Skip to main content
Log in

Normalized Ground State Solutions for Critical Growth Schrödinger Equations

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper investigates the existence of solutions with a prescribed \(L^2\)-norm for the nonlinear Sobolev critical Schrödinger equation:

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+\lambda u =g(u)+|u|^{2^*-2}u, &{}\text {~in~} {\mathbb {R}}^N,\\ \int _{{\mathbb {R}}^{N}}|u|^{2}\textrm{d} x=a, &{} u\in H^1({\mathbb {R}}^{N}), \end{array}\right. } \end{aligned}$$

where \(N\ge 3\), \(a>0\), \(2^*=\frac{2N}{N-2}\) denotes the critical Sobolev exponent, g belongs to the continuous function space \({\mathcal {C}}({\mathbb {R}})\), and the parameter \(\lambda \) serving as a Lagrange multiplier. We employ the Sobolev subcritical approximation method to establish the existence of normalized ground state solutions for this particular class of Schrödinger equations with critical growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmediev, N., Ankiewicz, A.: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82, 2661–2664 (1999)

    Article  Google Scholar 

  2. Alves, C.O., Ji, C., Miyagaki, O.H.: Normalized solutions for a Schrödinger equation with critical growth in \({\mathbb{R}}^N\). Calc. Var. Part. Differ. Equ. 61, 18, 24 (2022)

  3. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct. Anal. 272, 4998–5037 (2017)

    Article  MathSciNet  Google Scholar 

  4. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)

    Article  MathSciNet  Google Scholar 

  5. Berestycki, H., Cazenave, T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires. C. R. Acad. Sci. Paris Sér. I Math. 293, 489–492 (1981)

  6. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  7. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  Google Scholar 

  8. Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys. 85, 549–561 (1982)

    Article  MathSciNet  Google Scholar 

  9. Frantzeskakis, D.J.: Dark solitons in atomic Bose–Einstein condensates: from theory to experiments. J. Phys. A 43, 213001 (2010)

    Article  MathSciNet  Google Scholar 

  10. Hirata, J., Tanaka, K.: Nonlinear scalar field equations with \(L^2\) constraint: mountain pass and symmetric mountain pass approaches. Adv. Nonlinear Stud. 19, 263–290 (2019)

    Article  MathSciNet  Google Scholar 

  11. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28, 1633–1659 (1997)

    Article  MathSciNet  Google Scholar 

  12. Jeanjean, L., Jendrej, J., Le, T.T., Visciglia, N.: Orbital stability of ground states for a Sobolev critical Schrödinger equation. J. Math. Pures Appl. 164(9), 158–179 (2022)

    Article  MathSciNet  Google Scholar 

  13. Jeanjean, L., Le, T.T.: Multiple normalized solutions for a Sobolev critical Schrödinger equation. Math. Ann. 384, 101–134 (2022)

    Article  MathSciNet  Google Scholar 

  14. Jeanjean, L., Lu, S.-S.: Nonradial normalized solutions for nonlinear scalar field equations. Nonlinearity 32, 4942–4966 (2019)

    Article  MathSciNet  Google Scholar 

  15. Jeanjean, L., Lu, S.S.: A mass supercritical problem revisited. Calc. Var. Part. Differ. Equ. 59, 174 (2020)

    Article  MathSciNet  Google Scholar 

  16. Li, X.: Existence of normalized ground states for the Sobolev critical Schrödinger equation with combined nonlinearities. Calc. Var. Part. Differ. Equ. 60, 169 (2021)

    Article  Google Scholar 

  17. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 223–283 (1984)

  18. Liu, J., Liao, J.-F., Tang, C.-L.: Ground state solution for a class of Schrödinger equations involving general critical growth term. Nonlinearity 30, 899–911 (2017)

    Article  MathSciNet  Google Scholar 

  19. Mederski, J., Schino, J.: Least energy solutions to a cooperative system of Schrödinger equations with prescribed \(L^2\)-bounds: at least \(L^2\)-critical growth. Calc. Var. Part. Differ. Equ. 61, 10, 31 (2022)

  20. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269, 6941–6987 (2020)

    Article  MathSciNet  Google Scholar 

  21. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279, 108610 (2020)

    Article  MathSciNet  Google Scholar 

  22. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110(4), 353–372 (1976)

    Article  MathSciNet  Google Scholar 

  23. Tang, X.H., Chen, S.: Ground state solutions of Nehari–Pohozaev type for Kirchhoff-type problems with general potentials. Calc. Var. Part. Differ. Equ. 56, 110–25 (2017)

    Article  MathSciNet  Google Scholar 

  24. Timmermans, E.: Phase separation of Bose–Einstein condensates. Phys. Rev. Lett. 81, 5718–5721 (1998)

    Article  Google Scholar 

  25. Wei, J., Wu, Y.: Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities. J. Funct. Anal. 283, 109574 (2022)

    Article  Google Scholar 

  26. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87, 567–576 (1982/83)

  27. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser Boston Inc, Boston, MA (1996)

Download references

Acknowledgements

The authors would like to extend their sincere gratitude to the referees and the handling editor for their meticulous review of the manuscript and their valuable comments, which have significantly enhanced the quality of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Dong Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the special (special post) scientific research fund of natural science of Guizhou University (No. (2021)43), Guizhou Provincial Education Department Project (No. (2022)097), Guizhou Provincial Science and Technology Projects(No. QKHJC-ZK[2023]YB033, [2023]YB036) and National Natural Science Foundation of China (No. 12201147).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, S., Li, GD. Normalized Ground State Solutions for Critical Growth Schrödinger Equations. Qual. Theory Dyn. Syst. 23, 38 (2024). https://doi.org/10.1007/s12346-023-00893-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00893-x

Keywords

Navigation