Skip to main content
Log in

Zoo of monotone Lagrangians in \({\mathbb {C}}P^n\)

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let \(P \subset {\mathbb {R}}^m\) be a polytope of dimension m with n facets and \(a_1,\ldots , a_{n}\) be the normal vectors to the facets of P. Assume that P is Delzant, Fano, and \(a_1 + \cdots + a_{n} = 0\). We associate a monotone embedded Lagrangian \(L \subset {\mathbb {C}}P^{n-1}\) to P. As an abstract manifold, the Lagrangian L fibers over \((S^1)^{n-m-1}\) with fiber \({\mathcal {R}}_P\), where \({\mathcal {R}}_P\) is defined by a system of quadrics in \({\mathbb {R}}P^{n-1}\). The manifold \({\mathcal {R}}_P\) is called the real toric space. We find an effective method for computing the Lagrangian quantum cohomology groups of the mentioned Lagrangians. Then we construct explicitly some set of wide and narrow Lagrangians. Our method yields many different monotone Lagrangians with rich topological properties, including non-trivial Massey products, complicated fundamental group and complicated singular cohomology ring. Interestingly, not only the methods of toric topology can be used to construct monotone Lagrangians, but the converse is also true: the symplectic topology of Lagrangians can be used to study the topology of \({\mathcal {R}}_P\). General formulas for the rings \(H^{*}({\mathcal {R}}_P, {\mathbb {Z}})\), \(H^{*}({\mathcal {R}}_P, {\mathbb {Z}}_2)\) are not known. Since we have a method for constructing narrow Lagrangians, the spectral sequence of Oh can be used to study the singular cohomology ring of \({\mathcal {R}}_P\). This idea will be developed in a further paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Agrachev, A., Lerario, A.: Systems of quadratic inequalities. Proc. Lond. Math. Soc. 105, 622–660 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acuna, G.: Open Books, University of Iowa Notes

  3. Babenko, I.K., Taimanov, I.A.: On the existence of nonformal simply connected symplectic manifolds. Russ. Math. Surv. 53, 1082–1083 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babenko, I.K., Taimanov, I.A.: Massey products in symplectic manifolds. Sbornik Math. 191, 1107–1146 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bahri, A., Bendersky, M., Cohen, F.R., Gitler, S.: Operations on Polyhedral products and a new topological construction of infinite families of toric manifolds. Homol. Homotopy Appl. 17, 137–160 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bosio, F., Meersseman, L.: Real quadrics in \({\mathbb{C} }^n\), complex manifolds and convex polytopes. Acta Math. 197, 53–127 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Biran, P., Cornea, O.: A Lagrangian quantum homology. New Perspect. Chall. Symplectic Field Theory 49, 1–44 (2009). arXiv:0808.3989

    Article  MathSciNet  MATH  Google Scholar 

  8. Biran, P., Cornea, O.: Rigidity and uniruling for Lagrangian submanifolds. Geom. Topol. 13, 2881–2989 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Biran, P., Cielbak, K.: Symplectic topology on subcritical manifolds. Commentarii Mathematici Helvetici 76, 712–753 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bruns, W., Gubeladze, J.: Combinatorial invariance of Stanley–Reisner rings. Georgian Math. J. 3, 315–318 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Buchstaber, V., Panov, T.: Toric topology. In: Mathematical Surveys and Monographs, vol. 204 (2015)

  12. Buhovsky, L.: The Maslov class of Lagrangian tori and quantum products in Floer cohomology. J. Topol. Anal. 2, 57–75 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cieliebak, K., Goldstein, E.: A note on mean curvature, Maslov class and symplectic area of Lagrangian immersions. J. Symplectic Geom. 2, 261–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chekanov, Y., Schlenk, F.: Notes on monotone Lagrangian twist tori. Electron. Res. Announc. 17, 104–121 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cho, C.-H.: Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus. Int. Math. Res. Not. 2004, 1803–1843 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Choi, S., Park, H.: Multiplication structure of the cohomology ring of real toric spaces. Homol. Homotopy Appl. 22(1), 97–115 (2020)

