(t+1) 2

G5 33 (116t2 + 21t + 1)(11t + 1)(t+1) 92

G6 16 (8t + 1)(7t + 1)(t+1) 12

G7 61 (98644t4 + 18462t3 + 1489t2 + 60t + 1)(t+1) 3296

G8 25 (13t + 1)(11t + 1)(t+1) 14

G9 54 (6499t3 + 983t2 + 53t + 1)(t+1) 2

G10 111 (1001586t4 + 107662t3 + 4913t2 + 110t +
1)(t+1)

15,476

G11 196 (383999826t5 + 25688824t4 + 857259t3 +
17047t2 + 195t + 1)(t+1)

2,851,133

G13 6 (5t+1)(t+1) 3

G14 22 (116t2 + 21t + 1)(t+1) 23

G15 65 (13982t3 + 1529t2 + 32t + 1)(1+t) 2596

G20 12 (11t+1)(t+1) 4

G25 12 (11t+1)(t+1) 4

G26 37 (335t2 + 36t + 1)(t+1) 62

G28 8 (7t+1)(t+1) 4

We note that the groups G12, G22–G24, G27, G29–G31, and G33–G37 have a single conjugacy class of
reflections so that C is 1-dimensional and CCM is just the origin. Hence, only for the exceptional complex
reflection groups G16–G19, G21, and G32 the Calogero–Moser hyperplanes are still unknown

Now, choose such aQ-factorial terminalization π : Y → X . For more details on the
following we refer to [53]. The cohomology groupKC = H2(Y , C) can be identified
with Pic(Y ) ⊗Z C. Let Mov(π) be the cone in KR = Pic(Y ) ⊗Z R formed by the
π -movable line bundles. This cone decomposes into the ample cones of the various
other Q-factorial terminalizations of X , and the codimension-1 faces of each of these
ample cones generate a hyperplane arrangement in KR decomposing Mov(π) into
various chambers.

It is shown in [4] thatKR can naturally be identifiedwith the real vector space inside
the complexparameter spaceKspannedby the K�, j , i.e.,KR = ∑

(�, j)∈ℵ(W ) RK�, j .
Recall from Sect. 5.2 that the Calogero–Moser hyperplanes are Euler hyperplanes. It is
then clear that in the parameters K�, j the Calogero–Moser hyperplanes have rational
coefficients and so they define a hyperplane arrangement in KR as well. Using the
Poisson-geometric description of the chamber decomposition of the movable cone
given in [53], it was shown in [6] that these chambers coincide with orbits of the
chambers of the Calogero–Moser hyperplane arrangement under the action of the
Namikawa Weyl group onKR. This group was shown in [4] to be simply the product of
the full permutation groups on the indices j of the variablesKR = ∑

(�, j) for fixed�.
To summarize, when we denote by ECM(W ) the number of chambers of the

Calogero–Moser hyperplane arrangement inside KR and by QFT(W ) the number



Computational aspects of Calogero–Moser spaces Page 33 of 46 79

of Q-factorial terminalizations of (V × V ∗)/W , then

QFT(W ) = ECM(W )
∏

�∈A/W

(e�!)
. (5.9)

Recall that the number of chambers of a real hyperplane arrangement is equal to
the evaluation at −1 of its Poincaré polynomial [60]. Algorithms for computing the
Poincaré polynomial are implemented in, e.g., the computer algebra system Sage [54].
In all cases of the exceptional complex reflection groups where we could compute the
Calogero–Moser hyperplane arrangement we were also able to compute the number
QFT(W ) aswell, see Table3.We note that the computation of the Poincaré polynomial
in case of G11 in Sage took three weeks.

Remark 5.10 It would be very interesting to explicitly construct a Q-factorial ter-
minalization of (V × V ∗)/W . Among the exceptional groups, this has so far only
been done for G4, see [42], which is very special because it is the only exceptional
group where the associated symplectic singularity admits a symplectic resolution,
i.e. the Q-factorial terminalizations are smooth. Recently, an explicit presentation of
a Q-factorial terminalization in the case of odd dihedral groups was constructed in
[55, Corollary 7.3.13]. �

5.5 Applications in representation theory

Several notions of families have been associatedwith real or complex reflection groups:
they all form a partition of Irr(W ) and it is a natural question to understand, or compare,
all these partitions. Fix c ∈ Cand let k = κ(c) ∈ K. Let k� = (k�

�, j )(�, j)∈ℵ(W ) denote

the element of Kdefined by k�
�, j = k�,− j (the indices j being viewed modulo e�).

