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Segmentation of images by variational methods:
a constructive approach®

JEAN-MICHEL MOREL and SERGIO SOLIMINI

ABSTRACT. We give a constructive proof that given a bounded function on a
rectangle R, the minimum of the following functional is achieved:

E(u,B)=lu — gl + 4 B),

where B is a finite set of C! curves in R and u is locally constant in R—B. In image
processing, ¢ can be interpreted as an image (g(x.y) is the grey level at (x,y)) and the
curves of B as the contours of the image, u representing the mean value inside each
contour. Following ideas of Mumford and Shah, our proof suggests a method for
transforming an image into a cartoon.

1. INTRODUCTION AND NOTATION

One of the central problems in image processing (and more generally in
signal or data analysis) is the so called «segmentation problem».

By an «image» we mean (we adopt a continuous deterministic model) a
real function g on an open rectangle R in R?; g(x,y) is the «grey-level» at the
point (x,y). An «image segmentation» is a pair (4, B) where B is a set of
piecewise C! curves, which we call «contours», and u a real function which is
regular on connected components of R/B.

In a «good» segmentation (u, B), the curves of B should be the boundaries
of homogeneous areas in the image and u a sort of mean or, more generally, a
regularized version of g in the interior of such areas.
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A full account of this problem can be found, e.g., in Rosenfeld and Kak
[8]: many algorithmic approaches have been defined about how to define u
and B, but only very recently the work of S. and D. Geman [4] has suggested
that many tasks in image processing should be achieved by minimizing some
ad hoc energy functional defined on a set of pictures. This idea has been
developped by D. Mumford and J. Shah [7] in a deterministic framework.
They propose a global variational method for boundary detection in images,
motivated by the failure of present local methods for giving psychologically
reasonable contours in some non pathological cases.

According to the simplest version of this model, a segmentation of g is a
pair (4, B) where B is a finite set of piecewise C! noncrossing curves from [0,1]
into R (with some ends eventually on the boundary of R), and u is locally
constant on R/S(B). S(B) denotes the support of D. Mumford and Shah have
proved in [6] the following theorem:

Theorem. Let g be a measurable bounded function in R. Then the minimum
of the following functional is attained at some B:

E(u, B)=||u —¢g|lyn + length(B)

The curves of the minimum B are in fact C* for an ad hoc parametrization and
meet each other only at triple points with 120° angles. They can also end ar the
houndary of R with 90° angles. If g is continuous, each interior point x of a
curve ¢ verifies the following Euler-Lagrange equation:

(Curvature of ¢ at x)=(jump of (u—g)* accross ¢ at X)

In these notes we shall give an elementary constructive proof of this
theorem. Qur proof has been obtained independently, as the preceding result
was announced, but unpublished. Its scope is also very different. The proof of
Mumford and Shah [6] is based on geometric measure theory. Can the model
lead to a computational approach? In other words, how can we define and
handle minimizing sequences with good computational properties? A first
answer to this question has been to give a proof of the preceding result
providing useful tools for handling segmentations made of affine curves along
& minimizing sequence: we shall consider a minimizing sequence B, of
segmentations made of piecewise affine curves and give a priori lower bounds
on the areas of the connected components of R/S(B,). We also deduce upper
bounds on the number of curves defining B, and on the number of
geometrical crossings of B, and prove that all these estimates pass to the
limit. These estimates are not true for any minimizing sequence. One has to
work with minimizing sequences made of affine curves and which, from the
image processing viewpoint, have some «nonmerging property»: The «non-
merging property» is that no boundary between two homogeneous zones of
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the segmentation can be removed without increasing the energy. An affine
segmentation being given, this property can be achieved in a constructive way
by eventually removing the non useful boundaries. (The only reason for
which we choose to consider segmentations made of affine curves is that
.adding a segment to such segmentations cannot create infinitely many
crossings).

Numerical analysis. The preceding result and the lemmas given next
suggest a method for computing a minimizing segmentation. The algorithm
should works as follows:

— Introduce some reasonable initial segmentation (for instance given by

the classical method of zero-crossings of the Laplacian).

— Merging for obtaining the nonmerging property mentioned above.

— Modifying the boundaries in order that the «elasticity» condition

about the curvature is verified.

This describes a deterministic gradient procedure. In order to attain a
good minimum, one should split again stochastically the regions by adding
new edges, and test wether the nonmerging property is still verified. This
would correspond to an annealing-like method [4].

Numerical tests are beginning now.