    Article  MATH  Google Scholar 

  17. Damian, M.: Floer homology on the universal cover, Audin’s conjecture and other constraints on Lagrangian submanifolds. Commentarii Mathematici Helvetici 87, 433–462 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deligne, P., Griffiths, P., Morgan, J., Sullivan, D.: Real homotopy theory of Kahler manifolds. Invent. Math. 19, 245–274 (1975)

    Article  MATH  Google Scholar 

  19. Gitler, S., Lopez de Medrano, S.: Intersections of quadrics, moment-angle manifolds and connected sums. Geom. Topol. 17, 1497–1534 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ziegler, Gunter M.: Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)

    Book  Google Scholar 

  21. Iriyeh, H.: Symplectic topology of Lagrangian submanifolds of \({\mathbb{C} }P^n\) with intermediate minimal Maslov numbers. Adv. Geom. 17, 247–264 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Limonchenko, I.: On higher Massey products and rational formality for moment-angle manifolds over multiwedges. Proc. Steklov Inst. Math. 305, 161–181 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Konstantinov, M., Smith, J.: Monotone Lagrangians in \({\mathbb{C} }P^{n}\) of minimal Maslov number \(n+1\). Math. Proc. Camb. Philos. Soc. 171, 1–21 (2020)

    Article  MATH  Google Scholar 

  24. Kotelskiy, A.: Minimal and Hamiltonian-minimal submanifolds in toric geometry. J. Symplectic Geom. 14, 431–448 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Krasnov, V.: On intersections of two real quadrics. Izvestiya Math. 82, 91–139 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Limonchenko, I.: Topology of moment-angle manifolds arising from flag nestohedra. Chin. Ann. Math. Ser. B 38, 1287–1302 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lopez de Medrano, S.: Topology of the intersection of quadrics in \({\mathbb{R} }^n\). Lect. Notes Math. 1370, 280–292 (1989)

    Article  MATH  Google Scholar 

  28. McGavran, D.: Adjacent connected sums and torus actions. Trans. Am. Math. Soc. 251, 235–254 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  29. Milnor, J., Stasheff, J.: Characteristic Classes. Princeton University Press (1974)

    Book  MATH  Google Scholar 

  30. Mironov, A.E.: New examples of Hamilton-minimal and minimal Lagrangian manifolds in \(C^n\) and \(CP^n\). Sbornik Math. 195, 89–102 (2004)

    Article  MathSciNet  Google Scholar 

  31. Mironov, A.E., Panov, T.E.: Intersections of quadrics, moment-angle manifolds, and Hamiltonian-minimal Lagrangian embeddings. Funct. Anal. Appl. 47, 38–49 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Oakley, J., Usher, M.: On certain Lagrangian submanifolds of \(S^2 \times S^2\) and \({\mathbb{C} }P^n\). Algebr. Geom. Topol. 16, 149–209 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Oh, Y.-G.: Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings. Int. Math. Res. Not. 1996, 305–346 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Oganesyan, V.: Monotone Lagrangian submanifolds of \({\mathbb{C} }^{n}\) and toric topology. Algebr. Geom. Topol. 22, 1017–1056 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  35. Oganesyan, V., Sun, Y.: Products and connected sums of spheres as monotone Lagrangian submanifolds. J. Geom. Phys. 163, 104–114 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Panov, T., Veryovkin, Y.: Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups. Sbornik Math. 201, 1582–1600 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Seidel, P.: Graded Lagrangian submanifolds. Bull. de la Societe Mathematique de France 128, 103–149 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sullivan, D.: Infinitesimal computations in topology. Publ. Mathematiques de l’I.H.E.S 47, 269–331 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vianna, R.: On exotic Lagrangian tori in \({\mathbb{C} }P^2\). Geom. Topol. 18, 2419–2476 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vianna, R.: Infinitely many exotic monotone Lagrangian tori in \({\mathbb{C} }P^2\). J. Topol. 9, 535–551 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Weibel, C.A.: An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

Download references

Acknowledgements

The author thanks Octav Cornea, Egor Shelukhin, Semyon Abramyan, Artem Kotelskiy, Ivan Limonchenko for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vardan Oganesyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oganesyan, V. Zoo of monotone Lagrangians in \({\mathbb {C}}P^n\). Sel. Math. New Ser. 29, 82 (2023). https://doi.org/10.1007/s00029-023-00881-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-023-00881-8

Keywords

Mathematics Subject Classification

Navigation