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Abstract
Fix a smooth, complete algebraic curve X over an algebraically closed field k of
characteristic zero. To a reductive group G over k, we associate an algebraic stack
ParG of quantum parameters for the geometric Langlands theory. Then we construct a
family of (quasi-)twistings parametrized by ParG , whose module categories give rise
to twisted D-modules on BunG as well as quasi-coherent sheaves on the DG stack
LocSysG .
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1 Introduction

1.1 The geometric Langlands conjecture

1.1.1. The goal of the Langlands program can be broadly described as to establish
a correspondence between automorphic forms attached to a reductive group G and
Galois representations valued in the Langlands dual group Ǧ.
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1.1.2. In the (global, unramified) geometric theory, we fix a smooth, connected, pro-
jective curve X over an algebraically closed field k. For simplicity, letG be a reductive
group over k (where “reductive” is meant to imply “connected”). Then automorphic
functions correspond to certain sheaves on the stack BunG parametrizing G-bundles
over X , and the role of Galois representations is played by local systems on X valued
in Ǧ, the Langlands dual group defined over a coefficient field E .

If we further specialize to the casewhere k is of characteristic zero, then it is possible
to take E = k and study the de Rham Ǧ-local systems on X . The latter also form a
moduli stack over k, denoted by LocSysǦ .
1.1.3.UnlikeBunG , the stackLocSysǦ is not smooth. Furthermore, it is aDGalgebraic
stack in general and the correct formulation of the geometric Langlands conjecture
has to take into account its DG nature.

After Arinkin and Gaitsgory [1], one conjectures an equivalence of DG categories:

LG : D-Mod(BunG)
∼−→ IndCohNilp(LocSysǦ). (1.1)

Here, the left-hand-side is the DG category of D-modules on BunG . The right-hand-
side is the DG category of ind-coherent sheaves on LocSysǦ whose singular support
is contained in the global nilpotent cone. This DG category is an enlargement of
QCoh(LocSysǦ), and the appearance of singular support is the geometric incarnation
of Arthur parameters.

1.2 What do wemean by“quantum”?

1.2.1. The quantum geometric Langlands theory seeks to simultaneously deform both
sides of (1.1) in a way to make them look more symmetric. The main idea, due to
Drinfeld and expounded on by Stoyanovsky [26] and Gaitsgory [14], is to consider
the DG category of twisted D-modules on BunG .

1.2.2. To explain this approach, let us temporarily assume thatG is simple.WriteLG,det
for the determinant line bundle over BunG associated to the adjoint representation.

To every value c ∈ k one can associate the DG category D-Modc(BunG) of D-
modules over BunG twisted by the ( c−h∨

2h∨ )th power of LG,det, where h∨ denotes the
dual Coxeter number of G.

Let r = 1, 2, or 3 be the maximal multiplicity of arrows in the Dynkin diagram of
G. One expects an equivalence of DG categories:

L
(c)
G : D-Modc(BunG)

∼−→ D-Mod− 1
rc (BunǦ) (1.2)

The equivalence L
(c)
G should vary “continuously” in c, and “degenerate” to (1.1) as c

tends to zero.1 For a survey on the conjecture (1.2), see [23].

1 Indeed, the left-hand-side of (1.1) should more naturally be the DG category of L− 1
2

G,det-twisted D-
modules, otherwise known asD-modules at the critical level. The two DG categories are equivalent by the
existence of the Pfaffian.
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1.2.3. We remark that the conjecture (1.2) is made prior to the formulation of (1.1). It
must also be corrected by a renormalization procedure, analogous to the replacement
of QCoh(LocSysǦ) by IndCohNilp(LocSysǦ).

The renormalized DG categories D-Modcren(BunG) have different behaviors
depending on the rationality and positivity of c, and we do not know how to fit them
in a family.

1.2.4. In the present article, we fulfill a more modest goal: we make precise the degen-
eration ofD-Modc(BunG) to QCoh(LocSysG) by constructing a quasi-coherent sheaf
of DG categories over a space of quantum parameters, but we do not take into account
the renormalization mentioned above.

1.3 What’s in this article?

1.3.1. Let us admit right away that whenG is simple, the space of quantum parameters
is just a copy of P

1, and when the genus of the curve X is at least 2, the stack LocSysG
is classical. In this case, the P

1-family of DG categories has already been constructed
by Stoyanovsky [26], making use of the line bundle LG,det.

1.3.2. In the present article, we construct the space of quantum parameters and an
analogous degeneration for a reductive group G. However, our construction proceeds
along totally different lines from [26]. This departure in point of view is motivated by
the following considerations:

(a) In the study of the Langlands correspondence forG, an instrumental role is played
by its Levi subgroups M . The relationship between G and M is codified by the
constant term functors (and their adjoints, the Eisenstein series functors). Even for
simple G, the constant term functor carriesD-Modc(BunG) to a twisted category
of D-modules on BunM which does not arise from the determinant line bundle
(see [13, Sects. 3.3–3.4] for example).
It is desirable, therefore, to include these additional twists into the space of quan-
tum parameters for M . Our construction achieves this in a natural way. For a
reductive group G, our space of quantum parameters consists of a pair (gκ , E),
where gκ is a generalized symmetric bilinear form on the Lie algebra g of G, and
E is an additional parameter which depends on the center of G as well as the
curve X .

(b) The DG nature of LocSysG requires us to consider generalizations of rings of
twisted differential operators (TDOs) whose underlying O-modules are chain
complexes. It is a priori unclear how to even define such gadgets, because chain
complexes interact poorly with explicit formulas. To circumvent this, we make a
geometric construction using the recent theory of derived formal moduli problems
developed by Lurie, Gaitsgory, and Rozenblyum.
More precisely, [17] introduces a theory of twistings which gives the derived gen-
eralization of a ring of TDOs. (We call the latter classical twistings). We introduce
the notion of a quasi-twisting which incorporates commutative degenerations of
twistings.
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1.3.3. Driven by these considerations, we give a construction which completely dis-
penses of the line bundle LG,det and contains more information as soon as the center
of G is nontrivial. The key steps in this construction are summarized by the following
chart:2

{
quantum

parameter (gκ , E)

}
�

{
Lie- ∗ algebra
ĝ
(κ,E)

D over X

}

�
{
classical quasi-twisting
T̃ (κ,E)
G over BunG,∞x

}
�

{
quasi-twisting

T (κ,E)
G over BunG

}
.

The family of DG categories ultimately arises as the module category of T (κ,E)
G , as

we vary the quantum parameter (gκ , E). The family of quasi-twistings T (κ,E)
G is the

central object defined and studied in this article.

1.4 Organization of this article

1.4.1. We start in Sect. 2 with the definition of ParG , the space of quantum parameters.
It is a fiber bundle over a compactification of Sym2(g∗)G , with fibers being vector
stacks describing the “additional parameters.”

The aforementioned compactification of Sym2(g∗)G is simply the space of G-
invariant Lagrangian subspaces of g ⊕ g∗, where a G-invariant symmetric bilinear
form embeds as its graph. The level “at ∞” is understood as the Lagrangian subspace
g∞ := 0 ⊕ g∗.

1.4.2 The main idea

Let us take a k-point in ParG , which is a Lagrangian subspace gκ ⊂ g ⊕ g∗ together
with an additional parameter E (see Sect. 2.4.1 where it is defined). Using the theory
of Lie-∗ algebras developed in [3], we construct a central extension

0 → OBunG,∞x → L̂(κ,E) → Lκ → 0 (1.3)

of Lie algebroids over the scheme BunG,∞x parametrizing G-bundles trivialized over
the formal neighborhood Dx of a fixed closed point x ∈ X . We refer to central
extensions of Lie algebroids as classical quasi-twistings.

For gκ arising from a symmetric bilinear form, the reduced universal envelope of
(1.3):

Ured(L̂(κ,E)) := U(L̂(κ,E))/(1 − 1)

defines a TDO over BunG,∞x . At (gκ , E) = (g∞, 0), the algebra Ured(L̂(∞,0))

becomes commutative, and identifies with the ring of functions on the ind-scheme

2 For objects that depend on gκ (resp. (gκ , E)), we only retain the character κ (resp. (κ, E)) in the notation.
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LocSysG,∞x (X − {x}) parametrizing a point (PT , η) ∈ BunG,∞x together with a
connection ∇ over PT |X−{x}.

To obtain a central extension of Lie algebroids over BunG , we “descend” (1.3)
along the torsor BunG,∞x → BunG .

1.4.3 The main challenge

There is, however, a caveat in what it means to “descend” the classical quasi-twisting
(1.3). We need a procedure that simultaneously does the following:

(a) For gκ arising from a symmetric bilinear form, it performs the strong quotient of
a ring of TDOs, in the sense of [2];

(b) For gκ = g∞, it transforms (the ring of functions over) LocSysG,∞x (X−{x}) into
the DG stack LocSysG , a procedure usually understood as symplectic reduction.

It turns out that one needs to form what we call the quotient of a classical quasi-
twisting. In general (and in the way we will apply it), this notion belongs to the DG
world, i.e., the quotient of a classical quasi-twisting may cease to be classical.

1.4.4. A (non-classical) quasi-twisting over a finite type scheme Y is defined as a
Ĝm-gerbe in the ∞-category of formal moduli problems under Y . They make up the
geometric theory of central extensions of Lie algebroids over Y , and are studied in
Sect. 3. The theory of quasi-twistings is made possible by the machinery of formal
groupoids and formal moduli problems, as developed in [18].

The quotient of quasi-twistings fits into the general paradigm of taking the quotient
of an inf-scheme by a group inf-scheme. The latter procedure is rather elaborate, as it
mixes prestack quotient with formal groupoid quotient. This is the content of Sect. 4.

1.4.5. Finally, we need to deal with the technical annoyance that the theory of [18] is
built for prestacks locally (almost) of finite type, whereas BunG,∞x is of infinite type.
Hence the actual quotient process has to be performed in two steps, one classical and
one geometric, along the torsors:

Bun(≤θ)
G,∞x → Bun(≤θ)

G,nx → Bun(≤θ)
G ,

where Bun(≤θ)
G is a Harder-Narasimhan truncation of BunG and n is sufficiently large

so that Bun(≤θ)
G,nx is a scheme (of finite type). For this reason, we need to prove a

number of results communicating between the classical and derived worlds in Sect. 3
and Sect. 4. It is the author’s hope that an extension of [18] to∞-dimensional algebraic
geometry will render this trick obsolete.

1.4.6 The main results

In Sect. 5, we perform the main construction of the quasi-twisting T (κ,E)
G over BunG

and check that it gives rise to DG categories of twisted D-modules when gκ is the
graph of a bilinear form and E = 0.
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Finally, in Sect. 6, we show that the DG category of modules over T (∞,0)
G is equiva-

lent to QCoh(LocSysG). We end the article with remarks on the “meaning” of certain
additional parameters at level ∞.

1.5 Quantum versus metaplectic parameters

1.5.1. There is another approach of deforming the DG categoryD-Mod(BunG)3 under
the name “metaplectic geometric Langlands program” (see [16], for example). We
briefly explain the relation between metaplectic and quantum parameters.

For simplicity, let us focus on the points (gκ , E) of ParG where gκ arises from a
symmetric bilinear form. Such quantum parameters form an open substack isomorphic
to Sym2(g∗)G ×Ext1(zG ⊗OX , ωX ), and the quasi-twistings on BunG they produce
are in fact twistings.

1.5.2. Metaplectic parameters give rise to gerbes, as opposed to twistings, on BunG .
Having chosen D-modules as our sheaf-theoretic context, a gerbe on a prestack Y
refers to a map from YdR to B2

Gm . Note that a gerbe on BunG is sufficient to form
the DG category of twisted D-modules, but the additional data included in a twisting
equip this DG category with a forgetful functor to QCoh(BunG).

Unlike the metapletic geometric Langlands program, which has incarnations in
various sheaf-theoretic contexts, the quantum geometric Langlands program is limited
to the case of D-modules. (However, it seems that the restriction char(k) = 0 is not
necessary, in light of the recent work of Travkin [28]).

1.5.3. By analogy with the �-adic context, gerbes are supposed to be “topological”
gadgets. However, the existence of the exponential local system on A

1 shows that the
above definition of a gerbe is too naïve. In order to retain only topological information,
we ought to adjust the definition of a gerbe slightly, as a (2-)torsor over the groupoid
of regular singular local systems. However, we will ignore this subtlety for now.

1.5.4. Let GrG denote the affine Grassmannian associated to G, regarded as a fac-
torization prestack over the Ran space of X . Conjecturally, the spaces of quantum,
respectively metaplectic, parameters have the following intrinsic meanings: they
are the moduli spaces of factorization twistings, respectively gerbes, on GrG . The
corresponding objects on BunG arise from their descent along the canonical map
GrG → BunG .

Furthermore, there is a fiber sequence of Picard groupoids, relating factorization
line bundles, twistings, and gerbes on the affine Grassmannian:

Picfact(GrG) → Twfact(GrG) → Gefact(GrG). (1.4)

The three items of this fiber sequence stem from apparently different sources:

1.5.5. Since the first preprint of the present paper appeared in 2017, several new devel-
opments have contributed to a better understanding of these parameters. Let us briefly

3 Or in the context of curves over Fp , the category of �-adic sheaves on BunG .



Quantum parameters of the geometric Langlands theory Page 7 of 73 66

Algebro-geometric Differential-geometric Topological

Picfact(GrG ) Twfact(GrG ) Gefact(GrG )

K-theoretic parameters Quantum parameters Metaplectic parameters

report on them. The first one is a precise relationship between the K-theoretic param-
eters, first studied by Brylinski–Deligne [6], and factorization line bundles [15][27].
The second is a precise formulation of “topological” gerbes in the de Rham context
and the classification of factorization de Rham gerbes on GrG [29]. In the �-adic con-
text, the analogous classification theorem now has two proofs (see [29] and the new
version of [16]).

Finally, it is pointed out by an anonymous referee that the space of quantum param-
eters defined in this paper can be further enlarged to include the “semi-classical”
degeneration of the geometric Langlands theory (from D-Modc(BunG), as well as
QCoh(LocSysG) to the DG category of quasi-coherent sheaves on the cotangent stack
T∗ BunG ). The semi-classical limit has featured in the works of Donagi–Pantev [9]
(over C) and Bezrukavnikov–Braverman [5] (in characteristic p).

Notations

Throughout this article, we work over an algebraically closed ground field k of charac-
teristic zero. We write X for a smooth, connected, projective curve and G a reductive
group over k (where “reductive” is meant to imply connected). The Lie algebra of G
is denoted by g. Notations particular to each section will be explained as they appear.

2 The space of quantum parameters

In this section, we define the smooth algebraic stack ParG of quantum parameters for
the geometric Langlands theory. We will define a natural isomorphism ParG

∼−→ ParǦ ,
and explain how ParG behaves when we change G into the Levi quotient M of a
parabolic of G.

2.1 The base scheme of ParG

2.1.1. The space of quantum parameters ParG will be an algebraic vector stack over
a smooth projective scheme. We begin by defining the base scheme of ParG , which
will be a compactification of the vector scheme of G-invariant symmetric bilinear on
g. Its existence is based on the following fact.

Lemma 2.1 Let (V , ω) be a symplectic vector space. The presheaf which sends an
affine scheme S to the set of Lagrangian subbundles of V ⊗ OS is representable by a
connected, smooth, projective scheme.
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Proof Let n := dim(V )/2 which is an integer. The presheaf of Lagrangian subbundles
of V ⊗OS is a closed subfunctor of that of n-dimensional subbundles of V ⊗OS . The
latter presheaf is represented by the Grassmannian Gr(n, V ). Hence the former is rep-
resented by a projective scheme, to be denotedGrLag(V ). The smoothness ofGrLag(V )

follows from a standard calculation of its cotangent complex (details omitted).
To show that GrLag(V ) is connected, we observe that the symplectic group Sp(V )

acts on GrLag(V ). For a fixed k-point L of GrLag(V ), the map Sp(V ) → GrLag(V )

induced from acting on L is surjective on k-points. Since Sp(V ) is connected, so is
GrLag(V ). 
�

2.1.2. Consider the symplectic form on g ⊕ g∗ defined by the pairing:

〈ξ ⊕ ϕ, ξ ′ ⊕ ϕ′〉 := ϕ(ξ ′) − ϕ′(ξ). (2.1)

Let GrLag(g⊕ g∗) denote the scheme parametrizing Lagrangian subspaces of g⊕ g∗.
(It represents the presheaf in Lemma 2.1). The reductive groupG acts on g⊕g∗ via the
direct sum of the adjoint and coadjoint actions. This action preserves the symplectic
form (2.1). Hence, we obtain a G-action on GrLag(g ⊕ g∗). Thanks to the hypothesis
char(k) = 0, the group G is linearly reductive. Hence the G-fixed point scheme:

GrGLag(g ⊕ g∗) ⊂ GrLag(g ⊕ g∗)

remains smooth, by the classical theorem of Iversen [19, Proposition 1.3]. We will
denote an S-point of GrGLag(g ⊕ g∗) by gκ , regarded as a Lagrangian subbundle of
(g ⊕ g∗) ⊗ OS stable under the G-action.

2.1.3. Let Sym2(g∗)G denote the vector space ofG-invariant symmetric bilinear forms
on g, regarded as a vector scheme. There is a morphism of schemes:

Sym2(g∗)G → GrGLag(g ⊕ g∗) (2.2)

sending a form κ , viewed as a linear map κ : g → g∗, to its graph gκ . The morphism
(2.2) is an open immersion, whose image consists of those subbundles gκ ⊂ (g ⊕
g∗) ⊗ OS for which the projection to g ⊗ OS is an isomorphism.

2.1.4. We will use the following notations for special points of GrGLag(g ⊕ g∗):

(a) g∞ denotes the k-point g∗ of GrGLag(g ⊕ g∗);
(b) gcrit is the graph of the critical form crit := − 1

2 Kil, where Kil is the Killing form
of g.

(c) for every S-point gκ of GrGLag(g⊕g∗), the notation gκ−crit denotes the Lagrangian
subbundle of (g ⊕ g∗) ⊗ OS defined by the property:

ξ ⊕ ϕ ∈ gκ ⇐⇒ ξ ⊕ (ϕ − crit(ξ)) ∈ gκ−crit.
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Remark 2.2 Note that if κ ∈ Sym2(g∗)G , then gκ−crit is the graph of κ − crit, so the
above notation is unambiguous; we also have g∞−crit = g∞.

Remark 2.3 More generally, one may replace gκ−crit in the above construction by
gκ+κ0 for any κ0 ∈ Sym2(g∗)G . This construction defines an action of Sym2(g∗)G on
GrGLag(g ⊕ g∗) that extends the addition on Sym2(g∗)G .

2.2 Decomposition into simple factors

2.2.1. Let g = z⊕∑
i gi be the decomposition of g into its center z and simple factors

gi . In this subsection, we study how GrGLag(g ⊕ g∗) interacts with this direct sum
decomposition. Combined with some knowledge of this space for a simple group, we
will be able to describe GrGLag(g ⊕ g∗) much more explicitly. First, we begin with a
lemma on the level of k-points.

Lemma 2.4 Any Lagrangian, G-invariant subspace L ↪→ g ⊕ g∗ takes the form L =
Lz ⊕ ∑

i Li where:

(a) Lz is a Lagrangian subspace of z ⊕ z∗;
(b) each Li is a Lagrangian, G-invariant subspace of gi ⊕ g∗

i .

Proof Thedecomposition ofg induces a decompositiong⊕g∗ = (z⊕z∗)⊕∑
i (gi⊕g∗

i )

where the summands aremutually orthogonalwith respect to the symplectic form (2.1).
We may also decompose L = Lz ⊕ ∑

j L j , where Lz is the G-fixed subspace and
each L j is irreducible. Obviously, the embedding L ↪→ g ⊕ g∗ sends Lz into z ⊕ z∗
as an isotropic subspace.

We claim that each embedding L j ↪→ g⊕ g∗ factors through gi ⊕ g∗
i for a unique

i . In other words, the composition L j ↪→ g ⊕ g∗ � gi ⊕ g∗
i must vanish for all but

one i . Suppose, to the contrary, we have i �= i ′ such that both

L j → gi ⊕ g∗
i , and L j → gi ′ ⊕ g∗

i ′

are nonzero. Without loss of generality, we may assume that the projections onto the
first factors L j → gi , L j → gi ′ are nonzero. Hence we have

(a) L j ∼= gi ∼= gi ′ as G-representations; and
(b) the image of L j under the projection g⊕ g∗ � gi ⊕ gi ′ is a G-invariant subspace

with nonzero projection onto both factors.

The second statement implies that this image is the entire space gi ⊕gi ′ , contradicting
the equality dim(L j ) = dim(gi ) from the first statement. This prove the claim.

Now, suppose j �= j ′ and both embeddings L j , L j ′ ↪→ g ⊕ g∗ factor through the
same gi ⊕ g∗

i . This is obviously impossible since L j ⊕ L j ′ ↪→ g ⊕ g∗ would factor

through an isomorphism L j ⊕ L j ′
∼−→ gi ⊕ g∗

i , so it is not isotropic. We conclude that
there is a bijection between the sets {L j } and {gi ⊕ g∗

i } such that each L j ↪→ g ⊕ g∗
factors through the corresponding item gi ⊕ g∗

i .
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Finally, since each L j is an isotropic subspace of gi ⊕ g∗
i , we have:

dim(g) = dim(Lz) +
∑
j

dim(L j ) ≤ dim(z) +
∑
i

dim(gi ) = dim(g).

