Skip to main content
Log in

Existence of Multiple Solutions for Elliptic Equations with Indefinite Potential

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, the following modified fourth-order Schrödinger equation

$$\begin{aligned} \alpha \Delta ^2 u-\Delta u+V(x)u-u\Delta (u^2)=g(u),\quad&\text {in}~{\mathbb {R}}^{N}\text {,} \end{aligned}$$

and quasilinear Schrödinger equation with \(\alpha =0\) are discussed. The nonlinearity is subquadratic, i.e.,

$$\begin{aligned} \lim _{|t|\rightarrow \infty }\frac{g(t)}{t^2}=0\text {,} \end{aligned}$$

and the potential V is indefinite in sign. By variational methods, we will prove the existence of multiple solutions if \(\alpha \ne 0\) and \(N\le 6\) or \(\alpha =0\) and \(N\ge 3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on \({ R}^N\). Commun. Partial Differ. Equ. 20, 1725–1741 (1995). https://doi.org/10.1080/03605309508821149

    Article  Google Scholar 

  2. Chabrowski, J., Marcos do Ó, J.A.: On some fourth-order semilinear elliptic problems in \({\mathbb{R} }^N\). Nonlinear Anal. 49, 861–884 (2002). https://doi.org/10.1016/S0362-546X(01)00144-4

    Article  MathSciNet  Google Scholar 

  3. Che, G., Chen, H.: Infinitely many solutions for a class of modified nonlinear fourth-order elliptic equations on \({\mathbb{R} }^N\). Bull. Korean Math. Soc. 54, 895–909 (2017). https://doi.org/10.4134/BKMS.b160338

    Article  MathSciNet  Google Scholar 

  4. Chen, S., Liu, J., Wu, X.: Existence and multiplicity of nontrivial solutions for a class of modified nonlinear fourth-order elliptic equations on \({\mathbb{R} }^N\). Appl. Math. Comput. 248, 593–601 (2014). https://doi.org/10.1016/j.amc.2014.10.021

    Article  MathSciNet  Google Scholar 

  5. Chen, Y., McKenna, P.J.: Traveling waves in a nonlinearly suspended beam: theoretical results and numerical observations. J. Differ. Equ. 136, 325–355 (1997). https://doi.org/10.1006/jdeq.1996.3155

    Article  MathSciNet  Google Scholar 

  6. Chen, Y., Wu, X.: Existence of nontrivial solutions and high energy solutions for a class of quasilinear Schrödinger equations via the dual-perturbation method. Abstr. Appl. Anal. (2013). https://doi.org/10.1155/2013/256324

    Article  Google Scholar 

  7. Cheng, B., Tang, X.: High energy solutions of modified quasilinear fourth-order elliptic equations with sign-changing potential. Comput. Math. Appl. 73, 27–36 (2017). https://doi.org/10.1016/j.camwa.2016.10.015

    Article  MathSciNet  Google Scholar 

  8. Clark, D.C.: A variant of the Lusternik–Schnirelman theory. Indiana Univ. Math. J. 22, 65–74 (1972/73). https://doi.org/10.1512/iumj.1972.22.22008

  9. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal. 56, 213–226 (2004). https://doi.org/10.1016/j.na.2003.09.008

    Article  MathSciNet  Google Scholar 

  10. do Ó, J.A.M., Severo, U.: Quasilinear Schrödinger equations involving concave and convex nonlinearities. Commun. Pure Appl. Anal. 8, 621–644 (2009). https://doi.org/10.3934/cpaa.2009.8.621

    Article  MathSciNet  Google Scholar 

  11. Fang, X.-D., Han, Z.-Q.: (2014) Existence of nontrivial solutions for a quasilinear Schrödinger equations with sign-changing potential. Electron. J. Differ. Equ. 2014(05), 1–8 (2014)

    Google Scholar 

  12. Heinz, H.-P.: Free Ljusternik–Schnirelman theory and the bifurcation diagrams of certain singular nonlinear problems. J. Differ. Equ. 66, 263–300 (1987). https://doi.org/10.1016/0022-0396(87)90035-0

    Article  MathSciNet  Google Scholar 

  13. Kurihara, S.: Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Jpn. 50, 3262–3267 (1981). https://doi.org/10.1143/JPSJ.50.3262

    Article  Google Scholar 

  14. Laedke, E., Spatschek, K., Stenflo, L.: Evolution theorem for a class of perturbed envelope soliton solutions. J. Math. Phys. 24, 2764–2769 (1983). https://doi.org/10.1063/1.525675

    Article  MathSciNet  Google Scholar 

  15. Lazer, A.C., McKenna, P.J.: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Rev. 32, 537–578 (1990). https://doi.org/10.1137/1032120