Validity of the method. It will be of course decided by practical
experiments. Some researchers in image processing have suggested to us that
the original signal to be segmented should be the absolute value of the
gradient of g, rather than the grey levels g(x, y). Now, whatever may be the
form and meaning of the signal to be segmented, it is clear that a global
variational approach will involve a functional with one- and two-dimensional
terms. Among such functionals, the functional which we shali study is clearly
the simplest one!

A related work. After this work was complete, we learned that a researcher
of Harvard, Yang Wang [9], has made another constructive proof of the
above theorem. The method of Yang Wang is different from ours but has also
its computational interest: he defines a discretisation of the minimization
problem, -with restrictions on the number and length of the segments, and
obtains a priori bounds which allow to pass to the limit.

Contents. We shall prove in section 1 that E is lower semicontinuous for a
suitable topology.

In section 2 we consider a minimizing sequence B, of segmentations made
of piecewise affine curves and give a priori lower bounds on the areas of the
connected components of R/S(B.,).

In section 3 we deduce upper bounds or the number of curves defining B,
and on the number of geometrical crossings >f B,. Section 4 is devoted to the
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proof that all these estimates pass to the limit along a minimizing sequence
and concludes the proof of the theorem.

We begin with some notations and definitions which will be useful in the
following.

The function g. It is a bounded measurable real function on a rectangle K.
It represents the grey levels of a rectangular image. Without loss of generality
we shall assume that |g(x, y) < 1.

The energy E(B). Note that given B, the corresponding minimal u is
completely defined by the fact that its value on each connected component of
R/S(B) is equal to the mean value of u on this connected component. Thus we
shall always assume in the following that to each B is associated this unique
u. Therefore we shall write E(B) instead of E(u, B).

Length of a curve ¢ from [0, 1] into R. It is the minimal Lipschitz constant
of cos where s:[0, 110, 1] is a reparametrization of c. By Ascoli-Arzela
theorem this minimum, if finite, is achieved. If ¢ is one to one, the length I(c) of
¢ can be equivalently defined as the supremum of the lengths of ail piecewise
affine curves whose vertices form a finite sequence ¢(sy), ..., ¢fsy) with
$1<52< ... <si. In what follows, we shall always deal with Lipschitz curves.

Tips of a curve c. ¢(0) and c(1).

Interior points of a curve. All other points of the range of c.

Noncrossing curves. ¢ is noncrossing if its restriction to J0, 1[ is one to one.
The curves ¢; and c; are noncrossing if their interiors do not meet.

Piecewise affine curve. A curve whose support 1s made of a finite number
of segments.

Segmentation B. By segmentation we denote a finite family of noncrossing
Lipschitz curves, B=({c). If they are piccewise C', we shall call it C!.

Segmentation, If they are piecewise affine, we shall call it piecewise gffine
segmentation,

Geometrical support of B. 1t is denoted by S(B) and is the union of the
ranges of the ¢;.

Geometrical crossings of B. All the points of S(B) at which S{B) is not
locally a one dimensional continuous manifold. Since the curves of B are one
to one: JO, 1[-R, they are simply all the points of the closure of R where a
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curve meets the interior of another, where at least three curves have a
common tip, where a curve meets the boundary of R.

Geometrical curves of B. All the one dimensional submanifolds of B which
have their boundary contained in the set of geometrical crossings of B and
which contain no geometrical crossing in their intertor.

Length of B. Let B={c,); be a finite family of curves (B is not necessarily a
segmentation). By length of B, I(B), we mean the minimun of the sum of the
lengthes of the ¢,

KB)=min Z; ¥cy)

this minimum being taken among all possible representations of S(B) as the
union of the ranges of Lipschitz curves c,. If B is a segmentation, its length is
the sum of lengths of its curves.

Connected components of R/S(B). If B is made of piecewise affine curves, '
their number is finite. We shall denote them by (0;); and call them «areas».

Common boundary of two areas 0; and 0, We denote it by b(0;, 0)). It is
contained in S(B). If i=j, b(0;) denotes the boundary of 0;.

Two dimensional measure of 0. Denoted by |0;].

e-neighbourhood of a subset A of R. It is the set of all points of R whose
Hausdorfl distance to A is less than e. This set is denoted by A*.

Jordan curve. It is a continuous one to one application ¢ from R/Z into
R?. In other terms, a noncrossing curve whose tips are equal.

Jordan curve in R. It is a either a Jordan curve with range in R, or a
continuous curve ¢ from J0,1[ into R such that or ¢(0+) and c(1 —) exist and
are on the boundary of R.