• If W is real (i.e. a Coxeter group) and c has real values (since reflections have
order 2 in this case, this is equivalent to requiring that k has real values; note also
that k = k� in this case), there are two different notions:

(L) The Lusztig c-families are defined using the notion of c-constructible charac-
ters of W built on the Lusztig a-function (see for instance [19, Sect. 15.3.B]).
They have been explicitly computed by Lusztig in all cases [45]. Note that they
are related to the representation theory of finite reductive groups [44].

(KL) The Kazhdan–Lusztig c-families are associated with the partition of W into
Kazhdan–Lusztig c-cells, built from the Kazhdan–Lusztig basis of the Hecke
algebra (see for instance [19, Sect. 8.6]).

Lusztig conjectures that both notions coincide [45] and this conjecture holds in
many cases (for instance, if c is constant or if W is of type F4).

• If W is a general complex reflection group, there are also two notions:

(R) Broué–Kim [23] have associated a partition of Irr(W ) intoRouquier k-families
as blocks of the Hecke algebras of W with parameter k over a suitable ring
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(see for instance [19, Def. 6.5.1] for an extension of this definition to the
case where k takes complex values: they are called Hecke k-families there).
Chlouveraki [27–31] computed Rouquier k-families in all cases: as a conse-
quence, she proved that, for W real, Rouquier k-families coincide with Lusztig
c-families.

(CM) The Calogero–Moser k-families defined by Gordon [36] and studied in this
paper. Note that this last notion of families does not involve the Hecke algebra,
in contrast to the first three ones.

Conjecture 5.11 (Martino) Let c ∈ C and let k = κ(c) ∈ K = C. Then any
Calogero–Moser c-family is a union of Rouquier k�-families.

Conjecture 5.12 (Gordon–Martino)Assume that W is a Coxeter group and assume c ∈
C is real-valued. Then Calogero–Moser c-families coincide with Lusztig c-families.

The Martino conjecture is known to be true for the whole infinite series of complex
reflection groups G(m, p, n), see [49, 50]. The Gordon–Martino conjecture is known
to be true for all Coxeter groups except possibly H4 and E6–E8 by [33, 36, 38, 50,
57]. Therefore, Rouquier families and Calogero–Moser families are two candidates
for extending the notion of (Kazhdan-)Lusztig families to general complex reflection
groups. However, it must be pointed out that Martino’s Conjecture does not claim that
Calogero–Moser families coincide with Rouquier families: indeed, there are cases
where it is known that both notions do not coincide [57].

Wewill show that both conjectures are true for all the exceptional complex reflection
groups for which we could compute the Calogero–Moser families (see Sect. 5.3).
Note that both conjectures involve an infinite range of parameters. To be able to
algorithmically test the conjectures, we need to reduce this to a finite problem. This
is possible due to the semi-continuity property of both types of families: in both cases
there is a finite hyperplane arrangement (the Calogero–Moser hyperplanes for the
Calogero–Moser families and the so-called essential hyperplanes for the Rouquier
families [30]) such that for all parameters outside these hyperplanes the respective
families are always the same and for an arbitrary parameter the families are the smallest
unions of the generic families on the hyperplanes containing the parameter. For the
Calogero–Moser families this is precisely (5.5) and for the Rouquier families this
property was established in [19]. We thus arrive at the following algorithm:

Algorithm 5.13 Testing the Martino conjecture

(1) Test if the generic Rouquier families are unions of the generic Calogero–Moser
families.

(2) For each Calogero–Moser hyperplane defined by a linear polynomial H in
the variables k�, j consider the polynomial H � obtained by replacing k�, j

by k�
�, j = k�,− j . If H � is an essential hyperplane, test whether the generic

Rouquier families on H � are unions of the generic Calogero–Moser families
on H ; otherwise test if the generic Rouquier families are unions of the generic
Calogero–Moser families on H .