Hence the equality is achieved, and each L j (resp. Lz) is a Lagrangian subspace of
gi ⊕ g∗

i (resp. z ⊕ z∗). 
�
Corollary 2.5 Let L be a Lagrangian, G-invariant subspace of g⊕ g∗. Then there is a
(non-canonical) isomorphism L

∼−→ g of G-representations. 
�
Note that we have an obvious morphism:

GrLag(z ⊕ z∗) ×
∏
i

GrGLag(gi ⊕ g∗
i ) → GrGLag(g ⊕ g∗) (2.3)

sending a series of vector bundles zκ , {gκ
i } over S to their direct sum zκ ⊕∑

i g
κ
i , which

is a subbundle of (g ⊕ g∗) ⊗ OS .

Corollary 2.6 The morphism (2.3) is an isomorphism.

Proof Indeed, (2.3) is a propermorphism between smooth schemes. Lemma 2.4 shows
that it is bijective on k-points, so in particular quasi-finite, and therefore finite (by
properness). A finite morphism of degree 1 between smooth schemes is an isomor-
phism. 
�

2.2.2. To proceed furthermore, let us note that any G-invariant symmetric bilinear
form κi on gi defines an isomorphism A

1 ∼−→ Sym2(g∗
i )

G , sending c to the form cκi .
This isomorphism extends to a map:

P
1 → GrGLag(gi ⊕ g∗

i ), c � gcκi . (2.4)

In fact, an argument analogous to the proof of Corollary 2.6 shows that (2.4) is an
isomorphism. Combining with the isomorphism (2.3), we see that GrGLag(g ⊕ g∗) is
non-canonically isomorphic to the product of a LagrangianGrassmannianwith finitely
many copies of P

1, one for each simple factor of g.

2.3 Reduction to Z(G)

2.3.1. We will now work towards the definition of ParG , which is a vector stack over
GrGLag(g⊕ g∗). The fibers of this vector stack are the so-called additional parameters.
They will only come into play when the center Z(G) is nontrivial. In this subsection,
we focus on the central component of GrGLag(g ⊕ g∗) with respect to the product
decomposition (2.3).

2.3.2. Consider the projection map (whose existence owes to Corollary 2.6):

GrGLag(g ⊕ g∗) → GrLag(z ⊕ z∗) (2.5)
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Note that z is identified with the subspace of G-invariants of g. Although z∗ is more
naturally the space ofG-coinvariants of g∗, wewill identify it with the invariants (g∗)G
via the isomorphism (g∗)G ↪→ g∗ � z∗.

More intrinsically, the morphism (2.5) is defined on S-points by:

gκ � (gκ)G := gκ ∩ ((z ⊕ z∗) ⊗ OS).

where (z⊕ z∗)⊗OS is regarded as a submodule of (g⊕g∗)⊗OS . In particular, (gκ)G

may be viewed as a submodule of gκ .

Remark 2.7 We refer to (gκ)G as theG-invariants of gκ . The same terminology is used
in the sequel when we replace G by a different group H and gκ by an H -invariant
subspace of V ⊕ V ∗, where V is any H -representation for which the composition
(V ∗)H ↪→ V ∗ � (V H )∗ is an isomorphism.

Remark 2.8 Since crit vanishes on z, the submodules (gκ−crit)G, (gκ)G ⊂ (z⊕z∗)⊗OS

are equal for any gκ .

2.3.3. Since the embedding z ↪→ g canonically splits with kernel gs.s. := [g, g], there
is a surjection (g⊕ g∗)⊗OS � (z⊕ z∗)⊗OS . Under this surjection, the image of gκ

is identified with (gκ)G , and the composition (gκ)G ↪→ gκ � (gκ)G is the identity.
In other words,

Lemma 2.9 The morphism (gκ)G ↪→ gκ canonically splits. 
�

We denote the complement of (gκ)G in gκ by gκ
s.s.. The decomposition:

gκ ∼= (gκ)G ⊕ gκ
s.s.

mimics the decomposition of g into its center and its semisimple part.

2.4 Definition of ParG

2.4.1. We are now ready to define the stack ParG of quantum parameters. For an
affine shceme S, the groupoid Maps(S,ParG) consists of pairs (gκ , E), where gκ is
an S-point of GrGLag(g ⊕ g∗), and E is an extension of OX -modules:

0 → ωX /S → E → (gκ)G � OX → 0. (2.6)

Here, X := S × X , and ωX /S
∼= OS � ωX is the relative dualizing sheaf.

In other words, ParG is a fiber bundle over GrGLag(g⊕ g∗), whose fiber at a k-point
gκ is the vector stack Ext((gκ)G � OX , ωX ) of extensions over X . We think of gκ as
a generalized symmetric bilinear form on g and E as an additional parameter.
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Remark 2.10 The substack of ParG corresponding to the points (gκ , E)where gκ arises
from a bilinear form conjecturally parametrizes factorization twistings on the affine
GrassmannianGrG , subject to a certain regularity condition (see Sect. 1.5). Hence, one
may view ParG as a (partial) compactification of the stack of factorization twistings.
We hope to address this conjecture in a forthcoming work.

2.5 Langlands duality of ParG

2.5.1. We now fix a maximal torus T ↪→ G. Let Ǧ denote the Langlands dual group
of (G, T ). Namely, it is a pinned reductive group over k whose root datum is dual to
that of (G, T ). In particular, Ǧ comes with a maximal torus Ť ⊂ Ǧ dual to T .

2.5.2. Let W := NG(T )/T denote the Weyl group of (G, T ). It acts on t ⊕ t∗ in the
standard way. There is a symplectic isomorphism:

t ⊕ t∗ ∼−→ ť ⊕ ť∗, ξ ⊕ ϕ � ϕ ⊕ (−ξ) (2.7)

defined using the canonical identifications t∗ ∼−→ ť and t
∼−→ ť∗. Furthermore, (2.7)

intertwines theW and W̌ actions (again, under the canonical identificationW
∼−→ W̌ ).

Remark 2.11 The sign (2.7) is needed to match up the symplectic forms. On the other
hand, the conjectural quantum Langlands correspondence is an equivalence between a
positively twisted category of D-modules on BunG and a negatively twisted category
of D-modules on BunǦ . This change of signs is reflected in the identification (2.7).

2.5.3. Let GrWLag(t ⊕ t∗) denote the scheme parametrizing W -invariant, Lagrangian
subspaces of t⊕ t∗. It is connected, smooth, and projective, thanks to Lemma 2.1 and
the fact that W is a finite group. The isomorphism (2.7) induces an isomorphism:

GrWLag(t ⊕ t∗) ∼−→ GrW̌Lag(ť ⊕ ť∗). (2.8)

We denote the image of tκ under (2.8) by ťκ̌ , and view it as the dual of the generalized
bilinear form tκ . Note that Sym2(t∗)W is not preserved under the duality (2.8).

2.5.4. We define a morphism (the “naïve reduction”)

GrGLag(g ⊕ g∗) → GrWLag(t ⊕ t∗) (2.9)

by sending an S-point gκ to (gκ)T , the T -invariants of gκ . An argument similar to the
one in §2.3.2 shows that we have a well-defined map GrGLag(g⊕ g∗) → GrLag(t⊕ t∗);
it is clear that the image lies in the W -fixed locus.

Lemma 2.12 The morphism (2.9) is an isomorphism.
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Proof Indeed, a decomposition of g = z⊕∑
i gi into simple factors induces a decom-

position t = z ⊕ ∑
i ti , where each ti is the maximal torus of the factor gi . Note that

ti is irreducible as a W -representation. An analogue of Corollary 2.6 asserts an iso-
morphism GrWLag(t⊕ t∗) ∼−→ GrLag(z⊕ z∗)×∏

i Gr
W
Lag(ti ⊕ t∗i ), making the following

diagram commute:

GrGLag(g ⊕ g∗) (2.9)
∼

GrWLag(t ⊕ t∗)

∼

GrLag(z ⊕ z∗) × ∏
i Gr

G
Lag(gi ⊕ g∗

i ) GrLag(z ⊕ z∗) × ∏
i Gr

W
Lag(ti ⊕ t∗i ).

Note that the bottom arrow is an isomorphism since the choice of a G-invariant,
symmetric bilinear form on gi (hence a W -invariant form on ti ) identifies both
GrGLag(gi ⊕ g∗

i ) and GrWLag(ti ⊕ t∗i ) with P
1 (see Sect. 2.2.2). 
�

Remark 2.13 Using T , we may also rewrite (2.5) as the two-step procedure of first
taking T -invariants and then taking W -invariants:

(gκ)G
∼−→ ((gκ)T )W .

This isomorphism again follows from the description of fibers of gκ in Lemma 2.4.

2.5.5. We will consider a slight variant of the isomorphism (2.9) which takes into
account the critical shift (the “critically-shifted reduction”):

GrGLag(g ⊕ g∗) ∼−→ GrWLag(t ⊕ t∗), gκ � (gκ−crit)T . (2.10)

There is an isomorphism between GrGLag(g ⊕ g∗) and the corresponding space for Ǧ,
making the following diagram commute:

GrGLag(g ⊕ g∗) ∼

(2.10)

GrǦLag(ǧ ⊕ ǧ∗)
(2.10) for Ǧ

GrWLag(t ⊕ t∗) (2.8)

∼ GrW̌Lag(ť ⊕ ť∗)

We denote the image of gκ in GrǦLag(ǧ⊕ ǧ∗) by ǧκ̌ . The generalized bilinear forms gκ

and ǧκ̌ are supposed to be intertwined by the geometric Langlands correspondence.
They have a built-in critical shift.

2.5.6. Using the identification (gκ−crit)G ∼= (gκ)G (see Remark 2.8), we see that an
extension E of (gκ)G � OX by ωX /S (see (2.6)) is equivalent to an extension Ě of
(ǧκ̌ ) � OX by ωX /S . Indeed, the following OS-modules are all isomorphic:

(gκ)G
∼−→ (gκ−crit)G ∼= (ǧκ̌−crit)Ǧ

∼←− (ǧκ̌ )Ǧ,
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where the middle isomorphism comes from the identification of (gκ−crit)T and

(ǧκ̌−crit)Ť under (2.8). This observation implies:

Lemma 2.14 There is a canonical isomorphism of algebraic stacks:

ParG
∼−→ ParǦ, (gκ , E) � (gκ̌ , Ě). (2.11)

We refer to (2.11) as the Langlands duality for the space of quantum parameters ParG .

Example 2.15 Suppose G is simple, and we fix a k-valued parameter (gκ , 0) of ParG
corresponding to some bilinear form κ on g. Then κ = λ ·KilG for some λ ∈ k. Write
λ = (c − h∨)/2h∨ for some c ∈ k, where h∨ denotes the dual Coxeter number of G.
Under the isomorphism (2.11), (gκ , 0) corresponds to the parameter (ǧκ̌ , 0).

Assume c �= 0. Then we claim that ǧκ̌ arises from the bilinear form κ̌ defined by
the formulae:

κ̌ = λ̌ · KilǦ, λ̌ = (− 1

rc
− h)/2h, (2.12)

where r = 1, 2 or 3 denotes the maximal multiplicity of arrows in the Dynkin diagram
of G.4 Indeed, to see that ǧκ̌ is given by the formulas (2.12), one first notes that
(1/2h∨) · KilG is the “minimal” W -invariant bilinear form minG on t, defined by the
property that the short coroot has self-pairing 2. Hence, κ is equal to c ·minG + critG .
Likewise, κ̌ is equal to − 1

rc · minǦ + critǦ . We then appeal to the fact that r is the
ratio of the self-pairing of long and short roots ofG (under anyW -invariant symmetric
bilinear form).

2.6 Parabolics and anomalies

2.6.1. We now explain how to incorporate, via an additional parameter, the anomaly
term that appears in the study of constant term functors (see [13, Sect. 3.3–3.4]). In
op.cit., the anomaly term is introduced to compare the constant term functor on D-
modules on BunG with the BRST reduction functor on the representation category of
Kac–Moody Lie algebra associated to g.

The appropriately defined constant term functor for D-modules does not go from
D-Modκ(BunG) toD-Modκ−crit(BunT ) (shift by the critical level of G), but rather to
the latter category twisted with a specific line bundle on BunT , namely the Tate line
bundle.

The observation relevant for us is that this line bundle on BunT can be viewed
as being attached to a quantum parameter for the reductive group T , in the form of
an additional parameter in the sense of §2.4.1. Thus, the constant term morphism

4 These are the numerics which appear in the typical formulation of the quantumLanglands correspondence
for simple groups, see [23, Sect. 2] for example. Note that the critical shift is often omitted as the determinant
line bundle on BunG admits a square root.
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ParG → ParT we shall presently build takes (gκ , E) to ((gκ−crit)T , EG→T ), where
the second term EG→T accounts for the anomaly term.

2.6.2. In this subsection, we fix two additional pieces of structure:

(a) a Borel subgroup B ⊂ G containing T ;
(b) a theta characteristic on the curve X , i.e., a line bundle θ together with an iso-

morphism θ⊗2 ∼−→ ωX .

The term standard parabolic refers to a parabolic subgroup P ⊂ G containing B.

2.6.3. Let P be a standard parabolic.Denote byM its Levi quotient,which is a reductive
group. The canonical map from T to M realizes T as a maximal torus of M . TheWeyl
group WM of (M, T ) can be identified with a subgroup of W .

Since z ∼= tW and zM ∼= tWM , there is a canonical embedding z ↪→ zM . We
claim that this embedding is canonically split. Indeed, this is because the composition
Z0(G) ↪→ G � G/[G,G] is an isogeny, so it gives rise to the projection zM → z.
It follows that we have a canonical map from the WM -invariants of t ⊕ t∗ to its W -
invariants:

zM ⊕ z∗M → zG ⊕ z∗G . (2.13)

In particular, given any Lagrangian, W -invariant subbundle tκ ⊂ (t ⊕ t∗) ⊗ OS , we
have a morphism of OS-modules:

(tκ)WM → (tκ)W . (2.14)

This morphism is compatible with (2.13) in the sense they intertwine the inclusion of
(tκ)WM into zM ⊕ z∗M (resp. of (tκ)W into zG ⊕ z∗G ).

2.6.4. There is a reduction morphism (“critically-shifted reduction” for M):

GrGLag(g ⊕ g∗) → GrMLag(m ⊕ m∗), (2.15)

defined by the composition:

GrGLag(g ⊕ g∗) ∼−→ GrWLag(t ⊕ t∗) ↪→ GrWM
Lag (t ⊕ t∗) ∼←− GrMLag(m ⊕ m∗)

where the isomorphisms are supplied by the critically-shifted reductions (2.10) for G,
respectivelyM . In other words, the image of gκ under (2.15) is an S-pointmκ such that
(mκ−crit)T and (gκ−crit)T are canonically isomorphic as subbundles of (t⊕ t∗)⊗OS .5

The morphism (2.15) includes (2.10) as a special case.

2.6.5. Let Z0(M) denote the neutral component of the center of M . Write 2ρ̌M for the
character of Z0(M) determined by the representation det(nP ), where nP is the Lie
algebra of the unipotent part of P . Let Ž0(M) denote the dual torus of Z0(M). We

5 Here, mκ−crit is defined with reference to the critical form on m (as opposed to g).
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use ω
ρ̌M
X to denote the Ž0(M)-bundle on X induced from θ under 2ρ̌M (regarded as a

cocharacter of Ž0(M)). Then the Atiyah bundle of ω
ρ̌M
X fits into an exact sequence:

0 → z∗M ⊗ OX → At(ωρ̌M
X ) → TX → 0.

Its monoidal dual gives rise to an extension of OX -modules for every S (recall the
notation X := S × X ):

0 → ωX /S → OS � At(ωρ̌M
X )∗ → (zM ⊗ OS) � OX → 0. (2.16)

For each S-pointmκ of GrMLag(m⊕m∗), we let E+
G→M denote the extension of (mκ)M

induced from (2.16) along the canonical map, pulled back along X → S:

(mκ)M ↪→ (zM ⊕ z∗M ) ⊗ OS � zM ⊗ OS .

The additional parameter E+
G→M is the anomaly term at level mκ .

2.6.6. The reduction morphism for quantum parameters is defined by (“constant term
morphism” for the space of quantum parameters):

CTP : ParG → ParM , (gκ , E) � (mκ , EG→M ) (2.17)

wheremκ is the image of gκ under (2.15), and EG→M is the Baer sum of the following
two extensions of (mκ)M :

(a) an extension induced from E (which is an extension of (gκ)G ) via the map:

(mκ)M
∼−→ (mκ−crit)M → (gκ−crit)G

∼−→ (gκ)G,

where themap in themiddle comes from (2.14) for tκ := (mκ−crit)T ∼= (gκ−crit)T ;
(b) the anomaly term E+

G→M at level mκ .

Remark 2.16 The image of (g∞, E) under CTP agrees with (m∞, E). In other words,
the anomaly term E+

G→M vanishes at level ∞.
In particular, we see that CTP is incompatible with Langlands duality for quantum

parameters, i.e., if we let M̌ be the Langlands dual of M viewed as the Levi quotient
of a parabolic subgroup P̌ ⊂ Ǧ, the following diagram does not commute:

ParG
(2.11)

CTP

ParǦ
CT P̌

ParM
(2.11)

ParM̌

It is not clear how this phenomenon is reflected in the conjectural quantum geometric
Langlands correspondence. However, it seems related to the fact that the compatibility
of the Langlands duality functor and the constant term functor involves an autoequiva-
lence of the target categoryD-Modκ̌ (BunM̌ ) (for ǧκ̌ = ǧ∞, see [1, Conjecture 13.2.9]).
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Remark 2.17 For P = B and M = T , the character 2ρ̌ is the sum of positive roots,

and splittings of (2.16) form a t∗ ⊗ ωX -torsor Conn(ω
ρ̌
X ), which is also known as the

space of Miura opers (see [10]).

2.7 Structures on g�

2.7.1. We finish this section with a description of some structures on the vector bundle
gκ functorially attached to an S-point of GrGLag(g ⊕ g∗).

2.7.2. There is an OS-bilinear Lie bracket:

[−,−] : gκ ⊗
OS

gκ → gκ (2.18)

defined by the formula (on the ambient bundle (g ⊕ g∗) ⊗ OS):

[(ξ ⊕ ϕ) ⊗ 1, (ξ ′ ⊕ ϕ′) ⊗ 1] := ([ξ, ξ ′] ⊕ Coadξ (ϕ
′)) ⊗ 1.

One checks immediately that the image lies in gκ and the required identities hold.
Note that (2.18) factors through the embedding gκ

s.s. ↪→ gκ .

2.7.3. There is an OS-bilinear symmetric pairing:

(−,−) : gκ ⊗
OS

gκ → OS (2.19)

defined by the formula:

((ξ ⊕ ϕ) ⊗ 1, (ξ ′ ⊕ ϕ′) ⊗ 1) := ϕ′(ξ) · 1.

The pairing (2.19) gives rise to a canonical central extension of the loop algebra gκ ((t)):

0 → OS → ĝκ → gκ((t)) → 0

whose cocycle is given by the residue pairing Res(−, d−). This is the prototype of
a generalized Kac-Moody extension. We will return to it in Sect. 5 (in the setting of
Lie-∗ algebras).

Example 2.18 For the k-point g∞ of GrGLag(g⊕g∗), the Lie bracket (2.18) is zero. The
pairing (2.19) is also zero. Hence ĝ∞ is the abelian Lie algebra OS ⊕ g∞((t)).

2.7.4. Fixing an S-point (gκ , E) of ParG , there is an extension of OX -modules:

0 → ωX /S → ĝ(κ,E) → gκ � OX → 0. (2.20)

induced from (2.6) along gκ ⊗OS → (gκ)G ⊗OX . In other words, ĝ(κ,E) is the direct
sum of E and gκ

s.s. � OX , corresponding to the decomposition gκ ∼−→ ĝκ ⊕ gκ
s.s..
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Quasi-twistings and their quotients

3 Quasi-twistings

In this section, we make sense of a central extension of Lie algebroids in the DG
setting; such objects are called quasi-twistings. A dynamic theory of Lie algebroids
in such generality has been built by Gaitsgory and Rozenblyum [18], and our results
in Sects. 3 and 4 are no more than a modest extension of their theory.

Notations

We work over a fixed affine scheme S smooth6 over k. Some of the notions in this
section involve the interplay between classical and derived algebraic geometry. For
the latter, we use the theory of ∞-category as developped in [20, 21] and the theory
of derived algebraic geometry modeled on commutative DG algebras, using [18] as
our main reference.

By a scheme, we shall mean a classical scheme (as opposed to a DG scheme).
On the other hand, a prestack means a presheaf on affine DG schemes valued in ∞-
groupoids. More specialized notations involving derived formal moduli problems will
be explained in Sect. 3.3.

3.1 The classical notion

3.1.1. Let Y be a scheme over S. A Lie algebroid over Y (relative to S) is an OY -
module L together with an OS-linear Lie bracket [−,−] and an OY -module map
σ : L → TY/S such that the following properties are satisfied:

(a) [l1, f · l2] = σ(l1)( f ) · l2 + f [l1, l2];
(b) σ intertwines [−,−] with the canonical Lie bracket on TY/S .

The morphism σ is called the anchor map ofL. The category of Lie algebroids over Y
is denoted by LieAlgd/S(Y ). A Picard algebroid is a central extension of the tangent
Lie algebroid TY/S byOY ; they are equivalent to a ring of twisted differential operators
(TDOs) over Y (see [2]).

Definition 3.1 A classical quasi-twisting T cl over Y (relative to S) is a central exten-
sion:

0 → OY → L̂ → L → 0 (3.1)

of Lie algebroids.

