Skip to main content
Log in

Bogdanov–Takens Bifurcation of Codimensions 3 and 4 in a Holling and Leslie type Predator–Prey System with Strong Allee Effect

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we revisit a Leslie type predator–prey system with strong Allee effect on prey and simplified Holling type IV functional response proposed. Some more complex dynamical properties have been discovered. First, it is proved that the system exhibits a degenerate cusp of codimension 4 and a degenerate focus, saddle or elliptic of codimension 3 for different parameter values analytically. Further, various possible high codimensional bifurcation analyses are performed. It is shown that the system undergoes degenerate focus, saddle or elliptic type Bogdanov–Takens bifurcation of codimension 3 and degenerate cusp type Bogdanov–Takens bifurcation of codimension 4 as the parameters vary. Moreover, the existence and spatial location of the limit cycles are explored by calculating Hopf bifurcation and homoclinic bifurcation surfaces. Numerical simulations are carried out, and it is observed that three limit cycles coexist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availibility

All data generated or analysed during this study are included in this published article.

References

  1. Lotka, A.J.: Elements of Physical Biology. Williams & Wilkins, Baltimore (1925)

    Google Scholar 

  2. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)

    Article  Google Scholar 

  3. Naik, P.A., Eskandari, Z., Jian, Z., et al.: Multiple bifurcations of a discrete-time prey-predator model with mixed functional response. Int. J. Bifurc. Chaos 32(3), 1–15 (2022)

    MathSciNet  Google Scholar 

  4. Naik, P.A., Eskandari, Z., Yavuz, M., et al.: Complex dynamics of a discrete-time Bazykin–Berezovskaya prey–predator model with a strong Allee effect. J. Comput. Appl. Math. 413, 114401 (2022)

    Article  MathSciNet  Google Scholar 

  5. Naik, P.A., Eskandari, Z., Shahraki, H.E.: Flip and generalized flip bifurcations of a two-dimensional discrete-time chemical model. Math. Model. Numer. Simul. Appl. 1(2), 95–101 (2021)

    Google Scholar 

  6. Dawes, J.H.P., Souza, M.O.: A derivation of Holling’s type I, II and III functional responses in predator-prey systems. J. Theor. Biol. 327(1), 11–22 (2013)

    Article  MathSciNet  Google Scholar 

  7. Huang, J., Ruan, S., Song, J.: Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response. J. Differ. Equ. 257(6), 1721–1752 (2014)

    Article  MathSciNet  Google Scholar 

  8. Shang, Z., Qiao, Y., Duan, L., et al.: Stability and bifurcation analysis in a nonlinear harvested predator-prey model with simplified Holling type IV functional response. Int. J. Bifurc. Chaos 30(14), 2050205 (2020)

    Article  MathSciNet  Google Scholar 

  9. Lajmiri, Z., Khoshsiar Ghaziani, R., Orak, I.: Bifurcation and stability analysis of a ratio-dependent predator–prey model with predator harvesting rate. Chaos Solitons Fract. 106, 193–200 (2018)

    Article  MathSciNet  Google Scholar 

  10. Bai, D., Li, J., Zeng, W.: Global stability of the boundary solution of a nonautonomous predator-prey system with beddington-deangelis functional response. J. Biol. Dynam. 14(1), 421–437 (2020)

    Article  MathSciNet  Google Scholar 

  11. Chen, X., Du, Z.: Existence of positive periodic solutions for a neutral delay predator-prey model with Hassell-Varley type functional response and impulse. Qual. Theory Dyn. Syst. 17, 67–80 (2018)

    Article  MathSciNet  Google Scholar 

  12. Cosner, C., Deangelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56(1), 65–75 (1999)

    Article  Google Scholar 

  13. Li, Y., Xiao, D.: Bifurcations of a predator-prey system of Holling and Leslie types. Chaos Solitons Fract. 34, 606–620 (2007)

    Article  MathSciNet  Google Scholar 

  14. Huang, J., Xia, X., Zhang, X., et al.: Bifurcation of codimension 3 in a predator-prey system of Leslie type with simplified Holling type IV functional response. Int. J. Bifurc. Chaos 26(2), 1650034 (2016)