If all tests are true, then the Martino conjecture is true (for all parameters).
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By testing for equality instead of unionwe can also test theGordon–Martino conjec-
ture in the same way. We note that the Rouquier families and the essential hyperplanes
for the exceptional complex reflection groups have been computed in [30] and this
data has been added to the database of CHAMP.

Example 5.14 We test the Martino conjecture for the group G4 in CHAMP:

> W:= ComplexReflectionGroup (4);
> rou := RouquierFamilies(W);
> Keys(rou); //The essential hyperplanes
{
k_{1,2},
k_{1,1} - 2*k_{1,2},
k_{1,1},
2*k_{1,1} - k_{1,2},
1,
k_{1,1} + k_{1,2},
k_{1,1} - k_{1,2}
}
> MartinoConjecture (W);
true

Using this algorithm we have proven:

Theorem 5.15

(1) The Martino conjecture is true for all exceptional complex reflection groups where
we could compute the Calogero–Moser families, i.e. for all except possibly G16–
G22 and G29–G37.

(2) The Gordon–Martino conjecture is true for G23 = H3 and G28 = F4. ��

5.6 Cuspidal families

Recall from Sect. 2.6 that the zero-dimensional symplectic leaves ofZc are also called
cuspidal points. It was shown in [8] that the cuspidal points are contained in ZC

×
c .

Accordingly, we call a Calogero–Moser family cuspidal if the correspondingC
×-fixed

point in Zc is cuspidal. The cuspidal families are important because there is a kind
of Harish-Chandra theory, developed by Bellamy [3], which reduces the study of
Calogero–Moser families to the cuspidal ones (for parabolic subgroups of W ).

For a Calogero–Moser c-family Fwe denote by �c
F the map �c

χ for one (any)

χ ∈ F. The corresponding point mc
F of ZC

×
c is then equal to the kernel of �c

F.
If (zi )i∈I denotes a system of algebra generators of Z then mc

F is generated by the
elements (zi − �c

F(zi ))i∈I . We thus obtain:

Proposition 5.16 F is cuspidal if and only if �c
F({zi , z j })) = 0 for all i , j ∈ I .

Note that, thanks to Lemma 5.6, we only need to compute the Poisson brackets
{zi , z j } for the pairs (i, j) such that degZ(zi ) + degZ(z j ) = 0. We thus arrive at the
following algorithm:
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Algorithm 5.17 Cuspidal families

Let c ∈ C.

(1) Compute a system of generators (zi )i∈I of Z via Algorithm 3.10.
(2) Compute the Calogero–Moser c-families via Algorithm 5.7.
(3) Compute the Poisson brackets {zi , z j }i, j∈I for all (i, j) such that degZ(zi ) +

degZ(z j ) = 0 via Algorithm 3.17.

Then the cuspidal Calogero–Moser c-families are precisely those families F for
which �c

F({zi , z j })) = 0 for all (i, j) such that degZ(zi ) + degZ(z j ) = 0.

Example 5.18 We compute the cuspidal Calogero–Moser families for the dihedral
group of order 8 in CHAMP and verify that in the equal parameter case there is a
unique cuspidal family (see also Sect. 3.6):

> W:= ComplexReflectionGroup (4,4,2);
> H:= RationalCherednikAlgebra (W,0);
> cusp := CuspidalCalogeroMoserFamilies(H);
> R := Universe(cusp);
> cusp[R.1-R.2];
{
{ 1, 2, 5 }
}

6 Cellular characters

We fix c ∈ C. Calogero–Moser c-cellular characters have been defined in [19,
Def. 1.8.4] but we will use here the equivalent definition given by [19, Theo. 8.3.2] in
terms of Gaudin algebras.

6.1 Definition

We recall here the definition of cellular characters which involves the Gaudin alge-
bra [19, Sect. 13.2]. First, recall that C[C× V reg][W ] denotes the group algebra of
W over the algebra C[C× V reg], and not the semi-direct product C[C× V reg] � W .
For y ∈ V , let

Dy =
∑

s∈Ref(W )

ε(s)Cs
〈y, αs〉

αs
s ∈ C[C× V reg][W ].