6 Most of the materials in Sects. 3 and 4 should extend to any base affine scheme S over k. The reason
we choose not to work in this generality is because the theory of ind-coherent sheaves in [18] is built in
an absolute setting whereas we would need a notion of ind-coherent sheaves for an S-scheme Y which
is “quasi-coherent along S.” Since our ultimate goal is to construct a quasi-coherent sheaf of categories
(which are fppf-local objects, see [12, Appendix A]) on the smooth algebraic stack ParG , it is enough to
limit our attention to smooth test schemes S → ParG .
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We say that T cl is based at the Lie algebroid L. Classical quasi-twistings with a fixed
base L form a k-linear, strictly commutative Picard groupoid under the operation of
Baer sum. We denote it by QTwcl

/S(Y/L). The following is obvious:

Lemma 3.2 A classical quasi-twisting T cl is a Picard algebroid if and only if the
anchor map of L is an isomorphism. 
�

3.1.2. Given a classical quasi-twisting T cl, the (reduced) universal envelope of T cl is
defined to be the OY -algebra:

U(T cl) := U(L̂)/(1 − 1),

where U(L̂) is the universal enveloping algebra of L̂, and 1 denotes the image of the
unit inOY . Amodule over T cl is a U(T cl)-module, or equivalently, a module over the
Lie algebroid L̂ on which 1 acts by the identity.

3.2 Some∞-dimensional geometry

3.2.1. Suppose Y is a scheme over S but not locally of finite type. The above notion
of Lie algebroids is not very amenable to study. We will occasionally encounter some
∞-type schemes, for which we need the notion of a Lie algebroid “on Tate module”.

Let R be a (discrete) ring over k. The notion of Tate R-modules is developed in [7].
We briefly recall the definitions.

3.2.2. An elementary Tate R-module is a topological R-module isomorphic to P⊕Q∗,
where P and Q are discrete, projective R-modules.7 A Tate R-module is topological
R-module isomorphic to a direct summand of some elementary Tate R-module. There
are two important types of submodules of a Tate R-module M :

(a) a lattice is an open submodule L+ with the property that L+/U is finitely generated
for any open submodule U ↪→ L+.

(b) a co-lattice is a submodule L− such that for some lattice L+, both L+ ∩ L− and
M/(L+ + L−) are finitely generated.

Example 3.3 Clearly, every profinite R-module is an elementary Tate R-module. The
Laurent series ring R((t)) is also an elementary Tate module (but not profinite).

3.2.3. Given a map of (discrete) rings R → R′, the pullback of a Tate R-module M is
defined by

M⊗̂
R
R′ := lim←− (M/U ) ⊗

R
R′

where U ranges over open submodules of M .

7 The topology on Q∗ is generated by opens of the form U⊥ where U is a finite generated R-submodule
of Q.
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Tate R-modules are local objects for the flat topology (see [7, Theorem 3.3]). In
particular, we may define a Tate OY -module F over a scheme Y (or more generally,
an algebraic stack) as a compatible system of Tate OZ -modules F

∣∣
Z for every affine

scheme Z mapping to Y .

3.2.4. Let Y be a scheme over S. Then Y is placid if Zariski locally there is a pre-
sentation Y

∼−→ lim←− Yi , where each Yi is a scheme of finite type, and the connecting

morphisms Y j → Yi are smooth surjections. We call a placid scheme Y pro-smooth,
if we can furthermore choose each Yi to be smooth.

If Y is a pro-smooth placid scheme, then the tangent sheaf TY/S is naturally a Tate
OY -module. Indeed, locally on Y there is an isomorphism:

TY/S
∼−→ lim←− π∗

i TYi /S,

where πi : Y → Yi is the canonical map.

3.2.5. Suppose Y is a pro-smooth placid scheme. We define a Lie algebroid on Tate
module over Y as a Tate OY -module L together with a continuous OY -linear map
σ : L → TY/S , such that as a plainOY -module, L has the structure of a Lie algebroid
with σ as its anchor map.

Example 3.4 The tangent sheaf TY/S has the structure of a Lie algebroid on Tate mod-
ule.

A classical quasi-twisting on Tate modules T cl over Y is a central extension (3.1)
of Lie algebroids on Tate modules where all the morphisms are continuous.

Remark 3.5 The above notion is very naïve, as it does not indicate how the Lie bracket
interacts with the topology on L. However, it suffices for our purpose since in the
construction of T (κ,E)

G in Sect. 5, the first quotient step will reduce the classical quasi-

twisting on Tate modules T̃ (κ,E)
G into a discrete, classical quasi-twisting over Bun(≤θ)

G,nx .

Remark 3.6 We will frequently refer to a classical quasi-twisting on Tate modules
simply as a classical quasi-twisting, as the Tate structures should be clear from the
context.

3.3 Formal groupoids

3.3.1. In this subsection, we review the theory of derived formal moduli problems. Let
Vect denote the derived ∞-category of chain complexes of k-vector spaces. It has a
natural symmetricmonoidal structurewhich commuteswith colimits in both variables.
As such, it may be viewed as a commutative algebra object in the ∞-category of
presentable stable ∞-categories equipped with the Lurie tensor product.

By aDG category, we mean a module object over Vect in this symmetric monoidal
∞-category.Weuse the notationDGCatcont to denote the∞-category ofDGcategories
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(whose functors are continuous, i.e., colimit-preserving). The ∞-category DGCatcont
inherits a symmetric monoidal structure.

3.3.2. We use the notation PStklaft-def /S to mean the ∞-category of prestacks locally
almost of finite type (“laft”) over S which admit deformation theory (see [18, III.1]). A
simplicial objectR• of PStklaft-def /S is called a groupoid (relative to S) if the following
conditions are satisfied:

(a) for every n ≥ 2, the mapRn → R1 ×
Y

· · · ×
Y
R1 induced by products of the maps

[1] → [n] sending 0 � i , 1 � i + 1, is an isomorphism;
(b) the mapR2 → R1 ×

Y
R1 induced by the product of the maps [1] → [2] sending

0 � 0, 1 � 1 and 0 � 0, 1 � 2

is an isomorphism.

Furthermore, R• is a formal groupoid if all morphisms in R• are nil-isomorphisms,
i.e., they induce isomorphisms on the reduced prestacks. We denote the ∞-category
of formal groupoids (relative to S) by FGpd/S . There is a functor

FGpd/S → PStklaft-def /S, R• � R0, (3.2)

whose fiber at Y is denoted by FGpd/S(Y) and is referred to as the ∞-category of
formal groupoids actin on Y .

Example 3.7 Completion along the main diagonals Y → Y ×
S

· · · ×
S
Y organizes into

a formal groupoid R• := (Y•)Ŷ acting on Y . This is the final object of FGpd/S(Y)

and is called the infinitesimal groupoid acting on Y .

3.3.3. The functor (3.2) is a Cartesian fibration of∞-categories. The Cartesian arrows
in FGpd/S are maps R• → T • such that the induced morphism

R• → T • ×
(Z•)Ẑ

(Y•)Ŷ , where Y := R0 and Z := T 0

is an isomorphism.

3.4 Formal moduli problems

3.4.1. Let FMod/S denote the ∞-category of morphisms Y → Y� in PStklaft-def /S

which are nil-isomorphisms.8 In particular, FMod/S is a full subcategory of the func-
tor category Fun(�1,PStklaft-def /S). Its objects are called formal moduli problems
(relative to S). We have a functor

8 Caution: our notation FMod/S is different from [18, IV.1, §1], where the analogous notationmeans formal
moduli problems over a fixed laft prestack.
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FMod/S → PStklaft-def /S, (Y → Y�) � Y, (3.3)

whose fiber at Y ∈ PStklaft-def /S is by definition the ∞-category of formal moduli
problems under Y , and is denoted by FMod/S(Y).

3.4.2. The functor (3.3) is a Cartesian fibration of ∞-categories, whose Cartesian
arrows are commutative diagrams on the left whose induced square on the right is
Cartesian:

Y Z

Y� Z�

Y� Z�

YdR ZdR

Applying straightening to (3.3), we obtain a pullback functor for every morphism
f : Y → Z in PStklaft-def /S :

f !
FMod : FMod/S(Z) → FMod/S(Y), f !

FModZ� := Z� ×
ZdR

YdR.

3.4.3. The Čech nerve construction defines a functor � : FMod/S → FGpd/S of ∞-
categories over PStklaft-def /S . The main result in [18, Sect. IV.1] (which has its origin
in Lurie’s theory of formal moduli problems) can be summarized as follows:

Theorem 3.8 (Lurie-Gaitsgory-Rozenblyum) The functor � is an equivalence.

Proof Indeed, [18, Sect. IV.1, Theorem 2.3.2] shows that � is an equivalence when
restricted to thefiber at eachY ∈ PStklaft-def /S . The above formulation followsbecause
� also preserves Cartesian arrows (and we appeal to [20, Corollary 2.4.4.4]). 
�

We denote the functor inverse to � by B : FGpd/S → FMod/S . Their restrictions
to the fiber at Y ∈ PStklaft-def /S are denoted by �Y and BY .

Example 3.9 (de Rham prestack) Let YdR/S denote the fiber product YdR ×
SdR

S which

is the terminal object of FMod/S(Y). Then YdR/S corresponds to the infinitesimal

groupoid (Y)•̂Y (Example 3.7) under the equivalence FGpd/S(Y)
∼−→ FMod/S(Y).

In particular, given any group object H ∈ PStklaft-def /S , there is a canonical short
exact sequence of group prestacks:

1 → H{̂1} → H → HdR/S → 1 (3.4)

Corollary 3.10 The prestack BY (R•) is identified with the quotient of R• in
PStklaft-def /S.

Proof We need to show that BY (R•) identifies with colim
�op

R•, where the colimit is

taken in PStklaft-def /S . This follows from the fact that Maps(BY (R•),Z) identifies
with the mapping space from Y → BY (R•) to Z → Z in FMod/S , which by
Theorem 3.8 identifies with Maps(R•,Z). 
�



Quantum parameters of the geometric Langlands theory Page 23 of 73 66

3.4.4. However, we point out that the quotient of R• in PStklaft-def /S may not agree
with that in PStk/S , which is one of the main technical complications for us.

Example 3.11 Let S = pt and we omit the subscript /S from the notations. The Čech
nerve of the object pt → A

1
{̂0} in FMod is the formal groupoid R• := pt ×

A1
· · · ×

A1
pt.

The quotient colim
�op

R• taken in PStk does not agree with A
1
{̂0}. Indeed, since colimits

in PStk are computed pointwise, we have an equivalence:

Maps(Spec(k[ε]/(ε2)), colim
�op

R•) ∼= colim
�op

Maps(Spec(k[ε]/(ε2)),R•).

(3.5)

On the other hand, morphisms from a classical scheme to a DG scheme factors through
its classical subscheme. Since the classical subscheme of eachRn is a point, the colimit
(3.5) yields a point (as an ∞-groupoid). However, the formal scheme A

1
{̂0} receives

nontrivial maps from Spec(k[ε]/(ε2)).

3.4.5. We note one case where BY (R•) agrees with the quotient in PStk/S .

Lemma 3.12 Suppose the morphisms R1 Y are formally smooth. Then the
canonical map colim

�op
R• → BY (R•), where the colimit is taken in PStk/S, is an

isomorphism.

Recall that a morphism X → Y of prestacks is called formally smooth if for every
affine DG scheme T over Y , and a nilpotent embedding T ↪→ T ′, the map

Maps(T ′,Y) → Maps(T ,Y)

is surjective on π0 (see [18, III.1, §7.3]). Let T ∗
X /Y

∣∣
x denote the cotangent complex

at a T -point x : T → X . It is proved in op.cit. that if X → Y admits (relative)
deformation theory, then formal smoothness is equivalent to

Maps(T ∗
X /Y

∣∣
x ,F) ∈ Vect≤0, (3.6)

whereF ∈ QCoh(T )♥ and T is any affineDG scheme with a morphism x : T → X .9

Proof of Lemma 3.12 The authors of [18] give the following description of BY (R•).
LetU be an affine DG scheme. Then Maps(U ,BY (R•)) is the space of the following
data:

(a) a formal moduli problem Ũ over U ;

9 We use the notation QCoh(Y ) to denote the DG category of complexes of OY -modules. In contrast, the
abelian category ofOY -modules is denoted by QCoh(Y )♥, understood as the heart of a natural t-structure
on QCoh(Y ).
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(b) a morphism from the Čech nerve of Ũ → U to R•, such that the following
diagram is Cartesian for each of the vertical arrows:

Ũ ×
U
Ũ R1

Ũ R0

On the other hand, Maps(U , colim
�op

R•) classifies the above data satisfying the con-

dition that Ũ → U admits a section. Now, since Ũ → U is a nil-isomorphism, we
obtain a section over U red. A lift of this section to U exists if the morphism Ũ → U
is formally smooth.

Now, let T be affine DG scheme equipped with a map ũ : T → Ũ . The Cartesian
diagrams:

Ũ ×
U
Ũ Ũ

Ũ U

Ũ ×
U
Ũ R1

Ũ Y

show that T ∗̃
U/U

∣∣
ũ is isomorphic to T ∗̃

U×
U
Ũ/Ũ

∣∣
(ũ,ũ)

, which is in turn isomorphic to

T ∗
R1/Y

∣∣
r1 where r1 is the composition T

(ũ,ũ)−−−→ Ũ ×
U
Ũ → R1. Hence the formal

smoothness of R1 over Y implies that of Ũ over U . 
�
3.4.6. In particular, let h be a (classical) Lie algebra overOS , such that exp(h) acts on
some Y ∈ PStklaft-def /S . Then the groupoid Y ×

S
exp(h) Y is formally smooth,

so its quotient may be formed in PStk/S . We have two particular instances of this
example:

(a) Taking Y = pt, we see that B exp(h) is the prestack quotient pt / exp(h);
(b) Let H be a group scheme. Then the prestack quotient H/ exp(h) identifies with

HdR/S .

3.5 Modules over a formal moduli problem

3.5.1. Recall that for an affine DG scheme Y almost of finite type over S, the DG cate-
gory IndCoh(Y ) is the ind-completion of the full subcategory Coh(Y ) ↪→ QCoh(Y ).
There is a symmetric monoidal functor:

ϒY/S : QCoh(Y ) → IndCoh(Y ), F � F ⊗ ωY/S, (3.7)

which is an equivalence of DG categories if Y → S is smooth ([18, II.3]). The basic
functoriality of ind-coherent sheaves is the (derived) !-pullback functor. It is well-
defined for any morphism f : X → Y of affine DG schemes almost of finite type over
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S and (3.7) intertwines it with the (derived) pullback functor f ∗ on quasi-coherent
sheaves.

3.5.2. For a laft prestack Y , the DG category IndCoh(Y) is defined as the limit of
IndCoh(T ) over all affine DG schemes T equipped with a map to Y (with transition
functors given by !-pullback). The formalism of Kan extension allows us to regard
IndCoh(−) as a functor:

IndCoh : PStklaft /S → DGCatcont .

In particular, a morphism f : X → Y of laft prestacks gives rise to the functor of
!-pullback: f ! : IndCoh(Y) → IndCoh(X ).

3.5.3. Note that if f : X → Y is an inf-schematic nil-isomorphism, then the functor f !
is conservative ([18, III.3, Proposition 3.1.2]). It furthermore has a left adjoint f IndCoh∗
and the pair ( f IndCoh∗ , f !) is monadic. One deduces from this a descent property (see
Proposition 3.3.3 of op.cit.):

Proposition 3.13 Let X •
Y be the Čech nerve of an inf-schematic nil-isomorphism f :

X → Y . Then the canonical functor:

IndCoh(Y) → Tot(IndCoh(X •
Y )) (3.8)

is an equivalence. 
�
3.5.4. The DG category of modules over an object Y� ∈ FMod/S(Y) is defined as
IndCoh(Y�). Note that IndCoh(Y�) is a module object over QCoh(S). By the above
discussion, there is a conservative functor oblv : IndCoh(Y�) → IndCoh(Y) given
by !-pullback along Y → Y�. Furthermore, Proposition 3.13 provides an equivalence
of categories:

IndCoh(Y�)
∼−→ Tot(IndCoh(R•)). (3.9)

whenever Y� = BY (R•).

3.5.5. Given Y� ∈ (PStklaft-def)Y//S , we can associate the relative tangent complex
TY/Y� which is in general an object of IndCoh(Y). (Since the cotangent complex
naturally lives in the pro-category of quasi-coherent sheaves, the tangent complex is
naturally an ind-coherent sheaf by a version of Serre duality, see [18, III.1, §4.4] for
details). The following result is [18, IV.4, Theorem 9.1.5]:

Theorem 3.14 Suppose Y is a finite type scheme over S. We have a fully faithful
functor:

LieAlgd/S(Y ) ↪→ FGpd/S(Y ), (3.10)

whose essential image consists of those formal groupoidsR• such thatTY/BY (R•) lies
in the essential image of QCoh(Y )♥ under ϒY/S. 
�
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Composing (3.10) with BY , we obtain a fully faithful functor

LieAlgd/S(Y ) ↪→ FMod/S(Y ), (3.11)

whose essential image consists of those formal moduli problems Y� ∈ FMod/S(Y )

such that TY/Y� lies in ϒY (QCoh(Y )♥). Furthermore, given a smooth morphism π :
Y ′ → Y of finite type schemes over S, the following diagram commutes:

LieAlgd/S(Y )
π !
LieAlgd

(3.11)

LieAlgd/S(Y
′)

(3.11)

FMod/S(Y )
π !
FMod FMod/S(Y ′)

(3.12)

where π !
LieAlgd is the pullback of Lie algebroids (as defined in [2]), and π !

FMod is the
functor described in §3.4.1.

In what follows, we will frequently use the fact that π !
LieAlgd(L) has underlying

OY ′-module given by π∗L ×
π∗TY/S

TY ′/S .

Notation 3.15 We shall refer to the image Y� of a Lie algebroid L under (3.11) as the
formal moduli problem associated to L, and denote it by Y� := LF.

Note that when Y → S is smooth, IndCoh(Y�) is identified with the DG category of
complexes of (quasi-coherent) L-modules.

3.6 Quasi-twistings

3.6.1. Let Y ∈ PStklaft-def /S . We use Ĝm to denote the formal completion of Gm at
identity. It is a group formal scheme.

Definition 3.16 A quasi-twisting T over Y consists of the following data:

(a) an object Y� ∈ FMod/S(Y);
(b) a Ĝm-gerbe Ŷ� over Y�;
(c) a trivialization of the pullback of Ŷ� along Y → Y�.

We say that T is based at the formal moduli problem Y�.

Remark 3.17 For an abelian group prestack A over S, the notion of an A-gerbe here is
taken in the naïve sense: the prestack B2 A classifies A-gerbes (on an affine S-scheme)
that are globally nonempty, and an A-gerbe on a prestack Y is an object of

GeA(Y) := lim
T→Y

Maps(T ,B2 A),

where T ranges through affine S-schemes mapping to Y . (Informally, an A-gerbe is
a torsor for the classifying prestack B A). We will later show that using étale locally
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trivial Ĝm-gerbes in the definition of a quasi-twisting produces the same class of
objects.

Remark 3.18 Alternatively, one can think of a quasi-twisting T as consisting of two
formalmoduli problems Ŷ� → Y� underY , equippedwith the structure of a Ĝm -gerbe.

3.6.2. The ∞-groupoid of quasi-twistings T based at Y� can be defined as a fiber of
∞-groupoids:

QTw/S(Y/Y�) := Fib(Ge
Ĝm

(Y�) → Ge
Ĝm

(Y)).

More generally, we use QTwA
/S(Y/Y�) to denote an analogously defined category,

with the abelian group prestack A acting as the structure group instead of Ĝm .

3.6.3. We now show that quasi-twistings can be defined using different structure
groups. The same results about twistings are obtained in [17].

Lemma 3.19 The functor of inducing an A-gerbe from an A{̂1}-gerbe gives rise to an
equivalence of categories QTw

A{̂1}
/S (Y/Y�)

∼−→ QTwA
/S(Y/Y�).

Proof In light of the exact sequence (3.4), an inverse functor exists if the induced
AdR/S-gerbe of any object in QTwA

/S(Y/Y�) is canonically trivialized. Indeed, let

Ŷ�
AdR/S

be the AdR/S-gerbe over Y� induced from some A-gerbe Ŷ�
A. Clearly, there

is an identification between Ŷ�
AdR/S

and the formal completion of Ŷ�
A inside Y�, i.e.,

Ŷ�
AdR

∼−→ (Ŷ�
A)dR/S ×

YdR/S

Y� (c.f. Example 3.9).

Therefore, a section of the AdR/S-gerbe Ŷ�
AdR/S amounts to filling in the dotted

arrow

Ŷ�
AdR/S (Ŷ�

A)dR/S

Y� YdR/S

making the lower-right triangle commute. However, the structure of a quasi-twisting
on Ŷ�

A supplies a section Y → Ŷ�
A over Y�. Hence we obtain a map Y� → YdR/S →

(Ŷ�
A)dR/S over YdR/S . 
�
It follows from Lemma 3.19 that the following functors are equivalences:

QTwGm
/S (Y/Y�)

∼←− QTw/S(Y/Y�)
∼−→ QTwĜa

/S (Y/Y�)
∼−→ QTwGa

/S (Y/Y�).

(3.13)

Let QTwét
/S(Y/Y�) denote the ∞-groupoid of étale locally trivial Ĝm-gerbes over Y�,

equipped with a section over Y .
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Corollary 3.20 The tautological functorQTw/S(Y/Y�) → QTwét
/S(Y/Y�) is an equiv-

alence.

Proof We use the Ga-incarnation of quasi-twistings, as well as their counterparts
defined by étale locally trivial gerbes (see Lemma 3.19). For an affine S-scheme T ,
there holds

H1
ét(T , Ga) = 0, H2

ét(T , Ga) = 0.