    Article  MathSciNet  Google Scholar 

  15. Dai, Y., Zhao, Y.: Hopf cyclicity and global dynamics for a predator-prey system of Leslie type with simplified Holling type IV functional response. Int. J. Bifurc. Chaos 28(13), 1850166 (2018)

    Article  MathSciNet  Google Scholar 

  16. Allee, W.C.: Animal Aggregation: A Study in General Sociology. University of Chicago Press, Chicago (1931)

    Book  Google Scholar 

  17. Courchamp, F., Clutton-Brock, T., Grenfell, B.: Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14(10), 405–410 (1999)

    Article  Google Scholar 

  18. Kramer, A., Berec, L., Drake, J.: Allee effects in ecology and evolution. J. Anim. Ecol. 87(1), 7–10 (2018)

    Article  Google Scholar 

  19. Liermann, M., Hilborn, R.: Depensation: evidence, models and implications. Fish Fish. 2(1), 33–58 (2001)

    Article  Google Scholar 

  20. González-Olivares, E., Cabrera-Villegas, J., Córdova-Lepe, F., et al.: Competition among predators and Allee effect on prey, their influence on a Gause-type predation model. Math. Probl. Eng. 2019, 1–19 (2019)

    Article  MathSciNet  Google Scholar 

  21. Stephens, P.A., Freckleton, W.: What is the Allee effect? Oikos 87(1), 185–190 (1999)

    Article  Google Scholar 

  22. Courchamp, F., Berec, L., Gascoigne, J.: Allee effects in ecology and conservation. Environ. Conserv. 36 (2008)

  23. Boukal, D.S., Sabelis, M.W., Berec, L.: How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses. Theor. Popul. Biol. 72(1), 136–147 (2007)

    Article  Google Scholar 

  24. Berec, L., Angulo, E., Courchamp, F.: Multiple Allee effects and population management. Trends Ecol. Evol. 22(4), 185–191 (2007)

    Article  Google Scholar 

  25. Singh, M.K., Bhadauria, B.S., Singh, B.K.: Bifurcation analysis of modified Leslie-Gower predator-prey model with double Allee effect. Ain Shams Eng. J. 94, 1263 (2016)

    Google Scholar 

  26. Arancibia-Ibarra, C., Flores, J.D., Pettet, G., et al.: A Holling-Tanner predator-prey model with strong Allee effect. Int. J. Bifurc. Chaos 29(11), 1930032 (2019)

    Article  MathSciNet  Google Scholar 

  27. Pal, P.J., Saha, T.: Dynamical Complexity of a Ratio-Dependent Predator-Prey Model with Strong Additive Allee Effect. Springer, India (2015)

    Book  Google Scholar 

  28. Wang, W., Zhang, Y., Liu, C.: Analysis of a discrete-time predator–prey system with Allee effect. Ecol. Complex. 8(1), 81–85 (2011)

    Article  Google Scholar 

  29. Shang, Z., Qiao, Y.: Bifurcation analysis of a Leslie-type predator-prey system with simplified Holling type IV functional response and strong Allee effect on prey. Nonlinear Anal. Real. 64, 103453 (2022)

    Article  MathSciNet  Google Scholar 

  30. Perko, L., Differential Equations and Dynamical Systems, third ed., in: Texts in Applied Mathematics, Vol. 7, Springer, New York (2001)

  31. Lamontagne, Y., Coutu, C., Rousseau, C.: Bifurcation analysis of a predator-prey system with generalised Holling type III functional response. J. Dyn. Differ. Equ. 20(3), 535–571 (2008)

    Article  MathSciNet  Google Scholar 

  32. Cai, L., Chen, G., Xiao, D.: Multiparametric bifurcations of an epidemiological model with strong Allee effect. J. Math. Biol. 67(2), 185–215 (2013)

    Article  MathSciNet  Google Scholar 

  33. Dumortier, F., Roussarie, R., Sotomayor, J.: Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part: the cusp case of codimension. Erg. Theor. Dyn. Syst. 7(3), 375–413 (1987)