Jordan curve theorem. A Jordan curve ¢ divides R? in two connected
components, one bounded which is «enclosed by ¢» and one unbounded. A
Jordan curve in R can be extended in a Jordan curve of R? in a standard way:
one joins ¢(0)and ¢(1) by a geodesic of the boundary of R. In case where there
are two such geodesics, one chooses one of .them by some orientation
criterion. With these conventions, we still can speak of the area of R
«enclosed by R».
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Isoperimetric inequality in R* and R. Denote by 0 the arca enclosed by a
Jordan curve ¢ of R*, Then one has I(¢)= 270", In the case of a Jordan
curve in R, the same kind of inequality holds with a smaller constant C:

i) = Clo|'?

Admissible segmentations. B is said admissible if for any B’ contained in B,
one has E(B)= E(B).

Remark. Any segmentation has an admisible subsegmentation B’ contai-
ned in B.

Normal segmentations. Tn sections 3 and 4, we shall only consider
segmentations made of affine closed curves, called segments. Moreover, we
shall suppose, according to the preceding remark, that these segmentations
are admissible. All segmentations verifying these conditions will be called
normal. Since the segments do not overlap, one sees that such a segmentation
gives the length of B as the sum of the lengths of the segments. Finally, a
normal segmentation verifies that:

@) R/S(B) has a finite number of connected components. (Indeed, each
open segment is in the boundary of at most two connected components).

b) Let (O;er be these connected components. Each boundary between 0;
and 0;, denoted H0;, 0;} is the union of the ranges of a finite set of segments.

c) Each open segment of B is in the boundary of exactly two distinct
areas. Indeed, if an open segment has its support in the boundary of only one
0;, the corresponding curve can be removed from B without changing u and
therefore the segmentation is not admissible.

The only reason for which we choose to consider segmentations made of

afline curves is that adding a segment to such segmentations cannot create
mfinitely many crossings,

2. PASSING TO THE LIMIT IN MINIMIZING
SEQUENCES FOR E(B)

Definition. We shall say that the segmentation B, tends to B if B, =(ch) <iek,
B=(cYicick, and if each ¢, tends to each ¢ uniformly.

\
Lemma 1. If B, tends 1o B, then S(B,} tends to S(B) for the Hausdorff
distance and IB)<liminf, {B.,).

Proof. Straightforward. Note that it can happen that {B)< X f(c,).
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Lemma 2. E(B) is a lower semicontinuous functional with respect to the
preceding topology.

Proof. Let B, tend to B in the sense defined above. Note that by our
conventions, u, and u are automatically defined from B, and B. Fix £¢>0. For
n large enough we have d(B,, B)<e¢. Denote by S(BY the set of all x in R such

-that d{x, S(B))<&. Then S(B,) is contained in S(Bf and every connected
component Oz of R/S(BY is included in one component 0;, of R/S(B,). Thus u,
is locally constant on every connected component of R/S(Bf. Since these
connected components are enumerable, we can extract a subsequence of u,,
still called u,, wich converges pointwise in R/S(Bf. By a diagonal selection
argument, one can make ¢, tend to zero and extract another subsequence u,
converging pointwise everywhere in R/S(Bf. Let u=lim u, Clearly u is
constant in every connected component of R/S(BY. Indeed, taken two points
x, y of such a component, one has x and y in the same component of R/S(BY
for small ¢ and therefore uq{x)=u,y) for large n, that is finally u(x)=u(y).

Thus (4, B) is a segmentation of g, and moreover by Fatou’s lemma one
has [ju —g|}<lim inf |lu,—g||. Then by use of lemma | we obtain that E(B) is
lower semicontinuous.

3. ESTIMATES ON THE AREAS AND LENGTHS OF
AN ADMISSIBLE SEGMENTATION

Lemma 3. Let (4, B) be a normal segmentation. Then for any i and j, {(b(0;,
0;)<4 min (0il, [04). -

Proof. Remove all segments of b(0;, 0;). We obtain a new segmentation B’
By the admissibility of B, one has: E(B)> E(B). Set w'=u on any area of
R/S(B) different from 0; and 0; and, assuming for instance that |0 <[0;], define
' on the union of 0; and 0; as the value of u in 0, Then clearly we have

E(B)< E(B') < E(B)— I(b(0;, 0;))+ 4|04

(Indeed, since jg(x, ¥)|< 1, one has |u'—g|*<4 on R).