Let B2
ét Ga denote the étale sheafification of B2

Ga . Thus, it classifies étale locally
trivial Ga-gerbes. The above vanishing statements show that the canonical map
B2

Ga → B2
ét Ga is an isomorphism. It follows that the corresponding notions of

quasi-twistings are also equivalent. 
�

3.7 Modules over a quasi-twisting

3.7.1. We continue to assume that Y ∈ PStklaft-def /S and T is a quasi-twisting over
Y . Our goal now is to define T -Mod as a DG category tensored over QCoh(S) (i.e.,
it is a module object over QCoh(S), see Sect. 3.3.1). We first proceed more generally
and define ind-coherent sheaves “twisted” by a Ĝm-gerbe.

The discussion below applies also toGm-gerbes, where alternative definitions of the
twisted category exist (for example, the category denoted Db(Ỹ)1 of [5, Sect. 2.1]). In
fact, these notions agree after inducing a Ĝm-gerbe along the map of structure groups
Ĝm → Gm . We choose to present the construction in terms of Ĝm-gerbes since our
theory uses only nil-isomorphisms.

3.7.2. Let Z ∈ PStklaft-def /S , and Ẑ be a Ĝm-gerbe over Z . Consider the canonical
action of BGm on Vect, which induces an action of B Ĝm (see [4, Sects. 1–2] for
notions pertaining to group actions on DG categories. Informally, the BGm-action on
Vect is given by tensoring a vector space with a line). Formally, Vect can be regarded
as a co-module object in DGCatcont over the co-algebra (IndCoh(B Ĝm),m!), where
m is the multiplication map on B Ĝm . The co-action

Vect → Vect⊗ IndCoh(B Ĝm)
∼−→ IndCoh(B Ĝm)

is specified byχ ∈ IndCoh(B Ĝm), the character sheaf induced from themapB Ĝm →
BGm .

Note that IndCoh(Ẑ) admits a B Ĝm-action, so the product IndCoh(Ẑ) ⊗ Vect
is again acted on by B Ĝm . The corresponding co-simplicial system {IndCoh(Ẑ ×
B Ĝ

×n
m )}[n]∈� has the following first few terms:

· · · IndCoh(Ẑ × B Ĝ
×2
m ) IndCoh(Ẑ × B Ĝm)

(act×1)!

(1×m)!

pr!12 ⊗χ

IndCoh(Ẑ).
act!

pr!1 ⊗χ

(3.14)
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Wedefine theDGcategory IndCoh(Z)Ẑ of Ẑ-twisted ind-coherent sheaves onZ as the
totalization of the above co-simplicial system.One sees immediately that IndCoh(Z)Ẑ
is tensored over QCoh(S).

3.7.3. Since the functors associated to each face map [n] → [m] all admit left adjoints,
we obtain:

IndCoh(Z)Ẑ = lim[n]∈�
IndCoh(Ẑ × B Ĝ

×n
m )

∼−→ colim[n]∈�op
IndCoh(Ẑ × B Ĝ

×n
m ),

where we use the left adjoints to form the colimit. Here, the colimit is taken in
DGCatcont (the forgetful functor fromDGCatcont to plain∞-categories does not com-
mute with colimits).

Remark 3.21 Note that any (global) trivialization of the gerbe Ẑ → Z gives rise to an
equivalence IndCoh(Z)Ẑ

∼−→ IndCoh(Z).

Remark 3.22 In [16, Sect. 1.7], a definition of a twisted presheaf of DG categories is
given. We relate their definition to ours. For the presheaf over Z:

IndCoh/Z : (DGSchaff/Z )op � S � IndCoh(S)

and a Ĝm-gerbe Ẑ , the twisted sheaf of DG categories (IndCoh/Z )Ẑ is defined by

(a) specifying its values on the category Split(Ẑ) of affine DG schemes S →
Z equipped with a lift to Ẑ , using the canonical Maps(S,B Ĝm)-action on
IndCoh(S); and then

(b) applying h-descent10 along the basis Split(Ẑ) → DGSchaff
/Z to obtain a sheaf (in

the h-topology) over DGSchaff
/Z , denoted by (IndCoh/Z )Ẑ .

Thus we may calculate the global section �(Z, (IndCoh/Z )Ẑ ) by the covering Ẑ →
Z . The resulting co-simplicial system is identified with (3.14). Hence the definition of
Ẑ-twisted ind-coherent sheaves in [16, Sect. 1.7] (adjusted to the h-topology) agrees
with ours.

3.7.4. Let T be a quasi-twisting over Y , represented by the Ĝm-gerbe Ŷ� → Y�. We
denote by Ŷ the Ĝm-gerbe over Y pulled back along Y → Y�; it is equipped with a
canonical trivialization.

We define the DG category of T -modules by: T -Mod := IndCoh(Y�)Ŷ� . There is
a canonical functor:

oblvT : T -Mod → IndCoh(Y)Ŷ
∼−→ IndCoh(Y),

since Ŷ� is trivialized over Y , and Remark 3.21 identifies the corresponding twisted
category with IndCoh(Y).

10 The authors of [16] work with the étale topology instead.
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Proposition 3.23 The functoroblvT admits a left adjoint indT , and the pair of functors
(indT , oblvT ) is monadic.

Proof The functor oblvT is by definition the totalization of the !-pullback functors:

(π(n))! : IndCoh(Ŷ� × B Ĝ
×n
m ) → IndCoh(Ŷ × B Ĝ

×n
m ),

where π(n) denotes the morphism Ŷ ×B Ĝ
×n
m → Ŷ� ×B Ĝ

×n
m . Each (π(n))! admits a

left adjoint π(n)
∗,IndCoh. Furthermore, the diagram induced from an arbitrary face map:

IndCoh(Ŷ × B Ĝ
×n
m )

π
(n)
∗,IndCoh

IndCoh(Ŷ × B Ĝ
×m
m )

π
(m)
∗,IndCoh

IndCoh(Ŷ� × B Ĝ
×n
m ) IndCoh(Ŷ� × B Ĝ

×m
m )

which a priori commutes up to a natural transformation, actually commutes. Hence
oblvT admits a left adjoint indT := Tot(π(n)

∗,IndCoh). We now prove:

(a) oblvT is conservative; this is because all other arrows in the following commuta-
tive diagram:

IndCoh(Y�)Ŷ�

ev0

oblvTIndCoh(Y)Ŷ
ev0

IndCoh(Y�)
(π(0))!

IndCoh(Y)

are conservative, hence so is oblvT .
(b) oblvT preserves colimits; this is obvious as we work in DGCatcont.

It follows that that the pair (indT , oblvT ) ismonadic, by theBarr-Beck-Lurie theorem.

�

3.7.5. Using Proposition 3.23, we may regard U(T ) := oblvT ◦ indT as an algebra
object in End(IndCoh(Y)), and the DG category T -Mod identifies with that of U(T )-
module objects in IndCoh(Y). We call U(T ) the universal envelope of T .

3.8 Comparison with the classical notion

3.8.1. Suppose Y is a (classical) scheme of finite type over S. Let L be a classical Lie
algebroid over Y andY� ∈ FMod/S(Y ) be the formal moduli problem associated toL,
under the embedding (3.11). The goal of this subsection is to show that quasi-twistings
based at Y� are equivalent to classical quasi-twistings based at L.

3.8.2. Given a formal moduli problem Ŷ� → Y� such that TY/Ŷ� ∈ ϒY (QCoh(Y )♥),

one can functorially assign a classical Lie algebroid L̂ equipped with a map L̂ → L.
Furthermore, a morphism Ŷ� × B Ĝm → Ŷ� in FMod/S(Y ) induces a map

L̂ ⊕ OY → L̂, (l, f ) � l + f 1 (3.15)
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where 1 is the image of (0, f ) in L̂. If the morphism Ŷ� × B Ĝm → Ŷ� realizes Ŷ�

as a Ĝm-gerbe over Y�, then we see that OY → L̂, f � f 1 is the kernel of the
canonical map L̂ → L. The fact that (3.15) preserves Lie bracket then implies OY is
central inside L̂. In other words, the map L̂ → L is a central extension of classical
Lie algebroids.

3.8.3. Now, given any object in QTw/S(Y/Y�), we claim that the corresponding formal
moduli problem Ŷ� satisfies the property that TY/Ŷ� lies in ϒY (QCoh(Y )♥). Indeed,
we have a canonical triangle in IndCoh(Y ):

ωY ∼= TŶ�/Y�

∣∣
Y → TY/Ŷ� → TY/Y�

and the outer terms lie in the essential image of QCoh(Y )♥. Hence the previous
discussion shows that we have a functor:

QTw/S(Y/Y�) → QTwcl
/S(Y/L). (3.16)

Proposition 3.24 The functor (3.16) is an equivalence of categories.

In particular, the ∞-category QTw/S(Y/Y�) is an ordinary category.

Proof We explicitly construct the functor inverse to (3.16). Namely, given a central
extension L̂ of L, we need to equip its corresponding formal moduli problem Ŷ� with
the structure of a Ĝm-gerbe over Y�. As before, the action map Ŷ� × B Ĝm → Ŷ�

arises from the morphism of classical Lie algebroids over Y :

L̂ ⊕ OY → L̂, (l, f ) � l + f 1.

The morphism induced by action and projection Ŷ� ×B Ĝm → Ŷ� ×
Y�

Ŷ� is an isomor-

phism since the same holds for the corresponding map of classical Lie algebroids:

L̂ ⊕ OY → L̂ ×
L
L̂, (l, f ) � (l + f 1, l).

It remains to show that Ŷ� → Y� admits a section over any affine DG scheme T
mapping toY�. We shall deduce the existence of this section from the following claim:

Claim 3.25 The morphism Ŷ� → Y� is formally smooth.

Indeed, let T be any affine DG scheme with a morphism ŷ : T → Ŷ�. By the criterion
of formal smoothness (3.6), we ought to show Maps(T ∗̂

Y�/Y�

∣∣
ŷ,F) ∈ Vect≤0 for all

F ∈ QCoh(T )♥. The Cartesian square:

T
(ŷ ,̂y)Ŷ� ×

Y�
Ŷ� Ŷ�

Ŷ� Y�
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together with the isomorphism above gives:

T ∗̂
Y�/Y�

∣∣
ŷ

∼−→ T ∗̂
Y� ×

Y�
Ŷ�/Ŷ�

∣∣
(ŷ ,̂y)

∼−→ T ∗
Ŷ�×B Ĝm/Ŷ�

∣∣
(ŷ,1)

∼−→ OT [−1].

One deduces from this the required degree estimate.
Using the claim, we will construct a section of Ŷ� → Y� over T → Y� as follows.

First consider the fiber product T ×
Y�

Y , which is equipped with a nil-isomorphism to

T . We obtain a solid commutative diagram:

T red T ×
Y�

Y Y Ŷ�

T Y�

Formal smoothness now implies the existence of the dotted arrow. 
�
Remark 3.26 By lettingL = TY/S be the tangent Lie algebroid, we obtain from Propo-
sition 3.24 the fact that Picard algebroids identify with twistings on classical schemes
locally of finite type. The same result is established in [17, Sect. 6.5] using a compu-
tation involving de Rham cohomology.

4 How to take quotient of a Lie algebroid?

This section is devoted to the study of quotients of Lie algebroids, in both classical
and DG settings. The set-up involves an H -torsor Y → Z and a Lie algebroid L
over Y . With additional data on L, there exists a quotient Lie algebroid over Z . The
quotient procedure we shall describe takes as input a map η : k ⊗ OY → L, where
k is an arbitrary Lie algebra. It generalizes two existing notions—weak and strong
quotients—both considered by Beilinson and Bernstein [2]. For technical reasons
involving ∞-type schemes, we shall construct two quotient functors:

(a) Q(k,H)
inj , which is a classical procedure that works in the case where η is injective;

(b) Q(H ,H �), which is its geometric counterpart for Y locally of finite type,

and we check that they agree in overlapping cases. A geometric procedure that works
in full generality should exist as soon as the theory in [18] is extended to ∞-type
situations.

Throughout this section, we work over an affine scheme S smooth over k.

4.1 (k,H)-Lie algebroids

4.1.1. We describe the necessary data for taking quotients of Lie algebroids.
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Definition 4.1 A classical action pair (k, H) consists of a flat affine group scheme
H over S, an OS-linear Lie algebra k acted on by H , as well as a morphism of Lie
algebras:

k → h := Lie(H) (4.1)

with the following properties:

(a) (4.1) is H -equivariant, where h is equipped with the adjoint H -action;
(b) the k-action on itself induced from (4.1) is the adjoint action.

Remark 4.2 This datum is superficially similar to that of a Harish-Chandra pair, but
they serve very different purposes.

Example 4.3 Fix an S-point gκ of GrGLag(g⊕g∗) (see Sect. 2). Then we have a classical
action pair (gκ [[t]], S×G[[t]]), where themorphism (4.1) is induced from the projection
gκ → g ⊗ OS . All classical action pairs considered in this paper are variants of
(gκ [[t]], S × G[[t]]). Note that the group scheme S × G[[t]] is not of finite type.

4.1.2. The notion of amorphism (k0, H0) → (k, H) of classical action pairs is obvious.
We say that (k0, H0) is a normal subpair if k0 ↪→ k is an ideal, H0 ↪→ H is a normal
subgroup, the H -action stabilizes k0, and H0 acts trivially on k/k0. This definition
means precisely that a normal subpair fits into an exact sequence (in the obvious
sense):

1 → (k0, H0) → (k, H) → (k0, H0) → 1. (4.2)

4.1.3. Let Y be a classical scheme over S equipped with an H -action. Recall that every
H -equivariant OY -module F admits an h-action by derivations. Specializing to OY

itself, we obtain a canonical map:

h ⊗ OY → TY/S . (4.3)

On the other hand, theOY -module TY/S admits a canonical H -equivariance structure,
given by pushforward of tangent vectors.

Definition 4.4 A (k, H)-Lie algebroid on Y consists of a Lie algebroid L ∈
LieAlgd/S(Y ), an H -equivariance structure on the underlying OY -module of L, and
a morphism η : k⊗OY → L of H -equivariant OY -modules, subject to the following
conditions:

(a) the H -equivariance structure on L is compatible with its Lie bracket;
(b) the anchor map σ of L intertwines the H -equivariance structures on L and TY/S ;
(c) the following diagram is commutative:

L
σ

k ⊗ OY

η

(4.1)

TY/S

h ⊗ OY
(4.3)

(4.4)
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(d) η is compatible with the Lie bracket onL in the following sense: given ξ ∈ k⊗OY

and l ∈ L, there holds:

[η(ξ), l] = ξh · l ∈ L (4.5)

where ξh is the image of ξ in h⊗OY along (4.1), and ξh · l denotes the action of
ξh on l coming from the equivariance structure.

We will frequently write a (k, H)-Lie algebroid as (L, η), in order to emphasize
the dependence on η. The category of (k, H)-Lie algebroids on Y is denoted by
LieAlgd(k,H)

/S (Y ). Given another schemeY ′ over S acted on by H and an H -equivariant
morphism Y ′ → Y , one can form the pullback of a (k, H)-Lie algebroid in a way com-
patible with the forgetful functor to plain Lie algebroids.

4.2 Quotient of Lie algebroids

4.2.1. We describe how to form the quotient of a (k, H)-Lie algebroid when the
morphism η is injective. Denote the category of such (k, H)-Lie algebroid by
LieAlgd(k,H)

inj /S (Y ).

4.2.2. Suppose Z is a scheme over S and Y is an H -torsor over Z . Since H is affine
and flat, the projection π : Y → Z is an affine, faithfully flat cover (in particular,
fpqc). We will define a quotient functor:

Q(k,H)
inj : LieAlgd(k,H)

inj /S (Y ) → LieAlgd/S(Z) (4.6)

on each (L, η) ∈ LieAlgd(k,H)
inj (Y/S) by the following procedure:

(a) (OZ -module and anchor map) We have a morphism of H -equivariant OY -
modules:

L/(k ⊗ OY ) → TY/S/(h ⊗ OY )
∼−→ π∗TZ/S

by (4.4). Let L0 denote the fpqc descent of L/(k⊗OY ) to Z , so we obtain a map
of OZ -modules σ0 : L0 → TZ/S . The image of (L, η) under Q(k,H)

inj is supposed
to have underlying OZ -module L0 and anchor map σ0.

(b) (Lie bracket) Since π is affine, it suffices to define an OS-linear Lie bracket on
π−1L0. Consider the embedding:

π−1L0 ↪→ π∗L0
∼−→ L/(k ⊗ OY ).

The Lie bracket on L will induce one on π−1L0 if [k ⊗ OY , π−1L0] = 0 in L.
The latter identity is guaranteed by (4.5).
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We omit checking that this procedure gives rise to a well-defined functor Q(k,H)
inj .

4.2.3. Given a flat morphism of schemes f : Z ′ → Z , we set Y ′ := Z ′ ×
Z
Y which

is an H -torsor over Z ′. The map f̃ : Y ′ → Y is H -equivariant, and the pullback of
(L, η) ∈ LieAlgd(k,H)

inj /S (Y ) along f̃ lies in LieAlgd(k,H)
inj /S (Y ′). Furthermore, Q(k,H)

inj is

compatible with pullbacks along f and f̃ .

Remark 4.5 Since Lie algebroids are smooth local objects (see [2]) and Q(k,H)
inj is

compatiblewith flat pullbacks, wemay generalizeQ(k,H)
inj to the casewhereZ := Y/H

is representable by an algebraic stack (i.e., smooth locally a scheme).

Remark 4.6 The special case where the classical action pair is given by (h, H) with
(4.1) being the identity map, has been studied in [2] under the name strong quotient.
Note that when H acts freely on Y , the map η is automatically injective.

Example 4.7 Another instance of the functor (4.6) is the weak quotient. This is the
case where k = 0. The only data needed in defining a (0, H)-Lie algebroid are a
Lie algebroid L ∈ LieAlgd/S(Y ), together with an H -equivariance structure on the
underlying OY -module of L, subject to the first two conditions in Sect. 4.4.

Suppose Y/H is representable by an algebraic stack. Then the resulting quotient
Q(0,H)

inj (L) has underlying OY/H -module the descent of (the OY -module) L along
Y → Y/H .

4.2.4. We now characterize the object Q(k,H)
inj (L) ∈ LieAlgd/S(Z) by a universal

property. Consider an arbitrary Lie algebroid M ∈ LieAlgd/S(Z). We can equip

π !
LieAlgdM with the structure of a (k, H)-Lie algebroid as follows:

(a) regarding π !
LieAlgdM as the OY -module π∗M ×

π∗TZ/S

TY/S , the H -equivariance

structure is a combination of the natural H -equivariance structures on π∗M and
TY/S ;

(b) the morphism η : k ⊗ OY → π !
LieAlgd(M) is a combination of the zero map

k ⊗ OY → π∗M and the composition k ⊗ OY → h ⊗ OY → TY/S .

Note that π !
LieAlgdM ∈ LieAlgd(k,H)

/S (Y ) does not belong to LieAlgd(k,H)
inj /S (Y ) in gen-

eral.

Proposition 4.8 There is a natural bijection:

MapsLieAlgd/S(Z)(Q
(k,H)
inj (L),M)

∼−→ Maps
LieAlgd(k,H)

/S (Y )
(L, π !

LieAlgdM) (4.7)

Proof A morphism Q(k,H)
inj (L) → M is equivalent to an H -equivariant map φ :

L/k⊗OY → π∗M preserving the Lie bracket on H -invariant sections. We claim that
such datum is equivalent to amorphism φ̃ : L → π !

LieAlgdM of (k, H)-Lie algebroids.
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Indeed, given φ, the map φ̃ is uniquely determined by the properties that the fol-
lowing diagrams commute:

L φ̃
π !
LieAlgdM

L/k ⊗ OY
φ

π∗M

L φ̃

σ

π !
LieAlgdM

TY/S .

Furthermore, φ̃ preserves the Lie bracket on L, because L is generated over OY by
H -invariant sections and on such sections, the Lie bracket factors through L/k ⊗ OY

and is preserved by φ. Conversely, given φ̃, the map φ is uniquely determined by the
first commutative diagram above. 
�
4.2.5. Suppose we are given an exact sequence (4.2) of classical action pairs, and
an object (L, η) ∈ LieAlgd(k,H)

inj /S (Y ). Assume also that Y/H is representable by an
algebraic stack. Note that:

(a) Y/H0 admits an H0-action, realizing it as an H0-torsor over Y/H (in particular,
Y/H0 is also representable by an algebraic stack);

(b) there is an induced (k0, H0)-Lie algebroid structure onQ
(k0,H0)
inj (L), for which the

structure map

η0 : k0 ⊗ OY/H0 → Q(k0,H0)
inj (L)

is again injective, i.e., (Q(k0,H0)
inj (L), η0) ∈ LieAlgd(k0,H0)

inj /S (Y/H0).

We have a version of the second isomorphism theorem:

Proposition 4.9 There is a natural isomorphism:

Q(k0,H0)
inj ◦ Q(k0,H0)

inj (L)
∼−→ Q(k,H)

inj (L).

Proof AsOY/H0 -modules, the cokernel of η0 identifies with the descent of L/k⊗OY

along Y → Y/H0 since the latter map is faithfully flat. Hence the underlying OY/H -

module ofQ(k0,H0)
inj ◦Q(k0,H0)

inj (L) agrees with that ofQ(k,H)
inj (L). Identifications of the

anchor maps and the Lie brackets are immediate. 
�
4.2.6. Suppose we have a classical quasi-twisting (3.1) over Y , where both Lie alge-
broids L̂ and L have the structure of (k, H)-algebroids, and L̂ → L is a morphism
of such. In particular, the structure map η̂ : k ⊗ OY → L̂ is a lift of η. Hence, if
(L, η) ∈ LieAlgd(k,H)

inj /S (Y ), then so does (L̂, η̂). For fixed (L, η), we denote the cate-

gory of classical quasi-twistings with this additional structure by QTw(k,H)
/S (Y/L).