    Article  MathSciNet  Google Scholar 

  16. Liu, J.Q.: The Morse index of a saddle point. Syst. Sci. Math. Sci. 2, 32–39 (1989)

    MathSciNet  Google Scholar 

  17. Liu, S., Zhao, Z.: Solutions for fourth order elliptic equations on \({\mathbb{R} }^N\) involving \(u\Delta (u^2)\) and sign-changing potentials. J. Differ. Equ. 267, 1581–1599 (2019). https://doi.org/10.1016/j.jde.2019.02.017

    Article  Google Scholar 

  18. Liu, S., Zhou, J.: Standing waves for quasilinear Schrödinger equations with indefinite potentials. J. Differ. Equ. 265, 3970–3987 (2018). https://doi.org/10.1016/j.jde.2018.05.024

    Article  Google Scholar 

  19. Liu, Z., Wang, Z.-Q.: On Clark’s theorem and its applications to partially sublinear problems. Ann. Inst. H. Poincaré C Anal. Non Linéaire 32, 1015–1037 (2015). https://doi.org/10.1016/j.anihpc.2014.05.002

    Article  MathSciNet  Google Scholar 

  20. Maia, L.A., Oliveira Junior, J.C., Ruviaro, R.: A quasi-linear Schrödinger equation with indefinite potential. Complex Var. Elliptic Equ. 61, 574–586 (2016). https://doi.org/10.1080/17476933.2015.1106483

    Article  MathSciNet  Google Scholar 

  21. Niu, M., Tang, Z., Wang, L.: Least energy solutions for indefinite biharmonic problems via modified Nehari–Pankov manifold. Commun. Contemp. Math. 20, 1750047, 35 (2018). https://doi.org/10.1142/S021919971750047X

    Article  MathSciNet  Google Scholar 

  22. Oliveira Junior, J.C.: A class of modified nonlinear fourth-order elliptic equations with unbounded potential. Complex Var. Elliptic Equ. 66, 876–891 (2021). https://doi.org/10.1080/17476933.2020.1751135

    Article  MathSciNet  Google Scholar 

  23. Oliveira Junior, J.C., Moreira, S.I.: Generalized quasilinear equations with sign-changing unbounded potential. Appl. Anal. 101, 3192–3209 (2022). https://doi.org/10.1080/00036811.2020.1836356

    Article  MathSciNet  Google Scholar 

  24. Porkolab, M., Goldman, M.V.: Upper-hybrid solitons and oscillating-two-stream instabilities. Phys. Fluids 19, 872–881 (1976). https://doi.org/10.1063/1.861553

    Article  MathSciNet  Google Scholar 

  25. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations, vol. 65 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1986). https://doi.org/10.1090/cbms/065

  26. Silva, E.D., Silva, J.S.: Quasilinear Schrödinger equations with nonlinearities interacting with high eigenvalues. J. Math. Phys. 60, 081504, 24 (2019). https://doi.org/10.1063/1.5091810

    Article  Google Scholar 

  27. Silva, E.A.B., Vieira, G.F.: Quasilinear asymptotically periodic Schrödinger equations with critical growth. Calc. Var. Partial Differ. Equ. 39, 1–33 (2010). https://doi.org/10.1007/s00526-009-0299-1

    Article  Google Scholar 

  28. Silva, E.A.B., Vieira, G.F.: Quasilinear asymptotically periodic Schrödinger equations with subcritical growth. Nonlinear Anal. 72, 2935–2949 (2010). https://doi.org/10.1016/j.na.2009.11.037

    Article  MathSciNet  Google Scholar 

  29. Xue, Y.-F., Tang, C.-L.: Existence of a bound state solution for quasilinear Schrödinger equations. Adv. Nonlinear Anal. 8, 323–338 (2019). https://doi.org/10.1515/anona-2016-0244

    Article  MathSciNet  Google Scholar 

  30. Yang, M.: Existence of solutions for a quasilinear Schrödinger equation with subcritical nonlinearities. Nonlinear Anal. 75, 5362–5373 (2012). https://doi.org/10.1016/j.na.2012.04.054

    Article  MathSciNet  Google Scholar 

  31. Ye, Y., Tang, C.-L.: Infinitely many solutions for fourth-order elliptic equations. J. Math. Anal. Appl. 394, 841–854 (2012). https://doi.org/10.1016/j.jmaa.2012.04.041

    Article  MathSciNet  Google Scholar 

  32. Yin, L.-F., Jiang, S.: Existence of nontrivial solutions for modified nonlinear fourth-order elliptic equations with indefinite potential. J. Math. Anal. Appl. 505, 125459 (2022). https://doi.org/10.1016/j.jmaa.2021.125459

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for careful reading of the manuscript and for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Jiang, S. Existence of Multiple Solutions for Elliptic Equations with Indefinite Potential. Qual. Theory Dyn. Syst. 23, 33 (2024). https://doi.org/10.1007/s12346-023-00888-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00888-8

Keywords

Navigation