Then Gau(W ) is the sub-C[C× V reg]-algebra of C[C× V reg][W ] generated by the
Dy’s (y ∈ V ): it will be called the generic Gaudin algebra associated with W . Recall
that it is commutative [19, Sect. 8.3.B].

Now, if y ∈ V , let Dc
y ∈ C[V reg][W ] denote the specialization at c of Dy and

let Gauc(W ) denote the specialization of Gau(W ) at c ∈ C. Since C(V )W ⊗C[V reg]W
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C[V reg] � C(V ), we have

C(V )WGau(W ) = C(V )Gauc(W )

and C(V )Gauc(W ) is the C(V )-sub-algebra of C(V )[W ] generated by the Dc
y’s.

Let L be a simple C(V )Gauc(W )-module and set

γGau
L =

∑

χ∈Irr(W )

[ResC(V )[W ]
C(V )Gauc(W )

C(V ) ⊗ Vχ : L] χ.

Then γGau
L is a Calogero–Moser c-cellular character of W , and they can all be obtained

in this way [19, Theo. 13.2.10]. Note moreover that W acts on Gauc(W ), so it acts on
Irr(C(V )Gauc(W )) and

γGau
wL = γGau

L (6.1)

for all L ∈ Irr(C(V )Gauc(W )) and all w ∈ W .

6.2 Algorithm

FollowingAppendix I (seeRemark I.12), the following algorithm allows us to compute
theCalogero–Moser c-cellular characters. For this,wefixanumberfieldk and ak-form
Vk of V which is stabilized by W (this is done in order to perform exact computations).

Algorithm 6.2 Cellular characters

Let c ∈ Chaving values in k. The set of Calogero–Moser c-cellular characters
is computed as follows:

(1) Let D ∈ End
k[Vk×V reg

k
](k[Vk × V reg

k
][W ]) be the element such that the action

by left translation of Dy on k[V reg
k

][W ] is the specialization at y of D (for all
y ∈ V ).

(2) Let �D denote the quotient of the characteristic polynomial �̃D of D by the
greatest common divisor of �̃D and �̃′

D. Let �D denote its discriminant (it
is an element of k[Vk × V reg

k
]). Find (randomly or algorithmically) (yk, v) ∈

Vk × V reg
k

such that �D(yk, v) �= 0.
(3) Let Dv

y denote the specialization of D at (y, v) and let �v
yk denote the spe-

cialization of � at (yk, v). Compute the factorization �v
yk = �1 · · · �r into a

product of irreducible polynomials in k[t].
(4) For 1 � i � r , compute the character �i of the representation of W act-

ing on Ker(�i (D
v
yk)

ni ) (where ni is the valuation of �i in the characteristic
polynomial of Dv

yk).
(5) By Remark I.12, {�i/ deg(�i ) | 1 � i � r} is the set of c-cellular characters

of W .
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The fact that the set of Calogero–Moser c-cellular characters does not depend on
the choice of the number field k follows from Remark I.13 and from the fact that the
group algebra kW is split [9, 11].

Remark 6.3 The matrix which gives D has size |W |, so the computations involved
in the previous algorithm can be heavy even for reasonably small W ’s (type H3, F4,
H4…). If one has all the explicit representations ofW , then the computation of�might
be performed for each representation, instead of the regular representation. �

6.3 Spetses

For W a Coxeter group, it is conjectured that Calogero–Moser cellular characters
coincide with Lusztig constructible characters [19, Conj. L]. This has been checked
for dihedral groups [12] and for the symmetric group [22], as well when the Calogero–
Moser space is smooth [19, Theo. 14.4.1].

For W a spetsial complex reflection group and for the spetsial parameter csp (i.e.
the parameter such that κ(csp)�,0 = 1 and κ(csp)�, j = 0 for all � ∈ A/W and
1 � j � e� − 1), the philosophy of spetses [24] allows one to propose good candi-
dates for a notion of constructible characters [48] (let us call them Malle–Rouquier
csp-constructible characters). The construction is completely different from the con-
struction of cellular characters, but it is conjectured that both notions coincide. As
explained above, computations can become pretty heavy when the size of the group
increases, but we were able to check the following result:

Theorem 6.4 If W a spetsial primitive complex reflection group of rank � 2 (i.e. if
W = G4, G6, G8 or G14), then Calogero–Moser csp-cellular characters coincide
with Malle–Rouquier csp-constructible characters.