Assuming that Z := Y/H is represented by an algebraic stack. Then the quotient
Lie algebroids again form a central extension:

0 → OY/H → Q(k,H)
inj (L̂) → Q(k,H)

inj (L) → 0.
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Therefore, we may regard Q(k,H)
inj as a functor:

Q(k,H)
inj : QTw(k,H)

/S (Y/L) → QTw/S(Z/Q(k,H)
inj (L)).

Remark 4.10 When Y is placid and k is a topological Lie algebra overOS , we can adapt
the above definitions to make sense of a Tate (k, H)-Lie algebroid L (c.f. §3.2.5). In
particular, η will be a map out of the completed tensor product k⊗̂OY → L.

We do not discuss how to keep track of the topology in the (analogously defined)
quotient Q(k,H)

inj (L), since all quotients considered in this paper have the properties

that Y/H is locally of finite type and Q(k,H)
inj (L) should be discrete.

4.3 (H,H�)-formal moduli problems

4.3.1. We now study the geometric version of quotient of Lie algebroids. Recall the
∞-category FMod/S of Sect. 3.3.

Definition 4.11 We call a group object (H , H �) in FMod/S a geometric action pair if
H is a group scheme locally of finite type.

Explicitly, a geometric action pair consists of a group scheme H , a group prestack
H � ∈ PStklaft-def /S , and a nil-isomorphism H → H � that respects the group structure.

4.3.2. We will functorially construct a geometric action pair from any classical action
pair (k, H), where H is locally of finite type. Indeed, there is a morphism exp(k) → H
coming from the composition exp(k) → exp(h) → H . Furthermore, the H -action
on exp(k) equips the prestack quotient H � := H/ exp(k) with a group structure,
such that H → H � is a group morphism. Note that Lemma 3.12 identifies H � with
BH (H × exp(k)•); in particular, H � ∈ PStklaft-def /S , so (H , H �) is a geometric action
pair.

Lemma 4.12 The category of classical action pairs is identified with the full subcate-
gory of geometric action pairs (H , H �), for which the tangent complexTH/H � belongs
to ϒH (QCoh(H)♥).

Proof We explicitly construct the inverse functor. Given a geometric action pair
(H , H �) for which TH/H � ∈ ϒH (QCoh(H)♥), we can functorially associate a clas-
sical Lie algebroid L over H . The following Cartesian diagrams:

H ×
S
H

m

H � ×
S
H

act

H H �

H ×
S
H

m

H ×
S
H �

act

H H �

equip the underlying OH -module of L with right, respectively left, H -equivariance
structures. Hence we may realize L as k ⊗ OH where k is an OS-module equipped
with an H -action. The Lie bracket on k comes from the Lie algebroid bracket on L.
We omit checking that these data make (k, H) into a classical action pair. 
�
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4.3.3. For a geometric action pair (H , H �), we define FMod(H ,H �)
/S to be the ∞-

category of objects in FMod/S equipped with an (H , H �)-action. Explicitly, an object

of FMod(H ,H �)
/S consists of the following data:

(a) Y,Y� ∈ PStklaft-def /S together with a nil-isomorphism Y → Y�;
(b) an H -action on Y , and an H �-action on Y�, such that the morphism Y → Y�

intertwines them.

Note that there is a functor

FMod(H ,H �)
/S → PStkHlaft-def /S, (Y,Y�) � Y (4.8)

where PStkHlaft-def /S denotes the ∞-category of objects in PStklaft-def /S equipped

with an H -action. The fiber of (4.8) at Y is denoted by FMod(H ,H �)
/S (Y). Informally,

FMod(H ,H �)
/S (Y) is the ∞-category of formal moduli problems Y� equipped with an

H �-action that extends the H -action on Y .

4.3.4. Suppose (k, H) and (H , H �) are as in §4.3.2, and let Y be a scheme locally of
finite type over S, equiped with an H -action. We will construct a functor:

LieAlgd(k,H)
/S (Y ) → FMod(H ,H �)

/S (Y ) (4.9)

which enhances the association of formal moduli problems to Lie algebroids, in the
sense that the following diagram commutes:

LieAlgd(k,H)
/S (Y )

(4.9)

oblv

FMod(H ,H �)
/S (Y )

oblv

LieAlgd/S(Y )
(3.11)

FMod/S(Y )

To proceed, suppose (L, η) ∈ LieAlgd(k,H)
/S (Y ). We need to construct an H �-action

act� on the formal moduli problem Y� corresponding to L, together with a map of
simplicial prestacks:

· · · Y ×
S
H ×

S
H

act×1

1×m
pr12

Y ×
S
H

act

pr1
Y

· · · Y� ×
S
H � ×

S
H �

act� ×1

1×m
pr12

Y� ×
S
H �

act�

pr1
Y�.

(4.10)

Since each formal moduli problem Y� ×
S

(H �)• arises from the Lie algebroid pr∗Y L⊕
pr∗H (k ⊗ OH )⊕• over Y ×

S
H•, we only need to
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(a) produce a morphism

α : pr∗Y L ⊕ pr∗H (k ⊗ OH ) → act!LieAlgd L (4.11)

between Lie algebroids over Y ×
S
H (which would rise to act�, in a way compatible

with the morphism act)
(b) check that the following diagram:

pr∗Y L ⊕ pr∗H (k ⊗ OH )⊕2 can

act!LieAlgd(α)×1

(1 × m)!LieAlgd(pr∗Y L ⊕ pr∗H (k ⊗ OH ))

(1×m)∗LieAlgd(α)

act!LieAlgd(L) ⊕ pr∗H (k ⊗ OH )

∼

(1 × m)!LieAlgd act!LieAlgd(L)

∼

(act×1)!LieAlgd(pr∗Y L ⊕ pr∗H (k ⊗ OH ))
α

(act×1)!LieAlgd act!LieAlgd(L)

(4.12)

of Lie algebroids over Y ×
S
H ×

S
H is commutative. (This would affirm the com-

mutativity of (4.10) up to 2-simplices, but the higher commutativity constraints
are satisfied automatically since the corresponding ∞-categories are classical).

4.3.5. Note that as an OY×
S
H -module, we have an isomorphism:

act!LieAlgd(L)
∼−→ act∗ L ×

act∗ TY/S

TY×
S
H/S .

The required map α is the sum of the following components:

(a) the map pr∗Y L → act!LieAlgd(L) induced from the H -equivariance structure on L
and the composition

pr∗Y L
pr∗Y σ−−−→ pr∗Y TY/S ↪→ TY×

S
H/S,

where σ is the anchor map of L;
(b) the map k ⊗ OH → act!LieAlgd(L) induced from

k
η−→ H0(Y ,L)

act∗−−→ H0(Y ×
S
H , act∗ L),

and the composition

k ⊗ OH → h ⊗ OH ↪→ TY×
S
H/S . (4.13)

The following Lemma shows that the functor (4.9) is well-defined.
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Lemma 4.13 The map α is a morphism of Lie algebroids, and the diagram (4.12)
commutes.

Proof It is obvious thatα is compatible with the anchormaps. To show thatα preserves
the Lie bracket, we check it for sections of pr∗Y L ⊕ pr∗H (k ⊗ OH ) of the following
types:

(a) l1, l2 ∈ pr−1
Y L; this follows from the assumptions that the equivariance structure

θ : pr∗Y L → act∗ L is compatible with the Lie bracket, and σ is a map of H -
equivariant sheaves;

(b) ξ1, ξ2 ∈ k; this is clear;
(c) l ∈ pr−1

Y L and ξ ∈ k; this is a slightly more involved calculation, which we now
perform.

Write θ(l) = ∑
i fi ⊗ li , where fi ∈ OY×H and li ∈ act−1 L. We need to show the

vanishing of the following element in act∗ L ×
act∗ TY/S

TY×
S
H/S :

[α(l), α(ξ)] =
[∑

i

( fi ⊗ li ) × σ(l), (1 ⊗ η(ξ)) × σ ′(ξ)

]
(4.14)

where σ ′ denotes the composition (4.13). Note that the TY×
S
H/S-component of (4.14)

vanishes tautologically, so we just need to show the vanishing of its act∗ L-component.
The latter is given (using (4.5)) by

∑
i

fi ⊗ [li , η(ξ)] −
∑
i

σ ′(ξ)( fi ) ⊗ li = −
∑
i

( fi ⊗ (ξh · li ) + (ξh · fi ) ⊗ li )

(4.15)

where in the second summand, ξh acts on fi ∈ OY×
S
H/S by derivation on the OH -

component. Consider the right H -action on Y ×
S
H , given by (y, h), h′ � (y, hh′); if

we equip act∗ L with the following H -equivariance structure:

act∗ L
∣∣
(y,h)

∼−→ L
∣∣
yh

θ(yh,h′)−−−−→ L
∣∣
yhh′

∼−→ act∗ L
∣∣
(y,hh′),

then (4.15) is the (negative of the) induced action of ξh on the section
∑

i fi ⊗li = θ(l)
in act∗ L. Note that pr∗Y L can also be endowed with an H -equivariance structure:

pr∗ L
∣∣
(y,h)

∼−→ L
∣∣
y

∼−→ pr∗ L
∣∣
(y,hh′)

such that θ is a map of H -equivariant OY×
S
H -modules. Hence the element ξh · θ(l)

identifies with θ(ξh · l). On the other hand, l ∈ pr−1 L so ξh · l = 0, from which we
deduce the required vanishing of (4.15). Checking the commutativity of (4.12) is not
difficult, and we leave it to the reader. 
�
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4.3.6. We now characterize the image of the functor (4.9).

Proposition 4.14 The functor (4.9) is an equivalence onto the full subcategory:

FMod(H ,H �)
/S (Y )cl ↪→ FMod(H ,H �)

/S (Y )

that consists of objects Y� such that TY/Y� lies in ϒY (QCoh(Y )♥).

Proof Indeed, such a formal moduli problems Y� arises from some Lie algebroid L
via the functor (3.11). Given the additional data of an (H , H �)-action, we consider
the following commutative diagrams:

Y ×
S
H

act
Y

Y� ×
S
H

i Y� ×
S
H � act� Y�

Y ×
S
H

act
Y

Y ×
S
H �

j Y� ×
S
H � act� Y�

(4.16)

From these diagrams, we obtain two maps between tangent complexes:

TY×
S
H/Y�×

S
H

act�∗ ◦i∗−−−−→ TY×
S
H/Y� → TY/Y�

∣∣
Y×

S
H ,

which gives rise to a morphism θ : pr∗Y L → act∗ L; and

TY×
S
H/Y×

S
H �

act�∗ ◦ j∗−−−−→ TY×
S
H/Y� → TY/Y�

∣∣
Y×

S
H , (4.17)

which gives rise to a map η̃ : pr∗H (k ⊗ OH ) → act∗ L; restricting to Y ×
S

{1}, we
obtain a map η : k ⊗ OY → L. The functor FMod(H ,H �)

/S (Y )cl → LieAlgd(k,H)
/S (Y )

inverse to (4.9) is defined by sending Y� to the Lie algebroid L, equipped with the
(k, H)-structure specified by the above maps θ and η. 
�
4.3.7. We give an alternative description of the map α that will be used in the proof of
Proposition 4.18. Consider the commutative diagram:

Y
can

Y/H

Y ×
S

(H �/H)
j̃ Y� ×

S
(H �/H)

ãct� Y�/H

(4.18)

which is the “quotient” by H of the right diagram in (4.16). It produces the following
map between tangent complexes:

TY/(Y×
S
(H �/H))

ãct�∗◦ j̃∗−−−−→ TY/(Y�/H) → T(Y/H)/(Y�/H)

∣∣
Y

∼−→ TY/Y� . (4.19)
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We claim that (4.19) identifies with the restriction of (4.17) to Y ×
S

{1}. Indeed, this
follows from the fact that (4.17) is the pullback of (4.19) along prY : Y ×

S
H → Y ,

and the composition Y ×
S

{1} ↪→ Y ×
S
H

prY−−→ Y is the identity.

4.4 Quotient of formal moduli problems

4.4.1. Let (H , H �) be a geometric action pair (seeDefinition 4.11). Suppose (Y,Y�) ∈
FMod(H ,H �)

/S . The quotient of (Y,Y�) by (H , H �) is defined as the quotient in the ∞-
category FMod/S . In other words, it is the geometric realization of the simplicial object

(Y,Y�) × (H , H �)• in FMod(H ,H �)
/S characterizing the (H , H �)-action on (Y,Y�).

Proposition 4.15 The quotient of (Y,Y�) by (H , H �) exists.

Proof We construct the quotient in the ∞-category Fun(�1,PStklaft-def /S), and then
check that the result belongs to the full subcategory FMod/S . Quotient in the above
functor category is computed pointwise as follows:

(a) at the vertex [0], we have the prestack quotientY/H ; it is an object of PStklaft-def /S

because H is a group scheme locally of finite type;
(b) at the vertex [1], we assert that the quotient of Y� by H � exists in PStklaft-def /S ;

indeed, it is given by BY�/H (Y�
H×
S
H �/H) where Y�

H×
S
H �/H denotes the Hecke

groupoid11 acting on the prestack quotient Y�/H :

· · · Y�
H×
S
H �

H×
S
H �/H

act� ×1

1×m
pr12

Y�
H×
S
H �/H

act�

pr1
Y�/H ,

and BY�/H is the functor from §3.4.3.

Finally, the morphism Y/H → BY�/H (Y�
H×
S
H �/H) is a nil-isomorphism since it is

the composition of nil-isomorphisms Y/H → Y�/H → BY�/H (Y�
H×
S
H �/H). 
�

Regarding Y as a fixed prestack acted on by H , we denote the resulting quotient
functor by

Q(H ,H �) : FMod(H ,H �)
/S (Y) → FMod/S(Y/H), Y� � BY�/H (Y�

H×
S
H �/H).

(4.20)

11 Suppose C is an ∞-category with finite products. Let H → K be a map of group objects in C. Suppose
any object in C with an H -action admits a quotient. Then given an object Y ∈ C with a K -action, there

exists a Hecke groupoid Y
H× K/H acting on Y/H whose quotient, if exists, agrees with Y/K .
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4.4.2. Tautologically, the quotient (Y/H ,BY�/H (Y�
H×
S
H �/H)), equipped with the

map from (Y,Y�), satisfies the universal property:

MapsFMod/S
((Y/H ,BY�/H (Y�

H×
S
H �/H)), (Z,Z�))

∼−→ Maps
FMod(H ,H�)

/S

((Y,Y�), (Z,Z�)),

where in the second expression, (Z,Z�) is equipped with the trivial (H , H �)-action.
Specializing to Z = Y/H , we see that the object Q(H ,H �)(Y�) ∈ FMod/S(Y/H) is
characterized by the universal property:

MapsFMod/S(Y/H)(Q
(H ,H �)(Y�),Z�)

∼−→ Maps
FMod(H ,H�)

/S (Y)
(Y�, π !

FMod(Z�))

(4.21)

where in the second expression, π !
FModZ� ∼= Z� ×

(Y/H)dR

YdR is acted on by H � through

the canonical homomorphism H � → HdR on the YdR factor.

Remark 4.16 Recall the (k, H)-Lie algebroid structure on π !
LieAlgd(M), where (k, H)

is any classical action pair and M is a Lie algebroid on the quotient Y/H (see
Sect. 4.2.3). If H � = H/ exp(k) as in §4.3.2, then the (H , H �)-formal moduli problem
π !
FMod(Z�) is precisely the one associated to π !

LieAlgd(M) under the functor (4.9).

4.4.3. Let (H0, (H0)�) → (H , H �) be a morphism of geometric action pairs. We say
that (H0, (H0)�) is a normal subpair of (H , H �) if there is a morphism (H , H �) →
(H0, (H0)

�) of geometric action pairs whose kernel identifies with (H0, (H0)�). In
particular, the (H , H �)-action on itself extends to (H0, (H0)�).

Given a normal subpair (H0, (H0)�) of (H , H �), we recover (H0, (H0)
�) by the

isomorphisms:

H0
∼−→ H/H0, H �

0
∼−→ Q(H0,(H0)�)(H �).

Let Y� ∈ FMod(H ,H �)
/S (Y). Then the prestack Q(H0,(H0)�)(Y�) is naturally an object

of FMod
(H0,H

�
0 )

/S (Y/H0), and we have a second isomorphism theorem:

Proposition 4.17 There is a natural isomorphism:

Q(H0,H
�
0 ) ◦ Q(H0,(H0)�)(Y�)

∼−→ Q(H ,H �)(Y�).

Proof Both sides are the quotient of (Y,Y�) by (H , H �) in the ∞-category FMod/S .

�
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4.4.4. Suppose we have a quasi-twisting Ŷ� ∈ QTw/S(Y/Y�), such that (Y, Ŷ�) is
also an (H , H �)-formal moduli problem, and the morphism Ŷ� → Y� preserves this
structure. We call quasi-twistings with these additional data (H , H �)-quasi-twistings

(based at Y�) and denote the category of them by QTw(H ,H �)
/S (Y/Y�). The quotient

Q(H ,H �)(Ŷ�) inherits the structure of a quasi-twisting on Y/H based atQ(H ,H �)(Y�).
Indeed,

(a) applyingQ(H ,H �) to the action groupoid Ŷ� ×B Ĝ
•
m , we obtain a B Ĝm-action on

Q(H ,H �)(Ŷ�), which gives rise to a Ĝm-gerbe structure;
(b) the section Y/H → Q(H ,H �)(Ŷ�) is given by the composition:

Y/H → Ŷ�/H → Q(H ,H �)(Ŷ�).

Therefore, we may view Q(H ,H �) as a functor:

Q(H ,H �) : QTw(H ,H �)

/Y� (Y/S) → QTw
/Q(H ,H�)(Y�)

((Y/H)/S).

4.5 Comparison of Q(k,H)
inj and Q(H,H�)

4.5.1. Suppose (k, H) and (H , H �) are as in §4.3.2, and let Y be a scheme locally
of finite type over S equipped with an H -action. We shall show that the two quotient
functors constructed above are compatible.

Proposition 4.18 The following diagram is commutative:

LieAlgd(k,H)
inj /S (Y )

(4.9)

Q(k,H)
inj

FMod(H ,H �)
/S (Y )

Q(H ,H�)

LieAlgd/S(Y/H)
(3.11)

FMod/S(Y/H).

Proof Suppose (L, η) ∈ LieAlgd(k,H)
inj /S (Y ), i.e., L is a (k, H)-Lie algebroid over Y

such that the map η : k ⊗ OY → L is injective. Let Y� be the corresponding formal
moduli problem under Y , equipped with the H �-action defined by the functor (4.9).
Thus Q(H ,H �)(Y�) satisfies the universal property (4.21) for Z� ∈ FMod/S(Y/H).

On the other hand,Q(k,H)
inj (L) satisfies the universal property (4.7). Since the essen-

tial image of (3.11) consists of objects Z� ∈ FMod/S(Y/H) such that T(Y/H)/Z�

belongs to ϒY/H (QCoh(Y/H)♥), it suffices to show that Q(H ,H �)(Y�) has this prop-
erty. The result thus follows from the lemma below and the fact that Y → Y/H is
faithfully flat. 
�
Lemma 4.19 Suppose (Y ,Y�) is the (H , H �)-formal moduli problem corresponding
to the (k, H)-Lie algebroid (L, η) under the functor (4.9). Then there is a canonical
isomorphism between T

(Y/H)/Q(H ,H�)(Y�)

∣∣
Y and Cofib(η).
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Proof We will use the expression of Q(H ,H �)(Y�) as quotient of the Hecke groupoid

Y�
H×
S
H �/H (see (4.20)). Consider the following commutative diagram, which extends

the commutative diagram (4.18):

Y

id×{1}
Y/H

Y ×
S
H �/H

j̃

pr

Y� ×
S
H �/H ãct�

pr

Y�/H

Y Y� Q(H ,H �)(Y�)

where the two lower squares, as well as the dotted quadrilateral, are Cartesian. From
this diagram, we obtain the following commutative diagram of objects in QCoh(Y ):

T(Y×
S
H �/H)/Y

∣∣
Y [−1] ∼

∼=

T
(Y�/H)/Q(H ,H�)(Y�)

∣∣
Y [−1] T(Y/H)/(Y�/H)

∣∣
Y

∼=

T
(Y/H)/Q(H ,H�)(Y�)

∣∣
Y

TY/(Y×
S
H �/H)

(4.19)

ãct�∗◦ j̃∗ TY/(Y�/H) T(Y/H)/(Y�/H)

∣∣
Y

∼=
TY/(Y/H)[1]

TY/Y�

Furthermore, the two horizontal dotted triangles are exact. Note that the composi-
tion (4.19) identifies with η, so the upper horizontal triangle allows us to identify
T

(Y/H)/Q(H ,H�)(Y�)

∣∣
Y with Cofib(η). 
�

4.6 Example: inert quasi-twistings

4.6.1.We now specialize to Lie algebroids arising from abelian Lie algebras. They give
rise to what we call “inert quasi-twistings.” In the geometric Langlands theory, they
arise naturally as degeneration of (non-inert) quasi-twistings as the quantumparameter
κ tends to ∞. (The details of this application will appear in Sect. 6).

4.6.2. Recall that over any Y ∈ PStklaft-def /S , there is a functor

triv : IndCoh(Y) → Lie(IndCoh(Y))

that associates to an ind-coherent sheaf F the abelian Lie algebra on F . (The nota-
tion Lie(IndCoh(Y)) means Lie algebra objects in the symmetric monoidal category
IndCoh(Y)). More precisely, triv is the right inverse to the forgetful functor. Because
the latter is conservative and preserves limits, triv also preserves limits.

4.6.3. We also have a pair of adjunction:

diagY : Lie(IndCoh(Y)) FMod(Y) : ker-anch
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where diagY preserves fiber products.12 It follows that the composition diagY ◦ triv
preserves fiber products. We call Y� := diagY ◦ triv(F) the inert formal moduli prob-
lem on F .