    Article  MathSciNet  Google Scholar 

  34. Dumortier, F., Roussarie, R., Sotomayor, J., et al.: Bifurcation of planar vector fields, nilpotent singularities and abelian integrals. Lecture Notes in Mathematics, vol. 1480. Springer-Verlag, Berlin (1991)

  35. Chow, S.N., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, New York (1994)

    Book  Google Scholar 

  36. Li, C., Rousseau, C.: A system with three limit cycles appearing in a Hopf bifurcation and dying in a homoclinic bifurcation: the cusp of order 4. J. Differ. Equ. 79(1), 132–167 (1989)

    Article  MathSciNet  Google Scholar 

  37. Joyal, P.: The cusp of order n. J. Differ. Equ. 88(1), 1–14 (1990)

    Article  MathSciNet  Google Scholar 

  38. Shi, S.: A method of constructing cycles without contact around a weak focus. J. Differ. Equ. 41(3), 301–312 (1981)

    Article  MathSciNet  Google Scholar 

  39. Joyal, P., Rousseau, C.: Saddle quantities and applications. J. Differ. Equ. 78(2), 374–399 (1989)

    Article  MathSciNet  Google Scholar 

  40. Joyal, P.: La bifurcation de Hopf généralisée et son dual: la bifurcation homoclinique généralisée. Université de Montréal, Thesis (1986)

    Google Scholar 

Download references

Acknowledgements

We thank to the editors and the anonymous reviewers for their valuable comments, which improved the presentation of this paper. This work is supported by Beijing Municipal Natural Science Foundation (No.4202025).

Author information

Authors and Affiliations

Authors

Contributions

ZS: Conceptualization, methodology, data curation, writing-original draft preparation, software. YQ: Writing-reviewing and editing, validation, investigation, supervision.

Corresponding author

Correspondence to Yuanhua Qiao.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest in publishing this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The coefficient expressions of system (6) are listed as follows.

\(p_{1}=\dfrac{1}{2c(-m-1+\sqrt{(m-1)^{2}-4c})}((-2\,m^{3}+3mc+2\,m^{2}+3c+2\,m-2)\sqrt{(m-1)^{2}-4c} +2\,m^{4}-7\,m^{2}c-4\,m^{3}-2c^{2}+2mc+4\,m^{2}-7c-4\,m+2)\),

\(p_{2}=-\sqrt{(m-1)^{2}-4c}\),

\(p_{3}=-\dfrac{1}{c^{2}(-m-1+\sqrt{(m-1)^{2}-4c})^{2}}((2\,m^{5}-4\,m^{4}+13c^{2}-12\,m^{3}c+13mc^{2}+4\,m^{2}c+2\,m^{3} -12c+2\,m^{2}+4mc-4\,m+2)\sqrt{(m-1)^{2}-4c}-2\,m^{6}+6\,m^{5}-6\,m^{4}-2+8\,m^{2}c+4\,m^{3}-20mc+16\,m^{4}c-33\,m^{2}c^{2} -20\,m^{3}c-10mc^{2}-33c^{2}+10c^{3}-6\,m^{2}+16c+6\,m)\),

\(p_{4}=\dfrac{-1}{c(-m-1+\sqrt{(m-1)^{2}-4c})^{2}}((m+1)\sqrt{(m-1)^{2}-4c}-(m-1)^{2} +5c)((m+1)\sqrt{(m-1)^{2}-4c}-(m-1)^{2}+2c)\),

\(p_{5}=\dfrac{1}{2c^{3}(-m-1+\sqrt{(m-1)^{2}-4c})^{3}}(((-26\,m^{3}c+37mc^{2}+10\,m^{2}c+4\,m^{5}-8\,m^{4}+37c^{3}+10mc+4+4\,m^{3}+4\,m^{2} -26c-8\,m)\sqrt{(m-1)^{2}-4c}-4-4\,m^{6}+12\,m^{5}+34\,m^{4}c-81\,m^{2}c^{2}-44\,m^{3}c-14mc^{2}+38c^{3}+20\,m^{2}c-44mc-81c^{2} +8\,m^{3}-12\,m^{4}-12\,m^{2}+34c+12\,m)((m+1)\sqrt{(m-1)^{2}-4c}-(m-1)^{2}+2c))\),