Even though it seems like a weak result, it is an extension of the surprising links
between the Poisson geometry of Calogero–Moser spaces and unipotent representa-
tions of finite reductive groups explained by the first author in [16].
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Appendix I: A general theory of cellular characters and how to com-
pute them

If A is a commutative ring, M is free A-module of finite rank and ϕ ∈ EndA(M),
we denote by charϕ ∈ A[t] the characteristic polynomial of ϕ. If K is a field and

http://creativecommons.org/licenses/by/4.0/
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f ∈ K [t], we denote by f rad the greatest common divisor of f and f ′ (which is
normalized to be monic) and we set f sem = f / f rad ∈ K [t]. If moreover A = K , we
denote by minϕ ∈ K [t] the minimal polynomial of ϕ (which is also normalized to be
monic). Note that charsemϕ = minsemϕ .

Let k be a field of characteristic 0.

Hypothesis and notation. We fix in this appendix a finite dimen-
sional k-vector space E , a split subalgebra A of Endk(E) and
an integral and integrally closed k-algebra P . Its field of fraction
is denoted by K .

If R is a commutative k-algebra, we set RE = R ⊗ E and
R A = R ⊗ A. We also fix a positive integer n and n commuting
elements D1,…, Dn of EndP (P E) (for 1 � i � n) which also
commute with the action of P A.

Finally, we set D = (D1, . . . , Dn) and we denote by P[D]
the commutative algebra generated by D1,…, Dn . If p is a prime
ideal of P , we denote by Di (p) ∈ EndP/p((P/p)E) the reduc-
tion of Di modulo p and we set D(p) = (D1(p), . . . , Dn(p)).

We aim to define a notion of cellular characters of A and study its behavior under
specialization or field extension. The results presented here are certainly neither new
nor original: they are just adapted to our situation, and stated here with proof for the
sake of completeness.

I.A: Cellular characters

The K -algebra K A is split, so there is a bijection [32, Propositions 3.56 and 7.7]

Irr(K [D]) × Irr(K A) −→ Irr(K [D] ⊗K K A)

(L1, L2) �−→ L1 ⊗ L2.

This induces an isomorphism of Z-modules

K0(K [D]) ⊗Z K0(K A)
∼−→ K0(K [D] ⊗K K A),

where, for a finite dimensional algebra B, K0(B) is the Grothendieck group of the
categoryof B-modules.But the K -vector space K E inherits an actionof K [D]⊗K K A.
So its class [ K E ] in K0(K [D] ⊗K K A) can be written

[ K E ] =
∑

S∈Irr(K [D])
[ S ] ⊗ γ P

S , (I.1)

where γ
p

S ∈ K0(K A) � K0(A) (because A is split).

Definition I.2 The element γ P
S of K0(A) is called a D-cellular character.
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It might be the case that the map

γ P : Irr(K [D]) −→ K0(A)

S �−→ γ P
S

is not injective. But we will only be interested in the image of γ P , and its behavior
under specialization or field extension. This last situation is the simplest:

Proposition I.3 Let k
′ be an extension field of k and let P ′ = k

′ ⊗ P. We assume that
P ′ is integral and integrally closed and we set K ′ = k

′ ⊗ K (it is then the fraction
field of P ′). Then the images of the maps γ P and γ P ′

are equal.

Proof Note that K [D] is commutative. So, if S is a simple K [D]-module, then k
′ ⊗

S is a multiplicity free semisimple K ′[D]-module [32, Propositions 3.56 and 7.7].
Moreover, k

′ ⊗ S1 and k
′ ⊗ S2 have a common irreducible constituent if and only if

S1 � S2 (see [32, Theorem 7.9]). The proposition follows. ��

I.B: The case n = 1

We will first study here the case where n = 1. As it will be explained in the next
subsection, the general case can in fact be reduced to this case.