Remark 4.20 Let Y be a scheme (not necessarily locally of finite type) over S. The
classical analogue of the above construction associates to an OY -module F the Lie
algebroid on F with zero Lie bracket and anchor map. If Y → S is locally of finite
type, then the image of F under (3.11) agrees with diagY ◦ triv(ϒY/S(F)).

4.6.4. For the remainder of this section, we suppose Y → S is smooth. Then the
identification ϒY/S : QCoh(Y )

∼−→ IndCoh(Y ) allows us to view the universal
enveloping algebra13 of an object Y� ∈ FMod/S(Y ) as an algebra in QCoh(Y ). If
Y� = diagY ◦ triv(ϒY (F)), then it is given by SymOY

(F).

4.6.5. Suppose F ∈ QCoh(Y )≤0. Let V(F) := Spec
Y
SymOY

(F). It is a prestack
over Y fibered in vector DG schemes. We have an equivalence of DG categories:

IndCoh(Y�)
∼−→ QCoh(V(F)), (4.22)

where oblv : IndCoh(Y�) → IndCoh(Y ) passes to the pushforward functor on QCoh
(see [18, IV.4 §4.1.3, IV.2 (7.12), and IV.3 Proposition 5.1.2]).

4.6.6. Suppose, furthermore, that we have a quasi-twisting Ŷ� ∈ QTw/S(Y/Y�)

that arises from a triangle OY → F̂ → F in QCoh(Y )≤0 under the composition
diagY ◦ triv ◦ϒY/S . We call Ŷ� the inert quasi-twisting on the triangleOY → F̂ → F .

4.6.7. Since Spec
Y
SymOY

(OY ) is identified with Y × A
1, the map OY → F̂ gives

rise to a morphism of DG schemes:

Spec
Y
SymOY

(F̂) → Y × A
1. (4.23)

We let V(F̂)λ=1 be the fiber of (4.23) at {1} ↪→ A
1. Note that the analogously defined

fiber V(F̂)λ=0 identifies with V(F). There is a canonical equivalence of DG cate-
gories:

Ŷ�-Mod
∼−→ QCoh(V(F̂)λ=1). (4.24)

Remark 4.21 From our point of view, the DG category QCoh(LocSysG) is realized by
modules over some quasi-twisting on BunG . The DG stack LocSysG only appears a
posteriori through (4.24).

12 One sees this by identifying Lie(IndCoh(Y))with FMod(Y)/Y , whereY is regarded as a formal moduli
problem under itself by the identity map. Under this identification, diagY becomes the tautological forgetful
functor; see [18, IV.4].
13 This is defined as a monad on IndCoh(Y ) in [18, IV.4.4].
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4.6.8. We now discuss how quotient interacts with inert quasi-twistings. Denote by pt
the S-scheme S itself. Suppose (k, H) is a classical action pair with zero map k → h.
Then we have

H � := H/ exp(k)
∼−→ H � (pt / exp(k)),

where the formation of the semidirect product is formed by the H -action on pt / exp(k).
Note that the normal subpair (pt, pt / exp(k)) of (H , H �) has quotient (H , H), since

Q(pt,pt / exp(k))(H �)
∼−→ BH � (H � × (pt / exp(k))•) ∼−→ H ;

see Sect. 4.4.3.

4.6.9. We now assume that k is also abelian. Suppose the smooth scheme Y admits
an H -action, and Y� is the inert formal moduli problem on some H -equivariant sheaf
F ∈ QCoh(Y )♥.

Suppose we have an H -equivariant map η : k ⊗ OY → F , giving rise to an H �-
action on Y� (see Sect. 4.3.4). Let Q := Cofib(η); it is an H -equivariant complex of
OY -modules, hence descends to an object Qdesc ∈ QCoh(Y/H).

Proposition 4.22 The quotient Q(H ,H �)(Y�) identifies with the inert formal moduli
problem on Qdesc ∈ QCoh(Y/H).

Proof By Proposition 4.17, we have

Q(H ,H �)(Y�)
∼−→ Q(H ,H) ◦ Q(pt,pt / exp(k))(Y�)

∼−→ Q(pt,pt / exp(k))(Y�)/H .

Note that descent of OY -modules corresponds to quotient by H on the inert formal
moduli problem. Hence we only need to identifyQ(pt,pt / exp(k))(Y�) as the inert formal
moduli problem on Q.

Consider the Čech nerve ofF → Q inQCoh(Y ), which identifieswith the groupoid
F ⊕ (k⊗OY )⊕•. Since the composition diagY ◦ triv preserves fiber products, we see
that

diagY ◦ triv(F ⊕ (k ⊗ OY )⊕•) ∼−→ Y� × (pt / exp(k))•

identifies with the Čech nerve of the map Y� → diagY ◦ triv(Q). The result follows
since this is also the Čech nerve of Y� → Q(pt,pt / exp(k))(Y�). 
�

Remark 4.23 When Y is any scheme over S (not necessarily locally of finite type)
but η is injective, we also have an identification of Q(k,H)

inj (F) with the Lie algebroid

on Qdesc with zero Lie bracket and anchor map. This follows immediately from the
definition of Q(k,H)

inj (F).
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Geometrically, the datum of η gives rise to a map φ : V(F) → Y ×
S
k∗, and V(Q)

identifies with its fiber at {0} ↪→ k∗. Hence we have isomorphisms of DG stacks:

V(Qdesc)
∼−→ V(Q)/H

∼−→ φ−1(0)/H . (4.25)

4.6.10. Suppose we have an exact sequence of H -equivariant OY -modules:

0 → OY → F̂ → F → 0.

Let Ŷ� ∈ QTw/Y� (Y/S) be the corresponding inert quasi-twisting. Assume that η

lifts to an H -equivariant map η̂ : k⊗OY → F̂ . Then Proposition 4.22 shows that the
quotient quasi-twisting arises from a triangle in QCoh(Y/H):

OY/H → Q̂desc → Qdesc

where Q̂desc is the descent of Q̂ := Cofib(̂η) to Y/H .
In particular, we have isomorphisms of DG stacks:

V(Q̂desc)λ=1
∼−→ V(Q̂)λ=1/H

∼−→ φ̂−1
λ=1(0)/H (4.26)

where φ̂λ=1 is the composition

V(F̂)λ=1 ↪→ V(F̂)
V(̂η)−−→ Y ×

S
k∗.

Remark 4.24 In light of (4.25) and (4.26), one may think of Q(H ,H �) on inert quasi-
twistings as an analogue of symplectic reduction where φ and φ̂λ=1 play the role of
the moment map.

The universal quasi-twisting

5 Construction of T (�,E)
G

Let S be an affine scheme smooth over k. To an S-point (gκ , E) of ParG , we shall
functorially attach a quasi-twisting T (κ,E)

G over S × BunG (relative to S).

We proceed by first constructing a Lie-∗ algebra ĝ(κ,E)

D over S × X , then twisting

its pullback to S × BunG,∞x ×X by the tautological G-bundle P̃G . Via taking sec-

tions over
◦
Dx , we produce a classical quasi-twisting T̃ (κ,E)

G over S ×BunG,∞x . Then

we show that T̃ (κ,E)
G admits an action by the pair (gκ(Ox ),L+

x G), so we may form

the quotient T (κ,E)
G := Q(gκ (Ox ),L+

x G)(T̃ (κ,E)
G ). This last step requires both quotient

functors constructed in Sect. 4 and their compatibility.
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We then verify that for a simple group G and gκ arising from the bilinear form
κ = λ ·Kil, the quasi-twisting T (κ,0)

G identifies with the twisting given by λ-power of
the determinant line bundle LG,det over BunG .

5.1 Recollection on Lie-∗ algebras

5.1.1. Let X → S be a smooth curve relative to S with connected fibers.14 The
diagonal morphism � : X → X ×

S
X is a closed immersion. Denote by DX /S-Modr

the category of OX -modules equipped with a right action of the relative differential
operators DX /S .

5.1.2. A Lie-∗ algebra on X (relative to S) is an object B ∈ DX /S-Modr , equipped
with a DX×

S
X /S-linear morphism15 [−,−] : B�2 → �!(B) such that the following

properties are satisfied:

(a) (anti-symmetry) for all sections a, b of B, there holds

σ̃12([a � b]) = −[b � a],

where σ̃12 is the transposition morphism over X ×
S
X given by:

σ−1
12 �!(B) → �!(B); where σ12(x, y) = (y, x).

(b) (Jacobi identity) for all sections a, b, and c of B, there holds

[[a � b] � c] + σ̃123([[b � c] � a]) + σ̃ 2
123([[c � a] � b]) = 0,

where σ̃123 denotes the morphism over X ×
S
X ×

S
X given by:

σ−1
123(�x=y=z)!(B) → (�x=y=z)!(B); where σ123(x, y, z) = (y, z, x).

Denote byLie∗(X /S) the category of Lie-∗ algebras onX relative to S. Clearly, for any
morphism S′ → S withX ′ := X ×

S
S′, we have a functor Lie∗(X /S) → Lie∗(X ′/S′)

acting as pulling back aDX /S-module, and equipping it with the induced Lie-∗ algebra
structure.

5.1.3. Lie-∗ algebras are étale local objects. More precisely, let Ét/X be the small étale

site of X . Given B ∈ Lie∗(U/S) where U ∈ Ét/X and a morphism Ũ → U , we may
associate an object B

∣∣
Ũ ∈ Lie∗(Ũ/S). This procedure defines a functor in groupoids:

Étop
/X → Gpd, U � Lie∗(U/S). (5.1)

14 For our applications, we will take X := S × X .
15 We use � to denote tensoring overOS .
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The étale local nature of Lie-∗ algebras refers to the fact that (5.1) satisfies descent.

5.1.4. Let G be a presheaf of group schemes on Ét/X , andB ∈ Lie∗(X /S). A G-action
on L consists of the following data:

• for each U ∈ Ét/X , an action of GU as endomorphisms of B
∣∣
U ∈ Lie∗(U/S);

furthermore, this action is required to be functorial in U .
Suppose P is an étale G-torsor over X , and B ∈ Lie∗(X /S) admits a G-action.

Then we can form the P-twisted Lie-∗ algebra BP ∈ Lie∗(X /S) using the descent
property of (5.1).

5.2 De Rham cohomology over the disc

5.2.1. Let x ∈ X be a closed point. Write X := S × X and x : S → X for the
S-point determined by x . Let Dx be the completion of X at x and D̊x be its open

subscheme Dx − {x}. As S is assumed affine, we have Dx
∼−→ Spec(OS⊗̂Ox ) and

◦
Dx

∼−→ Spec(OS⊗̂Kx ), where Ox denotes the completed local ring at x , and Kx the
localization of Ox at its uniformizer.

5.2.2. Following [3, Sects. 2.1.13, 2.1.16], there is a right-exact functor �dR(Dx ,−)

carrying DX /S-modules to topological OS-modules. (It is the functor of zeroth de
Rham cohomology, denoted by ĥx in op.cit.) Let �dR(D̊x ,−) denote the functor
�dR(Dx , j∗ j∗−) where j : X − {x} ↪→ X is the open immersion. According to [3,

Lemma 2.1.14], the functors�dR(Dx ,−),�dR(
◦
Dx ,−) carry coherent DX /S-modules

to Tate OS-modules.

Lemma 5.1 There are canonical isomorphisms:

�dR(Dx , ωX /S) ∼= 0, �dR(D̊x , ωX /S) ∼= OS .

Proof The Spencer complex defines a resolution of ωX /S by the complex DX /S →
ωX /S⊗DX /S . Applying�dR(Dx ,−), this complex becomes d : OS⊗̂Ox → OS⊗̂ωx

(see [3, Sect. 2.1.13, Examples (i)]). The vanishing of �dR(Dx , ωX /S) thus follows.
The calculation of �dR(D̊x , ωX /S) follows from the canonical triangle i!i !(ωX /S) →
ωX /S → j∗ j∗ωX /S (for i : S ↪→ X denoting the closed immersion x) and the
isomorphism i !(ωX /S) ∼= OS[−1]. 
�

5.2.3. Given a Lie-∗ algebra B, the object �dR(
◦
Dx ,B) acquires the structure of a Lie

algebra in QCohTate(S), whose (continuous) Lie bracket is given by the composition:

[−,−] : �dR(
◦
Dx ,B)�2 ∼−→�dR(

◦
Dx ×

S

◦
Dx ,B�2)

→ �dR(
◦
Dx ×

S

◦
Dx ,�!(B))

∼−→ �dR(
◦
Dx ,B).
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The map �dR(Dx ,B) → �dR(
◦
Dx ,B) realizes �dR(Dx ,B) as a Lie subalgebra if B is

OX -flat.

5.3 The Kac-Moody Lie-∗ algebra

5.3.1. Suppose now that S is equipped with a morphism S → ParG , represented by
(gκ , E) (see Sect. 2). We will construct a central extension of Lie-∗ algebras over
X := S × X :

0 → ωX /S → ĝ
(κ,E)

D → gκ
D → 0, (5.2)

together with G-actions on ĝ
(κ,E)

D and gκ
D, where G is the presheaf of group schemes

GU := Maps(U ,G) on Ét/X . The construction will be functorial in S.

Remark 5.2 The central extension (5.2), together with the G-action, is called the (gen-
eralized) Kac-Moody central extension of Lie-∗ algebras, and we refer to ĝ(κ,E)

D as the
(generalized) Kac-Moody Lie-∗ algebra.

5.3.2. TheLie-∗ algebra gκ
D has underlyingDX /S-module gκ �DX /S . Its Lie-∗ algebra

structure is defined using the Lie bracket (2.18) on gκ :

[−,−] : (gκ
D)�2 → �!(gκ

D), (μ ⊗ 1) � (μ′ ⊗ 1) � [μ,μ′] ⊗ 1D,

where 1D is the canonical symmetric section of�!(DX /S). Note that the Lie-∗ bracket
[−,−] factors through the embedding gκ

s.s. � DX /S ↪→ gκ
D.16

We construct a G-action on gκ
D as follows: for every U ∈ Ét/X , there is an adjoint-

coadjoint action of the group scheme Maps(U ,G) on gκ ⊗ OU :

gU · (ξ ⊕ ϕ) = AdgU (ξ) ⊕ CoadgU (ϕ). (5.3)

where ξ ⊕ ϕ denotes a section of gκ ⊗ OU , regarded as a subbundle of (g ⊗ OU ) ⊕
(g∗ ⊗ OU ). The action (5.3) extends to an action of Maps(U ,G) on gκ ⊗

OU
DU/S by

Lie-∗ algebra endomorphisms.

5.3.3. The underlyingDX /S-modules of (5.2) are defined by first inducing a sequence
of DX /S-modules from (2.20):

0 → ωX /S ⊗
OX

DX /S → ĝκ ⊗
OX

DX /S → gκ � DX /S → 0 (5.4)

and then taking the push-out along the action map ωX /S ⊗
OX

DX /S → ωX /S .

16 See §2.3.2 for the notation gκ
s.s..
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In particular, the extension ĝ
(κ,E)

D → gκ
D splits over gκ

s.s. � DX /S , and we have a
decomposition

ĝ
(κ,E)

D
∼−→ ED ⊕ (gκ

s.s. � DX /S). (5.5)

where ED is the push-out of E ⊗
OX

DX /S along ωX /S ⊗
OX

DX /S → ωX /S .

5.3.4. The Lie-∗ algebra structure on ĝ
(κ,E)

D is defined by the composition:

(̂g
(κ,E)

D )�2 → (gκ
D)�2 → �!(ωX /S) ⊕ �!(gκ

s.s. � DX /S) → �!(̂g(κ,E)

D )

where the middle map is defined using the bilinear form (2.19) and the Lie bracket
(2.18) on gκ :

(μ ⊗ 1) � (μ′ ⊗ 1) � (μ,μ′)1′
ω + [μ,μ′] ⊗ 1D;

the notation 1′
ω denotes the canonical anti-symmetric section of �!(ωX /S).

5.3.5. We now construct the G-action on ĝ
(κ,E)

D . Let U ∈ Ét/X and gU be a point of

Maps(U ,G). The corresponding endomorphism gU : ĝ(κ,E)

D → ĝ
(κ,E)

D is defined by
the sum of the following maps (using the decomposition (5.5)):

(a) identity on ED;
(b) adjoint-coadjoint action on gκ

s.s. � DU/S by formula (5.3);
(c) the composition:

ĝ
(κ,E)

D
∣∣
U → gκ

D
∣∣
U

∼−→ (gκ � OU ) ⊗
OU

DX /S
res(gU )−−−−→ ωU/S ↪→ ĝ

(κ,E)

D
∣∣
U

(5.6)

where the map res(gU ) is defined by the formula:

(ξ ⊕ ϕ) ⊗ 1 � ϕ(g−1
U dgU ), ξ ⊕ ϕ ∈ gκ � OU .

Here, d : OU → ωU/S is the exterior derivative, so g−1
U dgU is a section of

g � ωU/S , on which ϕ rightfully acts.

It is clear from the construction that ĝ(κ,E)

D → gκ
D is G-equivariant.

Remark 5.3 If gκ arises from a symmetric bilinear form κ (see Sect. 2), then we have
an isomorphism ĝ

(κ,0)
D

∼−→ B(g, κ) where B(g, κ) is the Kac-Moody Lie-∗ algebra at

level κ in the ordinary sense (see [11]). On the other hand, the Lie-∗ algebra ĝ(∞,0)
D is

given by ωX /S ⊕ g∗
D with zero Lie-∗ bracket (but a nontrivial G-action).
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5.3.6. Let us bring in the closed point x ∈ X , which induces a section x : S → X .

Applying �dR(
◦
Dx ,−) to the sequence (5.2) and using Lemma 5.1, we obtain a central

extension of Lie algebras in QCohTate(S):

0 → OS → ĝ(κ,E) → gκ(Kx ) → 0, (5.7)

where the notation gκ(Ox ) (resp. gκ(Kx )) denotes the Tate OS-module gκ⊗̂Ox

(resp. localization at the uniformizer of Ox ).
The Lie bracket on ĝ(κ,E) is given by the composition:

(̂g(κ,E))�2 → (gκ(Kx ))
�2 → OS ⊕ gκ

s.s.(Kx ) → ĝ(κ,E),

where the middle map is defined by

(μ ⊗ f ) � (μ′ ⊗ f ′) � (μ,μ′) · Res((d f ) f ′) + [μ,μ′] ⊗ f f ′.

Lemma 5.4 The central extension (5.7) canonically splits over gκ(Ox ).

Proof The result follows from applying �dR(Dx ,−) to the sequence (5.2) and observ-
ing that �dR(Dx , ωX /S) vanishes (Lemma 5.1). 
�

LetLxG (resp.L+
x G) denote the loop (resp. arc) group ofG at x . There is an action

of LxG on ĝ(κ,E) defined analogously to §5.3.5, with the composition (5.6) replaced
by:

ĝ(κ,E) → gκ(Kx )
res(g)−−−→ OS ↪→ ĝ(κ,E)

where the map res(g) (g is a point of LxG) is defined by the formula:

(ξ ⊕ ϕ) ⊗ f � Res( f · ϕ(g−1dg)).

Since the Lie algebra ofLxG identifies with g(Kx ), thisLxG-action induces a g(Kx )-
action on ĝ(κ,E) by OS-linear endomorphisms.

Lemma 5.5 The Lie bracket on ĝ(κ,E) agrees with the composition:

(̂g(κ,E))�2 (pr,id)−−−→ g(Kx ) � ĝ(κ,E) act−→ ĝ(κ,E).

Proof This is a straightforward computation. 
�

5.4 The classical quasi-twisting T̃ (�,E)
G over BunG,∞x

5.4.1. Let BunG,∞x denote the stack classifying pairs (PG , α)wherePG is aG-bundle

on X and α : PG
∣∣
Dx

∼−→ P0
G is a trivialization over Dx . The (right) L+

x G-action on
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BunG,∞x by changing α realizes BunG,∞x as aL+
x G-bundle over BunG , locally trivial

in the étale topology. In particular, BunG,∞x is placid; see Sect. 3.2.

5.4.2. The Beauville-Laszlo theorem shows that BunG,∞x also classifies pairs

(PG,�, α), where PG,� is a G-bundle on � := X − {x} and α : PG,�

∣∣ ◦
Dx

∼−→ P0
G

is a trivialization over
◦
Dx . This alternative description shows that the L+

x G-action on
BunG,∞x extends to an LxG-action.

5.4.3. Fix an S-point (gκ , E) of ParG . We apply the construction of Sect. 5.3 to the
relative curve

X̃ := S × BunG,∞x ×X over S̃ := S × BunG,∞x ,

and obtain a central extension in Lie∗(X̃ /S̃):

0 → ωX̃ /S̃ → ĝ
(κ,E)

D → gκ
D → 0. (5.8)

In other words, (5.8) is the image of Kac-Moody extension (5.2) under the base change
functor − � OBunG,∞x : Lie∗(X /S) → Lie∗(X̃ /S̃).

Let x̃ : S̃ ↪→ X̃ (resp. x : S ↪→ X ) denote the section given by x ∈ X . Let P̃G be
the tautological G-bundle over X̃ equipped with the trivialization α over Dx̃ . Since

ĝ
(κ,E)

D and gκ
D are equipped with G-actions, we can form the P̃G-twist of (5.8):

0 → ωX̃ /S̃ → (̂g
(κ,E)

D )P̃G
→ (gκ

D)P̃G
→ 0. (5.9)

Remark 5.6 (a) Since gκ
D is the DX̃ /S̃ -module induced from gκ � OBunG,∞x ×X and

the G-action comes from one on gκ � OBunG,∞x ×X , we see that (gκ
D)P̃G

is the
DX̃ /S̃ -module induced from gκ

P̃G
.