\(p_{6}=\dfrac{2}{c^{2}(-m-1+\sqrt{(m-1)^{2}-4c})^{3}}((-m^{3}+4mc+m^{2}+4c+m-1)\sqrt{(m-1)^{2}-4c}+m^{4}-6\,m^{2}c-2\,m^{3}+7c^{2} +4mc+2\,m^{2}-6c-2\,m+1)((m+1)\sqrt{(m-1)^{2}-4c}-(m-1)^{2}+2c)\),

\(p_{7}=\dfrac{-1}{2c^{4}(-m-1+\sqrt{(m-1)^{2}-4c})^{4}}((4+4\,m^{3}-28c+4\,m^{2}-8\,m+4\,m^{5}-8\,m^{4}+45c^{2}+45c^{2}m +12c m^{2}-28c m^{3}+12mc+4c+m-1)\sqrt{(m-1)^{2}-4c}-4+36c m^{4}-93c^{2}m^{2}-48c m^{3}-6c^{2}m+52c^{3}-4\,m^{6}+12\,m^{5}-12\,m^{4}-93c^{2}+8\,m^{3}-12\,m^{2}+24c m^{2}-48mc+36c+12\,m)((m+1)\sqrt{(m-1)^{2}-4c}-(m-1)^{2}+2c)\),

\(p_{8}=-\dfrac{((m+1)\sqrt{(m-1)^{2}-4c}-(m-1)^{2}+2c)^{2}}{c^{3}(-m-1+\sqrt{(m-1)^{2}-4c})^{4}}((-2\,m^{3}+9mc+2\,m^{2}+9c+2\,m-2)\sqrt{(m-1)^{2}-4c}+2\,m^{4} -13\,m^{2}c-4\,m^{3}+19c^{2}+10mc+4\,m^{2}-13c-4\,m+2)\),

\(q_{1}=q_{3}=\dfrac{-q_{2}}{2}=\dfrac{-2c}{(m+1-\sqrt{(m-1)^{2}-4c})}\),

\(q_{4}=q_{6}=\dfrac{-q_{5}}{2}=\dfrac{4c}{(m+1-\sqrt{(m-1)^{2}-4c})^{2}}\),

\(q_{7}=q_{9}=\dfrac{-q_{8}}{2}=\dfrac{-8c}{(m+1-\sqrt{(m-1)^{2}-4c})^{3}}\),

\(q_{10}=q_{12}=\dfrac{-q_{11}}{2}=\dfrac{16c}{(m+1-\sqrt{(m-1)^{2}-4c})^{4}}\).

Appendix B

The coefficient expressions of system (9) are listed as follows.

\(\phi _{1}=c(p_{1}+p_{2})\), \(\phi _{2}=-\dfrac{p_{2}+q_{3}}{c}\), \(\phi _{3}=c(p_{3}+p_{4})\), \(\phi _{4}=3p_{3}+2p_{4}+\dfrac{(p_{2}+2q_{3})(p_{1}+p_{2})}{c}\),

\(\phi _{5}=-\dfrac{2cp_{4}+cq_{6}+p_{2}^{2}+p_{2}q_{3}}{c^{2}}\), \(\phi _{6}=cp_{5}+cp_{6}-\dfrac{(p_{1}+p_{2})^{2}q_{3}}{c}\),

\(\phi _{7}=4p_{5}+3p_{6}+\dfrac{(p_{2}^{2}+2p_{2}q_{3}+2cq_{6})(p_{1}+p_{2})}{c^{2}}+\dfrac{(p_{2}+2p_{3}+2p_{4})q_{3} +(2p_{1}+3p_{2})p_{4}}{c}\),

\(\phi _{8}=-\dfrac{3p_{6}+q_{9}}{c}-\dfrac{3p_{2}p_{4}+p_{2}q_{6}+p_{4}q_{3}}{c^{2}}-\dfrac{p_{2}^{2}(p_{2}+q_{3})}{c^{3}}\).

