Skip to main content
Log in

On the slice genus of quasipositive knots in indefinite 4-manifolds

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let X be a closed indefinite 4-manifold with \(b_+(X) = 3 \; (\textrm{mod} \; 4)\) and with non-vanishing mod 2 Seiberg–Witten invariants. We prove a new lower bound on the genus of a properly embedded surface in \(X {\setminus } B^4\) representing a given homology class and with boundary a quasipositive knot \(K \subset S^3\). In the null-homologous case our inequality implies that the minimal genus of such a surface is equal to the slice genus of K. If X is symplectic then our lower bound differs from the minimal genus by at most 1 for any homology class that can be represented by a symplectic surface. Along the way, we also prove an extension of the adjunction inequality for closed 4-manifolds to classes of negative self-intersection without requiring X to be of simple type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baader, S., Feller, P., Lewark, L., Liechti, L.: On the topological \(4\)-genus of torus knots. Trans. Am. Math. Soc. 370(4), 2639–2656 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauer, S., Furuta, M.: A stable cohomotopy refinement of Seiberg–Witten invariants. I. Invent. Math. 155(1), 1–19 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauer, S.: A stable cohomotopy refinement of Seiberg–Witten invariants. II. Invent. Math. 155(1), 21–40 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boileau, M., Fourrier, L.: Knot theory and plane algebraic curves. Chaos Solitons Fractals 9(4–5), 779–792 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boileau, M., Orevkov, S.: Quasi-positivité d’une courbe analytique dans une boule pseudo-convexe. C. R. Acad. Sci. Paris Sér. I Math. 332(9), 825–830 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cavallo, A.: The concordance invariant tau in link grid homology. Algebr. Geom. Topol. 18(4), 1917–1951 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cochran, T.D., Harvey, S., Horn, P.: Filtering smooth concordance classes of topologically slice knots. Geom. Topol. 17(4), 2103–2162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Conway, A., Nagel, M.: Stably slice disks of links. J. Topol. 13(3), 1261–1301 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fintushel, R., Stern, R.J.: Immersed spheres in \(4\)-manifolds and the immersed Thom conjecture. Turk. J. Math. 19(2), 145–157 (1995)

    MathSciNet  MATH  Google Scholar 

  10. Furuta, M., Kametani, Y., Matsue, H.: H. Spin \(4\)-manifolds with signature \(=-32\). Math. Res. Lett. 8(3), 293–301 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Furuta, M., Kametani, Y., Matsue, H., Minami, N.: Homotopy theoretical considerations of the Bauer–Furuta stable homotopy Seiberg–Witten invariants. Proceedings of the Nishida Fest (Kinosaki 2003), pp. 155–166, Geom. Topol. Monogr., vol. 10, Geom. Topol. Publ., Coventry (2007)

  12. Furuta, M., Kametani, Y., Minami, N.: Stable-homotopy Seiberg–Witten invariants for rational cohomology \(K3\#K3\)’s. J. Math. Sci. Univ. Tokyo 8(1), 157–176 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Gompf, R.E., Stipsicz, A.: \(4\)-manifolds and Kirby calculus. Graduate Studies in Mathematics, vol. 20, xvi+558 pp. American Mathematical Society, Providence, RI (1999)

  14. Hamilton, M.J.D.: The minimal genus problem for elliptic surfaces. Israel J. Math. 200(1), 127–140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hedden, M.: Notions of positivity and the Ozsváth–Szabó concordance invariant. J. Knot Theory Ramif. 19(5), 617–629 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hedden, M., Raoux, K.: Knot Floer homology and relative adjunction inequalities. arXiv:2009.05462 (2020)

  17. Hom, J., Wu, Z.: Four-ball genus bounds and a refinement of the Ozsváth–Szabó tau invariant. J. Symplectic Geom. 14(1), 305–323 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Iida, N., Mukherjee, A., Taniguchi, M.: An adjunction inequality for the Bauer–Furuta type invariants, with applications to sliceness and \(4\)-manifold topology. arXiv:2102.02076 (2021)

  19. Kjuchukova, A., Miller, A.N., Ray, A., Sakallı, S.: Slicing knots in definite 4-manifolds. arXiv:2112.14596 (2021)

  20. Konno, H., Miyazawa, J., Taniguchi, M.: Involutions, knots, and Floer K-theory. arXiv:2110.09258 (2021)

  21. Kronheimer, P.B., Mrowka, T.S.: Gauge theory for embedded surfaces. I. Topology 32(4), 773–826 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kronheimer, P.B., Mrowka, T.S.: The genus of embedded surfaces in the projective plane. Math. Res. Lett. 1(6), 797–808 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Manolescu, C., Marengon, M., Piccirillo, L.: Relative genus bounds in indefinite four-manifolds. arXiv:2012.12270 (2020)

  24. Manolescu, C., Marengon, M., Sarkar, S., Willis, M.: A generalization of Rasmussen’s invariant, with applications to surfaces in some four-manifolds. Duke Math. J. (to appear). arXiv:1910.08195 (2019)

  25. Murasugi, K.: On a certain numerical invariant of link types. Trans. Am. Math. Soc. 117, 387–422 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nouh, M.A.: Genera and degrees of torus knots in \({\mathbb{C} }{\mathbb{P} }^2\). J. Knot Theory Ramif. 18(9), 1299–1312 (2009)

    Article  MATH  Google Scholar 

  27. Ozsváth, P., Szabó, Z.: The symplectic Thom conjecture. Ann. Math. (2) 151(1), 93–124 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ozsváth, P., Szabó, Z.: Knot Floer homology and the four-ball genus. Geom. Topol. 7, 615–639 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Plamenevskaya, O.: Bounds for the Thurston–Bennequin number from Floer homology. Algebr. Geom. Topol. 4, 399–406 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rudolph, L.: Algebraic functions and closed braids. Topology 22(2), 191–202 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rudolph, L.: Some topologically locally-flat surfaces in the complex projective plane. Comment. Math. Helv. 59(4), 592–599 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rudolph, L.: Quasipositivity as an obstruction to sliceness. Bull. Am. Math. Soc. (N.S.) 29(1), 51–59 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sato, K.: Topologically slice knots that are not smoothly slice in any definite \(4\)-manifold. Algebr. Geom. Topol. 18(2), 827–837 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Hokuto Konno for comments on a draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Baraglia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraglia, D. On the slice genus of quasipositive knots in indefinite 4-manifolds. Sel. Math. New Ser. 29, 61 (2023). https://doi.org/10.1007/s00029-023-00866-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-023-00866-7

Mathematics Subject Classification

Navigation