Hypothesis and notation. We assume in this subsection, and
only in this subsection, that n = 1 and we write D = D1.

The characteristic polynomial charD of D has coefficients in P . Using Euclid’s
algorithm in K [t], one can compute the polynomial charradD (recall that it is the greatest
common divisor of charD and its derivative char′D) and so the polynomial charsemD =
charD/charradD is computable. We then write

charsemD = �1 · · ·�r , charD = �
n1
1 · · · �nr

r

where �i belongs to K [t] and is irreducible, ni � 1 and �i �= � j if i �= j . By [19,
Proposition B.4.1],

charsemD ,�1, . . . ,�r ∈ P[t]. (I.4)

If 1 � i � r , we set

Li = K [t]/〈�i 〉,

andwe view it as a P[D]-module, where D acts bymultiplication by the indeterminate
t. Then

Irr(K [D]) = {L1, . . . ,Lr } and Li �� Lj if i �= j . (I.5)
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Then

K E =
r⊕

i=1

Ker(�i (D)ni ) (I.6)

is a decomposition of K E into K [D] ⊗K K A-modules. As a K [D]-module, the
chief factors of Ker(�i (D)ni ) are all isomorphic to Li . Hence, if we denote by
[ Ker(�i (D)ni ) ]K A the image of Ker(�i (D)ni ) in K0(K A), then this image is a
multiple of dim(Li ) = deg(�i ) and

[ K E ] =
r∑

i=1

[Li ] ⊗Z

( 1

deg(�i )
[ Ker(�i (D)ni ) ]K A

)
. (I.7)

Therefore:

Proposition I.8 With the above notation, the set of D-cellular characters of A is equal
to

{ 1

deg(�i )
[ Ker(�i (D)ni ) ]K A

∣∣∣ 1 � i � r
}
.

We denote by � the discriminant of the polynomial charD: then � ∈ P and, if p is
a prime ideal of P , we denote by �(p) the image of � in P/p. Note that

� �= 0 (I.9)

because the factorization of charD into irreducible polynomials is multiplicity-free
(and since k has characteristic 0).

Proposition I.10 Let p be a prime ideal of P such that �(p) �= 0 and P/p is integrally
closed. Then the set of D-cellular characters coincides with the set of D(p)-cellular
characters.

Proof Assume that �(p) �= 0. Let us write

�i (p) =
di∏

j=1

π
ei, j
i, j ,

where πi, j ∈ kP (p)[t] is irreducible, ei, j � 1 and πi, j �= πi, j ′ if 1 � j < j ′ � di .
Then

charD(p) =
r∏

i=1

di∏

j=1

π
ei, j
i, j .

Since �(p) �= 0, this means that ei, j = 1 for all i , j and that πi, j = πi ′, j ′ if and only
if (i, j) = (i ′, j ′).
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Now, let E= {(i, j) | 1 � i � r and 1 � j � di } and, if (i, j) ∈ E, let

L
p
i, j = kP (p)[t]/〈πi, j 〉,

viewed as a kP (p)[D(p)]-module, where D(p) acts by multiplication by t. Then,
by (I.5), the map

E −→ Irr(kP (p)[D(p)])
(i, j) �−→ L

p
i, j

is bijective. We only need to show that

(∗) γ P
Li

= γ
P/p

L
p
i, j

.

Sincek has characteristic 0, an equality between elements of theGrothendieck group is
equivalent to an equality between the corresponding (virtual) characters. If we denote
by χi (resp. χ

p
i, j ) the character of Li (resp. L

p
i, j ), then

χi ≡
di∑

j=1

χi, j mod p.

Since χi, j = χi ′, j ′ if and only if (i, j) = (i ′, j ′), the result follows from (I.1) by
taking associated characters and reduction modulo p. ��

I.C: Back to the general case

We come back to the initial set-up of this appendix.

Hypothesis and notation. Until the end of this appendix, we no
longer assume that n = 1.

Themain result of this subsection (see Proposition I.11) shows that the computation
of the D-cellular characters can be reduced to the case where n = 1, by extending
the ring of definition P . Let X1,…, Xn be indeterminates over P and let P[X] =
P[X1, . . . , Xn]. We set

D= X1D1 + · · · + Xn Dn ∈ EndP[X](P[X]E).