Appendix C

The coefficient expressions of system (16) are listed as follows.

\(g_{30}=p_{3}+p_{4}\), \(g_{21}=-\dfrac{1}{c^{2}}(cp_{4}+p_{2}^{2}+p_{2}q_{3})\), \(g_{40}=-\dfrac{1}{2c}(p_{3}+p_{4})(p_{2}+q_{3})+p_{5}+p_{6}\), \(g_{31}=-\dfrac{1}{c^{3}}(c^{2}p_{6}-cp_{4}q_{3}-p_{2}^{3}-3p_{2}^{2}q_{3}-2p_{2}q_{3}^{2})\), \(h_{11}=-p_{2}\), \(h_{30}=c(p_{3}+p_{4})\), \(h_{21}=\dfrac{p_{2}(p_{2}+q_{3})}{2c}-p_{4}\), \(h_{12}=-\dfrac{1}{c^{2}}(cq_{6}+p_{2}q_{3}+q_{3}^{2})\), \(h_{40}=-\dfrac{3}{2}p_{2}p_{3}-\dfrac{3}{2}p_{2}p_{4}-\dfrac{1}{2}p_{3}q_{3}-\dfrac{1}{2}p_{4}q_{3}+cp_{5}+cp_{6}\), \(h_{31}=-\dfrac{1}{2c^{2}}(2c^{2}p_{6}-2cp_{2}p_{4}-2cp_{3}q_{3}-4cp_{4}q_{3}+p_{2}^{3}+2p_{2}^{2}q_{3}+p_{2}q_{3}^{2})\), \(h_{22}=-\dfrac{1}{2c^{3}}(2c^{2}q_{9}-cp_{2}q_{6}+2cp_{4}q_{3}-3cq_{3}q_{6}-p_{2}^{2}q_{3}-6p_{2}q_{3}^{2}-5q_{3}^{3})\).

Appendix D

The coefficient expressions of system (19) are listed as follows.

\(k_{00}=x_{{2}} ( -x_{{2}}+1 ) ( -m+x_{{2}} ) -\dfrac{ x_{{2}}^{2}}{a_{{0}}+\lambda _{{1}}+ ( b_{{0}}+\lambda _{{2}} ) x_{{2}}^{2}}\),

\(k_{10}=x_{{2}} ( -x_{{2}}+1 ) + ( -2\,x_{{2}}+1 ) ( -m+x_{{2}} ) -\dfrac{x_{{2}} ( -x_{{2}}^{2}b_{{0 }}-x_{{2}}^{2}\lambda _{{2}}+a_{{0}}+\lambda _{{1}} ) }{ ( x_{{2}}^{2}b_{{0}}+x_{{2}}^{2}\lambda _{{2}}+a_{{0}}+\lambda _{{1}} ) ^{2}}\),

\(k_{01}=-\dfrac{x_{{2}}}{a_{{0}}+\lambda _{{1}}+ ( b_{{0}}+\lambda _{{2}} ) x_{{2}}^{2}}\), \(k_{11}=-\dfrac{-x_{{2}}^{2}b_{{0}}-x_{{2}}^{2}\lambda _{{2}}+a_{{0}}+ \lambda _{{1}}}{(x_{{2}}^{2}b_{{0}}+x_{{2}}^{2}\lambda _{{2}}+a_{{0}}+ \lambda _{{1}})^{2}}\),

\(k_{20}=-3\,x_{{2}}+1+m+\dfrac{ ( b_{{0}}+\lambda _{{2}} ) x_{{2}} ^{2} ( -x_{2}^{2}b_{{0}}-x_{{2}}^{2}\lambda _{{2}}+3\,a_{{0 }}+3\,\lambda _{{1}} ) }{ ( x_{{2}}^{2}b_{{0}}+x_{{2}}^{ 2}\lambda _{{2}}+a_{{0}}+\lambda _{{1}} ) ^{3}}\),