(b) the datum of α gives an isomorphism between (5.8) and (5.9) when restricted to
Dx̃ .

5.4.4. We apply the functors �dR(�,−) and �dR(
◦
Dx̃ ,−) to (5.9). Using the two

observations above, we obtain a morphism between two triangles in QCohTate(S̃):

�dR(�, ωX̃ /S̃) �dR(�, (̂g
(κ,E)

D )P̃G
) �(�, gκ

P̃G
)

γ
γ̂

�dR(
◦
Dx̃ , ωX̃ /S̃) �dR(

◦
Dx̃ , ĝ

(κ,E)

D ) gκ(Kx )�̂OBunG,∞x

(5.10)

where gκ(Kx ) is (as before) an object of QCohTate(S).
Since ωX̃ /S̃ has top de Rham cohomology (along X̃ → S̃) isomorphic toOS̃ , one

may conclude that the first vertical map in (5.10) vanishes by comparing the canonical
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triangles associated to open immersions � ⊂ X and D̊x̃ ⊂ Dx̃ .17 Hence we obtain a
splitting γ̂ as depicted. Note that γ (hence γ̂ ) is injective, so we may define two Tate
OS̃ -modules by cokernels without running into DG issues:

L̂(κ,E) := Coker(γ̂ ), Lκ := Coker(γ ).

Since �dR(
◦
Dx̃ , ωX̃ /S̃) is canonically isomorphic toOS̃ (Lemma 5.1), we arrive at an

exact sequence of Tate OS̃ -modules:

0 → OS̃ → L̂(κ,E) → Lκ → 0. (5.11)

Notation 5.7 In what follows, we will show that (5.11) has the structure of a classical
quasi-twisting (on Tate modules) over S̃ (relative to S; see Sect. 3.2.5), to be denote
by T̃ (κ,E)

G .

5.4.5.We (temporarily) use the notation ĝ(κ,E)

D,X to denote the Kac-Moody Lie-∗ algebra
over X , constructed using the recipe in Sect. 5.3 for the relative curve X → S.

The isomorphism ĝ
(κ,E)

D
∼−→ ĝ

(κ,E)

D,X � OBunG,∞x gives rise to an isomorphism in

QCohTate(S̃):

�dR(
◦
Dx̃ , ĝ

(κ,E)

D )
∼−→ �dR(

◦
Dx , ĝ

(κ,E)

D,X )�̂OBunG,∞x
∼= ĝ(κ,E)�̂OBunG,∞x (5.12)

Observe that theG(Kx )-action onBunG,∞x gives rise to a g(Kx )-action18 onOBunG,∞x

by derivations. Hence, the Lie (algebroid) bracket on �dR(
◦
Dx̃ , ĝ

(κ,E)

D ) can be defined
using the OS-linear Lie bracket on ĝ(κ,E) (see Sect. 5.3.6):

[μ � f , μ′ � f ′] := [μ,μ′] + μ( f ′) · μ′ − μ′( f ) · μ.

where μ denotes the image of μ ∈ ĝ(κ,E) along ĝ(κ,E) → gκ(Kx ) → g(Kx )�̂OS ,

which acts on OS̃ by OS-linear derivations. The anchor map σ̂ of �dR(
◦
Dx̃ , ĝ

(κ,E)

D ) is
defined by the composition:

�dR(
◦
Dx̃ , ĝ

(κ,E)

D )
(5.12)−−−−→ ĝ(κ,E)�̂OBunG,∞x → g(Kx )�̂OS̃ → TS̃/S . (5.13)

We have thus equipped �dR(
◦
Dx̃ , ĝ

(κ,E)

D ) with the structure of a Lie algebroid. The
following lemma, whose proof is deferred to Sect. 5.4.6, extends this Lie algebroid
structure to its quotient L̂(κ,E):

17 This vanishing is also reflected in the classical fact that the sum of residues of a meromorphic form is
zero.
18 Unlike the Tate OS -module gκ (Kx ), the notation g(Kx ) is reserved for the Tate vector space g ⊗ Kx
(similar for the notation g(Ox )).
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Lemma 5.8 The morphism γ̂ realizes �(�, gκ

P̃G
) as an ideal of �dR(

◦
Dx̃ , ĝ

(κ,E)

D ).

In an analogous way, we turn gκ(Kx )�̂OBunG,∞x into an object of LieAlgd(S̃/S),

and the map �dR(
◦
Dx̃ , ĝ

(κ,E)

D ) → gκ(Kx )�̂OBunG,∞x in (5.10) is a morphism of such.
Lemma 5.8 shows that γ also realizes �(�, gκ

P̃G
) as an ideal of gκ(Kx )�̂OBunG,∞x .

Hence the cokernels (5.11) is a central extension of Lie algebroids.

5.4.6 Proof of Lemma 5.8

We first give an alternative description of the Lie bracket on �dR(
◦
Dx̃ , ĝ

(κ,E)

D ). Indeed,
from the identification in (5.12) and the g(Kx )-action on ĝ(κ,E) (see Sect. 5.3.6), we

obtain an action of g(Kx )�̂OS̃ on�dR(
◦
Dx̃ , ĝ

(κ,E)

D ) byOS-linear derivations. It follows

fromLemma 5.5 that the Lie bracket on�dR(
◦
Dx̃ , ĝ

(κ,E)

D ) agrees with the composition:

�dR(
◦
Dx̃ , ĝ

(κ,E)

D )�2 (pr,id)−−−→ (g(Kx )�̂OS̃) � �dR(
◦
Dx̃ , ĝ

(κ,E)

D )
act−→ �dR(

◦
Dx̃ , ĝ

(κ,E)

D ),

(5.14)

where pr denotes the composition of the first two maps in (5.13).
Therefore, it suffices to show that the Tate OS̃ -submodule:

�dR(�, (̂g
(κ,E)

D )P̃G
) ↪→ �dR(

◦
Dx̃ , ĝ

(κ,E)

D ) (5.15)

is invariant under the aforementioned g(Kx )�̂OS̃ -action. Note that by construction,

this action arises from the S × LxG-equivariance structure on �dR(
◦
Dx̃ , ĝ

(κ,E)

D ). The
following claim is immediate:

Claim 5.9 There is also an S × LxG-equivariance structure on �dR(�, (̂g
(κ,E)

D )P̃G
),

defined at every T -point (s,PG,�, α, g) of S ×BunG,∞x ×LxG (for T ∈ Schaff/k ) by:

(a) first identifying the fiber of �dR(�, (̂g
(κ,E)

D )P̃G
) at both of the T -points

(s,PG,�, α), and (s,PG,�, g · α), g ∈ Maps(T ,LxG),

with �dR(�, (̂g
(κ,E)

D )PG,�
);19

(b) relating the above two fibers via the identity map on �dR(�, (̂g
(κ,E)

D )PG,�
). 
�

19 We are slightly abusing the notation (̂g
(κ,E)
D )PG,�

, since this is now theKac-Moody extension associated

to the parameter T
s−→ S

(gκ ,E)−−−−→ ParG , twisted by PG,� on the open curve T × �.
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So we have reduced the problem to showing that (5.15) preserves the S × LxG-
equivariance structure. In other words, the following diagram in QCohTate(T ) needs
to commute:

�dR(�, (̂g
(κ,E)

D )PG,�
)

∼

id

�dR(�, (̂g
(κ,E)

D )PG )
∣∣
(s,PG,�,α)

(5.15)
�dR(

◦
Dx̃ , ĝ

(κ,E)

D )

g·

�dR(�, (̂g
(κ,E)

D )PG,�
)

∼
�dR(�, (̂g

(κ,E)

D )PG )
∣∣
(s,PG,�,g·α)

(5.15)
�dR(

◦
Dx̃ , ĝ

(κ,E)

D ).

(5.16)

Here, the two horizontal compositions express the procedure of

(a) first restricting a flat section of (̂g
(κ,E)

D )PG,�
to

◦
Dx̃ ↪→ T × �;

(b) then using the trivialization α (respectively, g · α) to identify it with a section of
ĝ
(κ,E)

D .

However, the following diagram is tautologically commutative:

�dR(
◦
Dx̃ , (̂g

(κ,E)

D )PG,�
)

id

α∗
�dR(

◦
Dx̃ , ĝ

(κ,E)

D )

g·

�dR(
◦
Dx̃ , (̂g

(κ,E)

D )PG,�
)

(g·α)∗
�dR(

◦
Dx̃ , ĝ

(κ,E)

D ),

so we obtain the commutativity of (5.16). 
� (Lemma 5.8)

5.5 Descent to BunG

5.5.1. We continue to fix the S-point (gκ , E) of ParG . The goal of this section is to
“descend” the classical quasi-twisting T̃ (κ,E)

G to BunG . Recall the action of H :=
S ×L+

x G on S̃ = S ×BunG,∞x , whose quotient is given by S̃/H
∼−→ S ×BunG . Let

k := gκ(Ox ). Then (k, H) forms a classical action pair (see Sect. 4.1).

5.5.2. We now equip (5.11) with the structure of a (k, H)-action. Indeed, applying the
functor �(Dx̃ ,−) to (5.9) and using �dR(Dx̃ , ωX̃ /S̃) = 0 (Lemma 5.1), we obtain a
commutative diagram:

�dR(Dx̃ , ĝ
(κ,E)

D )
∼

�(Dx̃ , g
κ � OBunG,∞x ×X )

η
η̂

�dR(
◦
Dx̃ , ωX̃ /S̃) �dR(

◦
Dx̃ , ĝ

(κ,E)

D ) gκ(Kx )�̂OBunG,∞x

(5.17)

where the splitting η̂ exists for obvious reasons. Since �(Dx̃ , g
κ � OBunG,∞x ×X ) is

canonically isomorphic to k⊗̂OS̃ , we obtain the (k, H)-action datum on L̂(κ,E) via the
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composition:

k⊗̂OS̃
η̂−→ �dR(

◦
Dx̃ , ĝ

(κ,E)

D ) → L̂(κ,E),

which we again denote by η̂.

Remark 5.10 Ideally, we would like to directly define T (κ,E) as the quotient
Q(k,H)(T̃ (κ,E)). However, we run into problems because S̃ is not locally of finite type
(so we cannot use Q(H ,H �) (4.20)), and η̂ is not injective (so we cannot use Q(k,H)

inj
(4.6)). In what follows, we circumvent this technical problem using a combination of
the two functors.

5.5.3. For each integer n ≥ 0, let BunG,nx denote the stack classifying pairs (PG, αn)

where PG is a G-bundle on X and αn : PG
∣∣
Spec(O(n)

x )

∼−→ P0
G is a trivialization over

the nth infinitesimal neighborhood Spec(O(n)
x ) of x . Then BunG,nx is an LnxG-torsor

over BunG , where LnxG classifies maps from Spec(O(n)
x ) to G.

Remark 5.11 In particular, LnxG is a group scheme of finite type.

Set Hn := S × LnxG, and we have an exact sequence of group schemes over S:

1 → Hn → H → Hn → 1.

Define kn := k ⊗ mn
x , and kn := k/kn ∼= k ⊗ O(n)

x . Then the above sequence extends
to an exact sequence of action pairs (see Sect. 4.1.2):

1 → (kn, Hn) → (H , k) → (Hn, kn) → 1. (5.18)

5.5.4.We briefly review the Harder-Narasimhan truncation of BunG . For this, we need
to fix a Borel B ↪→ G, whose quotient torus is denoted by T . There are canonical
maps

BunBp q

BunG BunT .

Let �G denote the coweight lattice of G, and �+
G ,�

pos
G ⊂ �G denote the sub-

monoid of dominant coweights, respectively the submonoid generated by positive
simple coroots. Denote by �

+,Q
G and �

pos,Q
G the corresponding rational cones.

There is a partial ordering on �
Q

G , given by:

λ1 ≤
G

λ2 ⇐⇒ λ2 − λ1 ∈ �
pos,Q
G .

Given λ ∈ �
Q

G , define Bun
λ
B as the pre-image of λ under the composition:

BunB
q−→ BunT

deg−−→ �
Q

T
∼= �

Q

G .
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For each θ ∈ �
+,Q
G , define Bun(≤θ)

G as the substack of BunG classifying G-bundles
PG with the following property:

• for each B-bundle PB ∈ Bunλ
B with p(PB) ∼= PG , we have λ ≤

G
θ .

The following result is proved in [8]:

Lemma 5.12 Bun(≤θ)
G is an open, quasi-compact substack of BunG. 
�

Remark 5.13 The definition of Bun(≤θ)
G in [8] refers to all standard parabolics P of

G, rather than just the Borel. However, the two definitions are equivalent; see the
discussion in §7.3.3 in loc.cit.

5.5.5. For each integer n ≥ 0 (as well as n = ∞), we let Bun(≤θ)
G,nx denote the preimage

of Bun(≤θ)
G under the canonical map BunG,nx → BunG . We denote the universal G-

bundle over Bun(≤θ)
G ×X by PG , and that over Bun(≤θ)

G,∞x ×X by P̃G ; their pullbacks

to S × Bun(≤θ)
G ×X and S × Bun(≤θ)

G,∞x ×X are denoted by the same characters.

5.5.6. The key technical assertion we need is:

Proposition 5.14 For each θ ∈ �
+,Q
G , there exists an integer N (θ) such that whenever

n ≥ N (θ), we have

(gκ(mn
x )�̂O

Bun(≤θ)
G,∞x

) ∩ �(�, gκ

P̃G
) = 0

as submodules of gκ(Kx )�̂O
Bun(≤θ)

G,∞x
(via η and γ ).

Proof Fix θ ∈ �
+,Q
G . For each integer n ≥ 0, we have an isomorphism:

(gκ(mn
x )�̂O

Bun(≤θ)
G,∞x

) ∩ �(�, gκ

P̃G
)

∼−→ R0(pr∞x )∗gκ

P̃G
(−nx),

where pr∞x is the projection map in the following Cartesian diagram:

S × Bun(≤θ)
G,∞x ×X

pr∞x

S × Bun(≤θ)
G ×X

pr

S × Bun(≤θ)
G,∞x S × Bun(≤θ)

G .

Since P̃G is the pullback of the universal G-bundle PG over S × Bun(≤θ)
G ×X , it

suffices to show that R0(pr)∗gκ
PG

(−nx) vanishes for sufficiently large n (relative to

θ ). (Identification of R0(pr∞x )∗gκ
PG

(−nx) with the pullback of R0(pr)∗gκ
PG

(−nx)

follows from flatness of the projection S×Bun(≤θ)
G,∞x → S×Bun(≤θ)

G ). We verify this
in a more abstract setting:
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Claim 5.15 Let T be a finite type k-scheme. Suppose E is a vector bundle on T × X .
Write pr : T × X → T for the projection map. Then there exists some n such that
R0(pr)∗E(−nx) = 0.

Indeed, let t0 ∈ T be a k-point. Since H0(X , E |t0(−n0x)) = 0 for some n0, the coher-
ent sheaf R0(pr)∗E(−n0x) vanishes in an open neighborhood T̊ of t0 (cohomology
and base change). Let T1 ↪→ T be a closed subscheme whose complement is T̊ . If T1
is nonempty, pick a k-point t1 ∈ T1. The same argument shows that R0(pr)∗E(−n1x)
vanishes in an open neighborhood of t1 for some n1 ≥ n0. We find the desired n
by iterating this process, which must terminate after finitely many steps since T is
Noetherian. 
�

It follows from Proposition 5.14 that the (k, H)-algebroid Lκ (hence also L(κ,E))
is an object of LieAlgd(kn ,Hn)

inj (S × Bun(≤θ)
G /S) whenever n ≥ N (θ).

5.5.7. For each θ ∈ �
+,Q
G , denote by T̃ (≤θ)

G the restriction of the classical quasi-

twisting T̃ (κ,E)
G to S × Bun(≤θ)

G,∞x .
20 Given n ≥ N (θ), we can define a quasi-twisting

over S × Bun(≤θ)
G by the formula:

T (≤θ)
G,n := Q(Hn ,H

�
n ) ◦ Q(kn ,Hn)

inj (T̃ (≤θ)
G ), (5.19)

where H �
n denotes the quotient Hn/ exp(kn) (see Sect. 4.3.2).

Remark 5.16 Note that Q(kn ,Hn)
inj (T (≤θ)

G ) is well-defined as a classical quasi-twisting

over S × Bun(≤θ)
G,nx , equipped with a (kn, Hn)-action. Since the stack S × Bun(≤θ)

G,nx is
locally of finite type, any classical quasi-twisting gives rise to a quasi-twisting, and
the (kn, Hn)-action induces an (Hn, H

�
n )-action (see Sect. 4.3.4). Hence the formula

(5.19) makes sense.

5.5.8. Suppose n1 ≥ n2 ≥ N (θ). We would like to construct a canonical isomorphism
of quasi-twistings

T (≤θ)
G,n1

∼−→ T (≤θ)
G,n2

. (5.20)

Indeed, let (k′, H ′) be the kernel of the map (kn1, Hn1) → (kn2 , Hn2). In particular,
H ′ is of finite type. Furthermore, we have an exact sequence of classical action pairs:

1 → (kn1, Hn1) → (kn2 , Hn2) → (k′, H ′) → 1.

Hence, there are isomorphisms:

T (≤θ)
G,n1

∼−→Q(Hn2 ,H �
n2 ) ◦ Q(H ′,(H ′)�) ◦ Q(kn1 ,Hn1 )

inj (T̃ (≤θ)
G )

∼−→ Q(Hn2 ,H �
n2 ) ◦ Q(k′,H ′)

inj ◦ Q(kn1 ,Hn1 )
inj (T̃ (≤θ)

G )
∼−→ T (≤θ)

G,n2
,

20 We temporarily suppress the notational dependence on the parameter (gκ , E).
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using Propositions 4.17, 4.18, and 4.9. In light of the isomorphism (5.20), we may let
T (≤θ)
G denote the quasi-twisting T (≤θ)

G,n over S × Bun(≤θ)
G for any n ≥ N (θ).

5.5.9. Finally, we check that the quasi-twistings T (≤θ)
G glue along various Harder-

Narasimhan truncations. Indeed, suppose θ1, θ2 ∈ �
+,Q
G . Thenwehave isomorphisms:

T (≤θ1)
G,n

∣∣
S×(Bun

(≤θ1)

G ∩Bun
(≤θ2)

G )

∼−→ Q(Hn ,(Hn)
�) ◦ Q(kn ,Hn)

inj (T∞x
∣∣
S×(Bun

(≤θ1)

G,∞x ∩Bun
(≤θ2)

G,∞x )
)

∼−→ T (≤θ2)
G,n

∣∣
S×(Bun

(≤θ1)

G ∩Bun
(≤θ2)

G )
,

whenevern ≥ N (θ1), N (θ2). Thereforeweobtain a quasi-twistingT (κ,E)
G on S×BunG

(relative to S) whose restriction to each S × Bun(≤θ)
G agrees with T (≤θ)

G .

Notation 5.17 Wewrite T (κ,E)
G = Q(gκ (Ox ),L+

x G)(T̃ (κ,E)
G ), although it is tacitly under-

stood that the construction ofT (κ,E)
G requires two quotient steps and gluing. In a similar

way, we write:

T (κ,E)
G,n := Q(gκ (m

(n)
x ),Hn)(T̃ (κ,E)

G ), (5.21)

for the corresponding quasi-twisting on S×BunG,nx . Since the construction of T (κ,E)
G

(resp. T (κ,E)
G,n ) is functorial in S, we obtain a universal quasi-twisting T univ

G over

ParG ×BunG (resp. T univ
G,n over ParG ×BunG,nx ).

Remark 5.18 The construction of T univ
G depends a priori on the choice of the closed

point x ∈ X . To remove this dependence, one may consider a multiple point version
T univ
G,x I

associated to any collection x I of closed points of X . For each inclusion x I ⊂ x J ,

there is a canonical isomorphism T univ
G,x I

∼−→ T univ
G,x J

of quasi-twistings. Hence, the quasi-

twisting T univ
G,x associated to any individual point x ∈ X is canonically isomorphic to

colimx I⊂X(k) T univ
G,x I

.

Remark 5.19 Note that the DG category T (κ,E)
G -Mod is naturally a QCoh(S)-module.

Again from the functoriality in maps (gκ , E) : S → ParG , we obtain a sheaf of DG
categories over ParG , denoted by T univ

G -Mod.
The naïve version of the quantum Langlands duality claims an equivalence of

sheaves of DG categories:

T univ
G -Mod

∼−→ T univ
Ǧ

-Mod (5.22)

over the common base ParG
∼−→ ParǦ (by (2.11)). However, the hypothetical equiv-

alence (5.22) is false whenever G is not a torus, and a renormalization procedure is
required for stating the correct version of quantum Langlands duality.
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5.5.10 Recovering the classical TDOs

Suppose G is simple, and we fix a k-valued parameter (gκ , 0) of ParG corresponding
to some bilinear form κ on g. Let λ and c be as in Example 2.15. Let LG,det denote the
determinant line bundle over BunG . It is the inverse of the relative determinant of the
vector bundle gPG (PG being the universal G-bundle) along the map BunG ×X →
BunG (see [25, Sect. 6.1]). Write L̃G,det for its pullback to BunG,∞x .

Proposition 5.20 The classical quasi-twisting (5.11) at the parameter (gKil, 0):

0 → OBunG,∞x → L̂(Kil,0) → LKil → 0

identifies with the Picard algebroid Diff≤1(L̃G,det).

Proof Via the isomorphism prg : gKil
∼−→ g, the lower triangle of (5.10) identifies

with:

0 → OBunG,∞x → ĝTate�̂OBunG,∞x → g(Kx )�̂OBunG,∞x → 0. (5.23)

where ĝTate is the central extension of g(Kx ) defined by the cocycle

(ξ ⊗ f , ξ ′ ⊗ f ′) � Kil(ξ, ξ ′) · Res(d f · f ′).