Since P[X] is integrally closed, we are in the same set-up as in the previous section
(the case n = 1), with P replaced by P[X] and D replaced by D. So we can define
similarly D-cellular characters of A.

Proposition I.11 The set of D-cellular characters of A coincides with the set of D-
cellular characters of A.
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Proof Let �X denote the discriminant of charsemD (it is an element of P[X]). Since
�X �= 0, there exists x = (x1, . . . , xn) ∈ k

n such that

�X(x1, . . . , xn) �= 0.

Let D(x) = x1D1+· · ·+xn Dn ∈ EndP (P E). It follows fromProposition I.10 that the
set of D-cellular characters coincidewith the set of D(x)-cellular characters (onemust
replace, in Proposition I.10, the ring P by P[X] and take p = 〈X1−x1, . . . , Xn −xn〉).
So it remains to prove that the set of D(x)-cellular characters coincides with the set
of D-cellular characters.

Since K [D(x)] ⊂ K [D], it remains to prove that K [D] = K [D(x)]+Rad(K [D]).
By [32, Corollary 7.8 and Theorem 7.9], we may assume that K is algebraically
closed. In this case, there exists a basis of K E such that D1,…, Dn are represented by
commuting upper triangular matrices. Let d = dimk(E) and let (λ

(i)
j )1� j�d denote

the (ordered) sequence of diagonal coefficients of Di and let

λ : {1, 2, . . . , d} −→ k
n

j �−→
(
λ

(1)
j , . . . , λ

(n)
j

)
.

Let Edenote the image of the map λ. Then

charsemD =
∏

(μ1,...,μn)∈E

(
t −

n∑

i=1

Xiμi

)

and the condition �X(x) �= 0 implies that

charsemD(x) =
∏

(μ1,...,μn)∈E

(
t −

n∑

i=1

xiμi

)

and that

(∗)

n∑

i=1

xiμi =
n∑

i=1

xiμ
′
i if and only if (μ1, . . . , μn) = (μ′

1, . . . , μ
′
n).

Now, let M be an element of K [D], and let m j denote its j-th diagonal coefficient.
If j , j ′ are such that λ( j) = λ( j ′), then necessarily m j = m j ′ . It then follows from
(∗) that there exists a polynomial f ∈ K [t] such that

f

(
n∑

i=1

xiλ
(i)
j

)
= m j

for all j ∈ {1, 2, . . . , d}. Therefore, M − f (D(x)) belongs to K [D] and has all its
diagonal coefficients equal to 0. This forces M − f (D(x)) ∈ Rad(K [D]), as desired.

��
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Remark I.12 Proposition I.11 together with Proposition I.8 provides a way to reduce
the problem of computing D-cellular characters to the case n = 1. In this former case,
using Proposition I.10, one can reduce the problem to the case where D = D1 has
coefficients in a finite extension of k (if P is finitely generated over k). �

Remark I.13 In this remark, and only in this remark, the D-cellular characters will be
called the (k, D)-cellular characters. Let k

′ be a field extension of k such that P ′ =
k

′⊗k P is still an integrally closed domain. Let K ′ be the fraction field of P ′. Since the
k

′-algebra k
′ A is still split, we can define the (k′, D)-cellular characters γ P ′

S′ attached

to a simple K ′[D]-module S′. In fact, through the isomorphismK0(A)
∼−→ K0(k

′ A)

induced by scalar extension,

the (k, D) − cellular characters and the (k′, D) − cellular characters coincide.

Indeed, since we are in characteristic 0 and since K [D] is commutative, any simple
K [D]-module S satisfies

K ′ ⊗K S �
r⊕

j=1

S′
j ,

where S′
1,…, S′

r are two-by-two non-isomorphic simple K ′[D]-modules. Moreover,
if S1 and S2 are two non-isomorphic simple K [D]-modules, then HomK ′[D](K ′ ⊗K

S1, K ′ ⊗K S2) = K ′ ⊗K HomK [D](S1, S2) = 0. Both facts imply that

γ P
S = γ P ′

S′
1

= · · · = γ P ′
S′

r
,

as desired. �
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