\(k_{30}=-1+\dfrac{x_{{2}} ( b_{{0}}+\lambda _{{2}} )}{ ( x_{{2}}^{2}b_{{0}}+x_{{2}}^{2 }\lambda _{{2}}+a_{{0}}+\lambda _{{1}} ) ^{4}} ( b_{{0 }}^{2}x_{{2}}^{4}+2\,b_{{0}}\lambda _{{2}}x_{{2}}^{4}+\lambda _{{2 }}^{2}x_{{2}}^{4}-6\,a_{{0}}b_{{0}}x_{{2}}^{2}-6\,a_{{0}}\lambda _ {{2}}x_{{2}}^{2}-6\,b_{{0}}\lambda _{{1}}x_{{2}}^{2}-6\,\lambda _{{1 }}\lambda _{{2}}x_{{2}}^{2}+{a_{{0}}}^{2}+2\,a_{{0}}\lambda _{{1}}+ \lambda _{{1}}^{2} )\),

\(k_{21}={\dfrac{x_{{2}} ( b_{{0}}+\lambda _{{2}} ) ( -x_{{2} }^{2}b_{{0}}-x_{{2}}^{2}\lambda _{{2}}+3\,a_{{0}}+3\,\lambda _{{1}} ) }{ ( x_{{2}}^{2}b_{{0}}+x_{{2}}^{2}\lambda _{{2}}+a_{ {0}}+\lambda _{{1}} ) ^{3}}}\), \(l_{10}=c_{0}+\lambda _{3}\), \(l_{01}=-c_{0}-\lambda _{3}\), \(l_{20}=-\dfrac{c_{0}+\lambda _{3}}{x_{2}}\), \(l_{11}=\dfrac{2(c_{0}+\lambda _{3})}{x_{2}}\), \(l_{02}=-\dfrac{c_{0}+\lambda _{3}}{x_{2}}\), \(l_{30}=\dfrac{c_{0}+\lambda _{3}}{x_{2}^{2}}\), \(l_{21}=-\dfrac{2(c_{0}+\lambda _{3})}{x_{2}^{2}}\), \(l_{12}=\dfrac{c_{0}+\lambda _{3}}{x_{2}^{2}}\).

Appendix E

The coefficient expressions of system (20) are listed as follows.

\(m_{00}=\dfrac{k_{{00}} ( k_{{00}}l_{{02}}-k_{{01}}l_{{01}} ) }{k_{{01}}}\),

\(m_{10}=\dfrac{l_{{12}}k_{{00}}^{2}k_{{01}}-k_{{00}}^{2}k_{{11}}l_{{02}}-l_{{ 11}}k_{{00}}k_{{01}}^{2}+2\,k_{{00}}k_{{01}}k_{{10}}l_{{02}}+l_{{10}}k_{ {01}}^{3}-k_{{01}}^{2}k_{{10}}l_{{01}}}{k_{{01}}^{2}}\),

\(m_{01}=-\dfrac{k_{{00}}k_{{11}}+2\,k_{{00}}l_{{02}}-k_{{01}}k_{{10}}-k_{{01}}l_{{ 01}}}{k_{{01}}}\),

\(m_{20}=-\dfrac{1}{k_{01}^{3}}(k_{{00}}^{2}k_{{01}}k_{{11}}l_{{12}}+k_{{00}}^{2}k_{{01}}k_{{ 21}}l_{{02}}-k_{{00}}^{2}k_{{11}}^{2}l_{{02}}+l_{{21}}k_{{00}}k_{{01}} ^{3}-2\,k_{{00}}k_{{01}}^{2}k_{{10}}l_{{12}}-2\,k_{{00}}k_{{01}}^{2}k _{{20}}l_{{02}}+2\,k_{{00}}k_{{01}}k_{{10}}k_{{11}}l_{{02}}-l_{{20}}k_{{01 }}^{4}+k_{{01}}^{3}k_{{10}}l_{{11}}-k_{{01}}^{3}k_{{11}}l_{{10}}+k _{{01}}^{3}k_{{20}}l_{{01}}-k_{{01}}^{2}k_{{10}}^{2}l_{{02}})\),