Recall that (5.23) is a classical quasi-twisting, where the Lie algebroid brackets are
induced from the LxG-action on BunG,∞x .

It iswell known (see, e.g. [25, Sect. 7, §10]) that ĝTate comes froma central extension
of group ind-schemes:

1 → Gm → ĜTate → LxG → 1,

and the LxG-action on BunG,∞x extends to an action of ĜTate on L̃G,det. Hence
ĝTate acts as derivations on L̃G,det, and we obtain a morphism ĝTate�̂OBunG,∞x →
Diff≤1(L̃G,det) of Lie algebroids. Note that the following diagram commutes:

0 OBunG,∞x

∼

ĝTate�̂OBunG,∞x g(Kx )�̂OBunG,∞x 0.

0 OBunG,∞x Diff≤1(L̃G,det) TBunG,∞x 0

Furthermore, the OBunG,∞x -submodule �(�, gP̃G
) of ĝTate�̂OBunG,∞x acts by zero

on L̃G,det, so by modding out �(�, gP̃G
), we obtain a morphism of classical quasi-

twistings:

0 OBunG,∞x

∼

L̂(Kil,0) LKil 0.

0 OBunG,∞x Diff≤1(L̃G,det) TBunG,∞x 0
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where the last terms LKil and TBunG,∞x are identified. As such, it is an isomorphism
of classical quasi-twistings. 
�

It follows from Proposition 5.20 that the classical quasi-twisting at (gκ , 0) operates
on the virtual line bundle L̃λ

G,det. Since quotient by the action pair (g(Ox ),L+
x G)

agrees with strong quotient of Picard algebroids, we obtain an equivalence

T (κ,triv)
G -Mod

∼−→ Diff(Lλ
G,det)-Mod(BunG).

In particular, the hypothetical equivalence (5.22) specializes to (1.2).

6 Recovering QCoh(LocSysG) at � = ∞

In this section, we show that at level∞, the quasi-twistingT (κ,E)
G constructed in Sect. 5

recovers the DG algebraic stack LocSysG in the following sense: T (∞,0)
G is the inert

quasi-twisting on some triangle OBunG → Q̂(∞,0)
desc → Q(∞,0)

desc in QCoh(BunG) (see

Sect. 4.6.6. for what this means). Furthermore, the corresponding stackV(Q̂(∞,0)
desc )λ=1

over BunG identifies with LocSysG , so we obtain an equivalence of DG categories

T (∞,0)
G -Mod

∼−→ QCoh(LocSysG).
Finally, we comment on the role of certain additional parameters E when gκ = g∞.

6.1 The underlyingOS×BunG -modules ofT (�,0)
G,n

6.1.1. We adopt the following notations from the previous section: let Sn := S ×
BunG,nx , and Xn := S × BunG,nx ×X which is a curve over Sn . The tautological
G-bundle over Xn is denoted by P(n)

G . Write S̃ := S × BunG,∞x and similarly for X̃
and P̃G .

Recall the quasi-twisting T (κ,0)
G,n and T (κ,0)

G = T (κ,0)
G,0 which are special cases of

(5.21) for the S-valued parameter (gκ , 0). Suppose T (κ,0)
G,n is expressed as a map of

some formal moduli problems Ŝ�
n → S�

n under Sn .

6.1.2. Since T (κ,0)
G,n is the quotient of T̃ (κ,0)

G by the pair (gκ(mn
x ), H

n), the underlying

ind-coherent sheaves of Ŝ�
n and S�

n arise from a triangle in QCoh(Sn):

OSn → Q̂(κ,0)
n,desc → Qκ

n,desc, (6.1)

where Q̂(κ,0)
n,desc is the descent of the Hn-equivariant complex of OS̃ -modules:

Q̂(κ,0)
n := Cofib(gκ(mn

x ) � OBunG,∞x → L̂(κ,0)),

and a similar description is valid for Qκ
n,desc.
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6.1.3. The Atiyah bundle construction gives rise to a triangle:

ωXn/Sn → At(P(n)
G )∗ → g∗

P(n)
G

over Xn . Its pullback along the projection gκ

P(n)
G

→ g∗
P(n)

G

is denoted by:

ωXn/Sn → Eκ(P(n)
G ) → gκ

P(n)
G

. (6.2)

Note that there is a canonical isomorphism Qκ
n,desc

∼−→ R�(X , gκ

P(n)
G

(−nx))[1].

Proposition 6.1 The triangle (6.1) is identified with the push-out of

R�(X , ωXn/Sn (−nx))[1] → R�(X ,Eκ (P(n)
G )(−nx))[1] → R�(X , gκ

P(n)
G

(−nx))[1]
(6.3)

along the trace map R�(X , ωXn/Sn (−nx))[1] → OSn .

6.1.4. We now begin the proof of Proposition 6.1. Since both triangles in question
are descent of triangles over S̃, we ought to establish an Hn-equivariant isomorphism
between the triangle:

OS̃ → Q̂(κ,0)
n → Qκ

n (6.4)

and the push-out of the analogous triangle:

R�(X , ωX̃ /S̃(−nx))[1] → R�(X , Eκ (P̃G)(−nx))[1] → R�(X , gκ

P̃G
(−nx))[1]

(6.5)

under the trace map R�(X , ωX̃ /S̃(−nx))[1] → OS̃ .
6.1.5. We describe more explicitly the DX̃ /S̃ -modules underlying the extension
sequence of Lie-∗ algebras (5.9):

0 → ωX̃ /S̃ → (̂g
(κ,0)
D )P̃G

→ (gκ
D)P̃G

→ 0,

in the case where the E = 0. Namely, consider the DX̃ /S̃ -modules induced from the

sequence (6.2) (where we use X̃ instead of X (n) in the Atiyah bundle construction):

0 → (ωX̃ /S̃)D → Eκ(P̃G)D → (gκ
D)P̃G

→ 0

Let Eκ(P̃G)
push
D be the push-out along act : (ωX̃ /S̃)D → ωX̃ /S̃ of the DX̃ /S̃ -module

Eκ(P̃G)D.
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Lemma 6.2 The DX̃ /S̃ -module underlying the extension (̂g
(κ,0)
D )P̃G

identifies with

Eκ(P̃G)
push
D .

Proof Recall that (̂g(κ,0)
D )P̃G

is the P̃G-twist of the trivial extension ĝ
(κ,0)
D

∼−→ ωX̃ /S̃ ⊕
gκ
D. Consider the push-out diagram:

(ωX̃ /S̃)D
act

(ωX̃ /S̃ ⊕ (gκ ⊗ OX̃ ))D

ωX̃ /S̃ ωX̃ /S̃ ⊕ gκ
D.

(6.6)

Note that the entire diagram is acted on by the sheaf of groups G, as described below:
(a) the G-actions on (ωX̃ /S̃)D and ωX̃ /S̃ are trivial, and the action on ωX̃ /S̃ ⊕ gκ

D is
given by §5.3.5;

(b) the G-action on (ωX̃ /S̃ ⊕ (gκ ⊗ OX̃ ))D is the DX̃ /S̃ -linear extension of the
following G-action on ωX̃ /S̃ ⊕ (gκ ⊗ OX̃ ) centralizing ωX̃ /S̃ :

gU · (ξ ⊕ ϕ) = ϕ(g−1
U dgU ) + (AdgU (ξ) ⊕ CoadgU (ϕ)) (6.7)

where gU ∈ G(U) and ξ ⊕ ϕ ∈ gκ ⊗ OU .

If we twist the trivial OX̃ -module extension equipped with the G-action (6.7):

0 → ωX̃ /S̃ → ωX̃ /S̃ ⊕ (gκ ⊗ OX̃ ) → gκ ⊗ OX̃ → 0

by the G-bundle P̃G , we obtain precisely the Atiyah sequence (pulled back along
gκ

P̃G
→ g∗

P̃G
):

0 → ωX̃ /S̃ → Eκ(P̃G) → gκ

P̃G
→ 0.

Therefore, twisting the diagram (6.6) by P̃G , we obtain a push-out diagram:

(ωX̃ /S̃)D
act

Eκ(P̃G)D

ωX̃ /S̃ (̂g
(κ,0)
D )P̃G

.

This proves the Lemma. 
�
6.1.6. By construction of Q̂(κ,0)

n andQκ
n , the required isomorphism shall follow from a

general claim. We first explain the set-up (which is quite involved): let S be a scheme,
and X := X × S with section x given by the closed point x ∈ X . Suppose we have
an exact sequence of OX -modules:

0 → ωX /S → E → F → 0.
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Let ED denote the induced D-module of E and Epush
D its push-out along act :

(ωX /S)D → ωX /S .
Then we may form a map between exact sequences:

0 �dR(�, ωX /S)

0

�dR(�, Epush
D ) �(�,F)

γ
γ̂

0

0 �dR(
◦
Dx , ωX /S) �dR(

◦
Dx , Epush

D ) �(
◦
Dx ,F) 0,

as well as a section γ̂ from the residue theorem. On the other hand, let Epush
D (m(n))

denote the OS -submodule of �dR(Dx , Epush
D ) annihilated by the restriction to D(n)

x ;
we use the notation F(m(n)) for a similar meaning. We have a triangle:

OS → Q̂ → Q (6.8)

where:

(a) Q̂ := Cofib(�(�,F) → �dR(
◦
Dx , Epush

D )/Epush
D (m(n)));

(b) Q := Cofib(�(�,F) → �(
◦
Dx ,F)/F(m(n))).

Remark 6.3 For S := S̃, E := Eκ(P̃G), and F := gκ

P̃G
, we see from the construction

of (6.4) that it identifies with the triangle (6.8).

Claim 6.4 The triangle (6.8) identifies with the push-out of the canonical triangle:

R�(X , ωX /S(−nx))[1] → R�(X , E(−nx))[1] → R�(X ,F(−nx))[1]
(6.9)

along the trace map R�(X , ωX /S(−nx))[1] → OS .

Proof Recall the identification:

Q = Cofib(�(�,F) → �(
◦
Dx ,F)/F(m(n)))

∼−→ R�(X ,F(−nx))[1],

which is also valid when F is replaced by any OX -module. It suffices to produce a
morphism of triangles from (6.9) to (6.8), whose first and third terms are the trace
map, respectively the above isomorphism.

Consider the diagram defining Epush
D :

0 (ωX /S)D ED FD

∼

0

0 ωX /S Epush
D FD 0.
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Using the functors �dR(
◦
Dx ,−) and M � M(m(n)), we obtain a diagram:

0
◦
ω/ω(m(n))

res

�(
◦
Dx , E)/E(m(n)) �(

◦
Dx ,F)/F(m(n))

∼

0

0 OS̃ �dR(
◦
Dx , Epush

D )/Epush
D (m(n)) �(

◦
Dx ,F)/F(m(n)) 0

where the rows are still exact sequences by the Snake lemma. We now take cofibers
of the map from the triangle �(�,ω) → �(�, E) → �(�,F) to the top row, and the
cofibers of the map from 0 → �(�,F) → �(�,F) to the bottom row:

R�(X , ωX /S(−nx))[1] R�(X , E(−nx))[1] R�(X ,F(−nx))[1]

∼

OS Q̂ Q

This is a morphism between triangles. Finally, we observe that the residue morphism

from
◦
ω/ω(m(n)) passes to the trace map from R�(X , ωX /S(−nx))[1]. 
�

We have now constructed an isomorphism from (6.4) to the push-out of (6.5) along
the trace map R�(X , ωX̃ /S̃(−nx))[1] → OS̃ . We omit checking that this map is
compatible with the Hn-equivariance structure. 
� (Proposition 6.1)

Remark 6.5 Combined with Sect. 5.5.10, we have showed that the Picard algebroid
Diff≤1(LG,det) has as its underlying triangle ofOBunG -modules constructed explicitly
by the following procedure:

(a) Consider the triangleR�(X , ωX /S)[1] → R�(X , Eκ (PG))[1] → R�(X , g∗
PG

)[1];
(b) Obtain a push-out along the trace map R�(X , ωX /S)[1] → OS :

OS → E → R�(X , g∗
PG

)[1]

(c) The extension associated to Diff≤1(LG,det) is the pullback of the above triangle
along:

TBunG
∼−→ R�(X , gPG )[1] Kil−→ R�(X , g∗

PG
)[1].

where the Killing form Kil is regarded as a G-invariant isomorphism g
∼−→ g∗.

6.2 An alternative description of LocSysG

6.2.1. Recall that LocSysG is defined as the mapping stack Maps(XdR,BG); it is
represented by a DG algebraic stack ([1, Sect. 10]). We give an alternative description
of LocSysG in terms of “G-bundleswith connections.” This description ismore closely
related to the quasi-twisting at level ∞.
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6.2.2. Let LocSys′G denote the prestack over BunG such that for every affine DG
scheme S, the groupoid Maps(S,LocSys′G) classifies:

(a) a G-bundle PG over S × X ;
(b) a splitting of the canonical triangle in QCoh(S × X):

gPG → At(PG) → TS×X/S . (6.10)

Recall that for such S, the complex At(PG) can be described as the relative tangent
complex associated to the map S × X → BG represented by PG , and the triangle
(6.10) is the corresponding canonical triangle.
6.2.3. Note that a lift of PG to an S-point of LocSysG supplies the dotted arrow in the
following commutative diagram:

S × X
PG

S × BG

S × XdR S

This arrow gives rise to a splitting of (6.10) as TS×X/S×XdR is isomorphic to TS×X/S .
In other words, we have a morphism of stacks over BunG :

LocSysG → LocSys′G . (6.11)

Proposition 6.6 The morphism (6.11) is an isomorphism.

Proof Let us first introduce some auxiliary objects. For an affine openU ⊂ X , denote
by LocSysG(U ) (resp. LocSys′G(U )) the prestack over BunG such that a lift of an
S-pointPG of BunG to LocSysG(U ) corresponds to a flat connection ofPG |U (resp. a
splitting of (6.10) over S × U ). Denote by HitchG(U ) the prestack over BunG clas-
sifying a G-bundle PG together with a section of g∗

PG
⊗ ωX over U . It is known that

both prestacks LocSysG(U ) and HitchG(U ) are classical (see [1, Proposition 10.5.3]).
We claim that LocSys′G(U ) is also classical. Indeed, since any choice of a splitting

of (6.10) over U supplies an isomorphism between LocSys′G(U ) and HitchG(U ), it
suffices to show that such a splitting exists. The extension (6.10) over U corresponds
to an element of the groupoid:

τ≤0 HomQCoh(S×U )(TS×U/S, gPG [1]) ∼= τ≤0 HomQCoh(U )(TU , gPG [1]).

Since gPG is in cohomological degree ≤ 0 and U is affine, any such element is null-
homotopic.

Next, we claim that the morphism of prestacks analogous to (6.11):

LocSysG(U ) → LocSys′G(U )

is an isomorphism. Indeed, since both sides are classical, it suffices to verify the claim
for classical test affine schemes S. In this case, note that lifting an S-point PG of
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BunG to LocSys′G(U ) amounts to supplying a connection on PG , whereas a lift to
LocSysG(U ) amounts to supplying a flat connection onPG . Their equivalence follows
from the fact that dim(X) = 1.

Finally, we find that (6.11) is an equivalence by covering X with two affine opens
U1 and U2, and using the Cartesian squares:

LocSysG LocSysG(U1)

LocSysG(U2) LocSysG(U1 ∩U2)

LocSys′G LocSys′G(U1)

LocSys′G(U2) LocSys′G(U1 ∩U2)

These follow straightforwardly from the descent property of BG, respectively
QCoh. 
�

6.3 Identification of the fiber at∞

6.3.1. We now specialize to the parameter (g∞, 0) : pt → ParG , where g∞ identifies
with the subspace g∗ ↪→ g⊕ g∗. The quasi-twisting T (∞,0)

G over BunG is obtained as

the quotient of T̃ (∞,0)
G (i.e., (5.11) at parameter (g∞, 0)) by the pair (g∞(Ox ),L+

x G)

along the L+
x G-torsor BunG,∞x → BunG .

Proposition 6.7 (a) T (∞,0)
G is the inert quasi-twisting associated to the triangle (6.1)

(for n = 0):

OBunG → Q̂(∞,0)
desc → Q∞

desc (6.12)

(b) there is a canonical isomorphism of DG stacks:

V(Q̂(∞,0)
desc )λ=1

∼−→ LocSysG .

Combined with (4.24), we obtain an equivalence of DG categories:

T (∞,0)
G -Mod

∼−→ QCoh(LocSysG).

Proof of Proposition 6.7 It is clear from the construction that the classical quasi-
twisting T̃ (∞,0)

G is given by the central extension of Lie algebroids (with zero Lie
bracket and anchor map)

0 → OBunG,∞x → L̂(∞,0) → L∞ → 0.

Since T (∞,0)
G arises from the quotient of T̃ (∞,0)

G by (g∞(Ox ),L+
x G), the paradigm

of §4.6.9 applies, and T (∞,0)
G is the inert quasi-twisting on the triangle (6.12). For the
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second statement, note that we have a push-out diagram in QCoh(BunG):

R�(X ,OBunG ×X )∗ R�(X ,At(PG) ⊗ ωX )∗

OBunG Q̂(∞,0)
desc ,

by Proposition 6.1 and Serre duality. Hence V(Q̂(∞,0)
desc )λ=1 fits into the commutative

diagram:

V(R�(X ,OBunG ×X )∗) V(R�(X ,At(PG) ⊗ ωX )∗)

BunG

{1}
V(Q̂(∞,0)

desc )λ=1.

For anyDG scheme Smapping to BunG (represented by theG-bundlePG over S×X ),
a computation using the projection formula shows:

(a) MapsBunG (S, V(R�(X ,At(PG) ⊗ ωX )∗)) ∼−→ τ≤0 R�(S × X ,At(PG) ⊗ ωX ),
and

(b) MapsBunG (S, V(R�(X ,OBunG ×X )∗)) ∼−→ τ≤0 R�(S × X ,OS×X ).

Hence MapsBunG (S, V(Q̂(∞,0)
desc )λ=1) is identified with the ∞-groupoid

τ≤0 R�(S × X ,At(PG) ⊗ ωX ) ×
τ≤0 R�(S×X ,OS×X )

{1}

i.e., the∞-groupoid of splittings of the Atiyah sequence gPG → At(PG) → TS×X/S .

We obtain an isomorphism V(Q̂(∞,0)
desc )λ=1

∼−→ LocSys′G so the result follows from
Proposition 6.6. 
�
Remark 6.8 Analternative argument (one that avoids using the results of Sect. 6.1) runs
as follows: by a local computation, one identifies the universal envelope of the classical
quasi-twisting (5.11) with the (topological) ring of functions over LocSysG,∞x (�),
the stack classifying (PG, α) ∈ BunG,∞x together with a connection over PG

∣∣
�
. One

then shows that the closed subscheme V(Q̂(∞,0))λ=1 identifies with LocSysG,∞x , and
(4.26) gives rise to isomorphisms:

V(Q̂(∞,0)
desc )λ=1

∼−→ LocSysG,∞x /L+
x G

∼−→ LocSysG .

6.3.2. We comment on the role of integral additional parameters at ∞, i.e., the ones
arising from Z(G)-bundles. More precisely, let E := At(PZ(G))

∗ for some Z(G)-
bundlePZ(G). Then E is an extension of z∗G ⊗OX by ωX , so (g∞, E) is a well defined
k-point of ParG .
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Proposition 6.9 Let E = At(PZ(G))
∗ for a Z(G)-bundlePZ(G). Then there is a canon-

ical isomorphism of DG stacks:

V(Q̂(∞,E)
desc )λ=1

∼−→ LocSysG ×
BunG

BunG, (6.13)

where the second map is the central shift − ⊗ PZ(G).

Proof Note that the DBunG,∞x ×X/BunG,∞x -module (5.9) at parameter (g∞, E) is
induced from the following sequence:

0 → ωBunG,∞x ×X/BunG,∞x → At(PZ(G) ⊗ PG)∗ → g∗
PG

→ 0

via the functor (−)D and pushing out (see Sect. 6.1). An argument similar to the
above shows that T (∞,E)

G is the inert quasi-twisting associated to the triangle in
QCoh(BunG):

OBunG → Q̂(∞,E)
desc → Q∞

desc,

where we have a canonical isomorphism Q̂(∞,E)
desc

∣∣
PG

∼−→ Q̂(∞,0)
desc

∣∣
PZ(G)⊗PG

. Hence the
result follows from Proposition 6.7. 
�

Remark 6.10 A connection on PZ(G) gives rise to a splitting of E , hence an isomor-

phism V(Q̂(∞,E)
desc )λ=1

∼−→ V(Q̂(∞,0)
desc ). Geometrically, this corresponds to a lift of the

isomorphism − ⊗ PZ(G) : BunG ∼−→ BunG to LocSysG .

Remark 6.11 Specializing the hypothetical equivalence (5.22) to the parameter
(gcrit, 0), we obtain the usual, naïve statement of the geometric Langlands corre-
spondence:

Diff(L− 1
2

G,det)-Mod(BunG)
∼−→ QCoh(LocSysǦ).

Specializing to (gcrit, E) where E = At(PZ(Ǧ)
)∗, we obtain from (6.13) a hypo-

thetical equivalence:

Diff(L− 1
2

G,det ⊗ M)-Mod(BunG)
∼−→ QCoh(LocSysǦ ×

BunǦ
BunǦ)

whereM is the pullback to BunG of the line bundle on BunG/[G,G] corresponding to
PZ(Ǧ)

. This equivalence can be viewed as an expected compatibility of the geometric
Langlands duality with central shift. Let us reiterate that when G is not a torus, none
of these equivalences are true without a renormalization process.
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