Skip to main content
Log in

On the affine Hecke category for \(SL_3\)

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study the diagrammatic Hecke category associated with the affine Weyl group of type \(\tilde{A}_2 \). More precisely we find a (surprisingly simple) basis in characteristic zero for the Hom spaces between indecomposable objects, that we call indecomposable double leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For \(n\le 3\) the elements \(y_n\) and \(z_n\) are not well-defined. However, for those n, the corresponding coefficients \(c_{n+1}\) and \(d_{n+1}\) in the projectors vanish.

References

  1. Batistelli, K., Bingham, A., Plaza, D.: Kazhdan–Lusztig polynomials for \(\tilde{B}_2\) (2021)

  2. Burrull, G., Libedinsky, N., Sentinelli, P.: \(p\)-Jones–Wenzl idempotents. Adv. Math. 352, 246–264 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Braden, T., MacPherson, R.: From moment graphs to intersection cohomology. Math. Ann. 321(3), 533–551 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dyer, M.: On some generalisations of the Kazhdan–Lusztig polynomials for “universal’’ Coxeter systems. J. Algebra 116(2), 353–371 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Elias, B., Libedinsky, N.: Indecomposable Soergel bimodules for universal Coxeter groups. Trans. Am. Math. Soc. 369(6), 3883–3910 (2017). (With an appendix by Ben Webster)

    Article  MathSciNet  MATH  Google Scholar 

  6. Elias, B.: Light ladders and clasp conjectures (2015)

  7. Elias, B.: The two-color Soergel calculus. Compos. Math. 152(2), 327–398 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elias, B., Williamson, G.: The Hodge theory of Soergel bimodules. Ann. Math. (2) 180(3), 1089–1136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elias, B., Williamson, G.: Soergel calculus. Represent. Theory 20, 295–374 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Libedinsky, N.: Sur la catégorie des bimodules de Soergel. J. Algebra 320(7), 2675–2694 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Libedinsky, N.: Light leaves and Lusztig’s conjecture. Adv. Math. 280, 772–807 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Libedinsky, N., Patimo, L., Plaza, D.: Pre-canonical bases on affine Hecke algebras (2021)

  13. Lascoux, A., Schützenberger, M.-P.: Sur une conjecture de H. O. Foulkes. C. R. Acad. Sci. Paris Sér. A-B 286(7), A323–A324 (1978)

    MathSciNet  MATH  Google Scholar 

  14. Lusztig, G., Williamson, G.: Billiards and tilting characters for \({{\rm SL}}_3\). SIGMA Symmetry Integrability Geom. Methods Appl. 14, 015 (2018)

    MATH  Google Scholar 

  15. Libedinsky, N., Williamson, G.: Kazhdan–Lusztig polynomials and subexpressions. J. Algebra 568, 181–192 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Patimo, L.: Bases of the intersection cohomology of Grassmannian Schubert varieties. J. Algebra 589, 345–400 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Plaza, D.: Graded cellularity and the monotonicity conjecture. J. Algebra 473, 324–351 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Riche, S., Williamson, G.: Tilting modules and the \(p\)-canonical basis. Astérisque 397, ix+184 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Soergel, W.: Kazhdan–Lusztig–Polynome und eine Kombinatorik für Kipp-Moduln. Represent. Theory 1, 37–68 (1997). ((electronic))

    Article  MathSciNet  MATH  Google Scholar 

  20. Soergel, W.: Kazhdan–Lusztig–Polynome und unzerlegbare bimoduln über polynomringen. J. Inst. Math. Jussieu 6(3), 501–525 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, L.: Kazhdan–Lusztig coefficients for an affine Weyl group of type \( \tilde{A}_2\) (2010)

  22. Williamson, G.: Singular Soergel bimodules. Int. Math. Res. Not. IMRN 20, 4555–4632 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Geordie Williamson for sharing with us theorem 1 (without a proof) and for suggesting Problem A for \(SL_3\). We thank the referee for the very thorough correction. The first author acknowledges the financial support of Fondecyt Proyecto Regular 1200061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Libedinsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Libedinsky, N., Patimo, L. On the affine Hecke category for \(SL_3\). Sel. Math. New Ser. 29, 64 (2023). https://doi.org/10.1007/s00029-023-00864-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-023-00864-9

Mathematics Subject Classification

Navigation