\(m_{11}=-\dfrac{1}{k_{{01}}^{2}}(2\,k_{{00}}k_{{21}}k_{{01}}+2\,l_{{12}}k_{{00}}k_{{01}}-k_{{00}}k_{{11}}^{2}-2\,k_{{00}} k_{{11}}l_{{02}}-2\,k_{{20}}k_{{01}}^{2}-l_{{11 }}k_{{01}}^{2}+k_{{01}}k_{{10}}k_{{11}}+2\,k_{{01}}k_{{10}}l_{{02}})\), \(m_{02}=\dfrac{l_{{02}}+k_{{11}}}{k_{{01}}}\),

\(m_{30}=-\dfrac{1}{k_{{01}}^{4}}(k_{{00}}^{2}k_{{01}}^{2}k_{{21}}l_{{12}}-k_{{00}}^{2}k_{{01 }}k_{{11}}^{2}l_{{12}}-2\,k_{{00}}^{2}k_{{01}}k_{{11}}k_{{21}}l_{{02} }+k_{{00}}^{2}k_{{11}}^{3}l_{{02}}-2\,k_{00}k_{{01}}^{3}k_{{20}}l_ {{12}}-2\,k_{{00}}k_{{01}}^{3}k_{{30}}l_{{02}}+2\,k_{{00}}k_{{01}}^{2}k _{{10}}k_{{11}}l_{{12}}+2\,k_{{00}}k_{{01}}^{2}k_{{10}}k_{{21}}l_{{02}} +2\,k_{{00}}k_{{01}}^{2}k_{{11}}k_{{20}}l_{{02}}-2\,k_{{00}}k_{{01}}k_{{ 10}}k_{{11}}^{2}l_{{02}}-l_{{30}}k_{{01}}^{5}+k_{{01}}^{4}k_{{10}}l _{{21}}-k_{{01}}^{4}k_{{11}}l_{{20}}+k_{{01}}^{4}k_{{20}}l_{{11}}-k _{{01}}^{4}k_{{21}}l_{{10}}+k_{{01}}^{4}k_{{30}}l_{{01}}-k_{{01}}^{3} k_{{10}}^{2}l_{{12}}-2\,k_{{01}}^{3}k_{{10}}k_{{20}}l_{{02}}+k_{{01} }^{2}k_{{10}}^{2}k_{{11}}l_{{02}})\),

\(m_{21}=\dfrac{1}{k_{{01}}^{3}}(3\,k_{{00}}k_{{01}}k_{{11}}k_{{21}}+2\,k_{{00}}k_{{01}}k_{{11}}l_{ {12}}+2\,k_{{00}}k_{{01}}k_{{21}}l_{{02}}-k_{{00}}k_{{11}}^{3}-2\,k_{{00} }k_{{11}}^{2}l_{{02}}+3\,k_{{01}}^{3}k_{{30}}+l_{{21}}k_{{01}}^{3}- 2\,k_{{01}}^{2}k_{{10}}k_{{21}}-2\,k_{{01}}^{2}k_{{10}}l_{{12}}-k_{ {01}}^{2}k_{{11}}k_{{20}}-2\,k_{{01}}^{2}k_{{20}}l_{{02}}+k_{{01}}k_{{ 10}}k_{{11}}^{2}+2\,k_{{01}}k_{{10}}k_{{11}}l_{{02}})\),

\(m_{12}=\dfrac{2\,k_{{21}}k_{{01}}+l_{{12}}k_{{01}}-k_{{11}}^{2}-l_{{02}}k_{{ 11}}}{k_{{01}}^{2}}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Z., Qiao, Y. Bogdanov–Takens Bifurcation of Codimensions 3 and 4 in a Holling and Leslie type Predator–Prey System with Strong Allee Effect. Qual. Theory Dyn. Syst. 23, 23 (2024). https://doi.org/10.1007/s12346-023-00880-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00880-2

Keywords

Navigation