Lemma 4. Let B be a normal segmentation, and O; the connected component
of R/S(B) with minimal measure. -Then Q. verifies the following inverse
isoperimetric inequality:

b)) < C'I0)'?  (where C' depends on R and g)
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Proof. Let J be the set of all j such that b(0;) meets b(0;). By lemma 3,
1(b(0;, 0;))< 4|04, and therefore

Card(J) = [(4(0,))/410} (1)

Now, each 0; verifies [0;| > 10:| and therefore by the isoperimetric inequality in
R:

B0} = Ciog"* = Cloy' 2 (2)
One clearly has Z; (M0 <2 [(B).
Thus by (2) . Card(NC|0)' 2 <2 KB)
and by (1) KBONCI0H 1P /4<2 I(B),
that is: I(b(0,)) < (8/C) B0y = C'|0y| 2.

Lemma 5, Let ¢ be a Jordan curve contained in B. Then Kc)= C|0,|'*2.

Proof. By the Jordan curve theorem in R, ¢ divides R in two areas. Take a
connected compenent 0 of R/S(B) contained in the area enclosed by ¢. Then
one has i(c)= C|0}'7 = C|0;|'.

Lemma 6. There exist two real numbers & and o such that for any
segmentation B with E(B)< minz E(B)+¢, then all connected components 0; of
R/S(B) verify |0, =a.

Proof. Define a new segmentation B’ composed by:

— parametrizations of the four sides of the boundary H(S) of an open
square S with center in 0; and side 4C’|0;|'/%.

— For each segment ¢ of B, parametrizations of the (at rhost two)
segments whose union is S(c)/S.

By lemma 4, 0, is contained in the square " with the same center as S and
side 2C’[0;|*2. Let us now estimate the length of all the curves of B contained
in S. Let 0; be one of the areas which touches ;. Thus b(0,) meets one of the
connected components of b(0;), say b;. Since b; is a closed polygon, it contains
at least one Jordan curve which is still contained in S(B). Thus by lemma 5
one has ib;)= C|0;)*/%. If b; is contained in the square S, one still has

I(b; N §)= ClOJ2.

If not, the lenght of the part of the b; contained in § is greater than the
distance between H(S’) and b(S), that is:

i(b;18)> CI0H.
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Finally, note that a segment c; of b; can be contained in at most one other
by with k in J. (Recall that an open segment is in the boundary of exactly two
connected components of R/S(B)). Thus we obtain
2[(S(BYN S)= Z;l(b; N 5) = Card(J) min(C, C)|04'7.

Using (1) and the isoperimetric inequality for 0; we get

I(S(B) N )= (Kb(0))/8104) min(C, C)0;]""
KS(B)N 8)> C min(C, C')/8=C"

Therefore

I(B)<B)Y+I(b(S) - US(B)N S)
IB)<(B)+ 16C'|04/2 —C"

We now proceed to compare the energies of B and the segmentation B’
Note that S(B’) is obtained from S(B) by adding the boundary of S and
removing all parts of curves of S(B) contained in S. Associate to B’ the
function «’ equal to u outside § and equal to, say, 0 on S. Then we get.

14’ —g11% <l —glI* +41S] = | — g|* + 64C? |04

Usmg the last two inequalities and the hypothesis
E(B)<minsE(B)+e< E(B)+¢
we get
E(B)< E(B)+64C|0;|+ 16C'|0;|'2 — C" +¢
Finally
64C'|0;] + 16C'|0)|1 2 —(C" —&) =0

This ends the proof of lemma 6.

4. TOPOLOGICAL PROPERTIES
OF NORMAL SEGMENTATIONS

We now wish to prove that if the number of areas is bounded from above,
so can be the number of curves of B.
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Lemma 7, Given a normal segmentation B defining more than one connected
component, there exist two areas 0; and 0; such that B0, 0)) is a connected
curve whose interior is contained in the union of 0; and 0;.

Proof. We use the following well-known facts about the geometry of
curves in two dimensions. (The proof of these properties is easy in the case of
piecewise affine curves and segmentations.)

a) Let 0 be a bounded open connected set. Then O has as external
boundary a Jordan curve. It is defined as the boundary of the unbounded
component of R?/{0}.

by 1If a simply connected set is the union of two connected sets 0; and 0;,
then b(0;, 0;) is a connected set.

Now let ¢y be the Jordan curve of R obtained by taking a parametrization
of the boundary of R. It is a Jordan curve of S(B) and it encloses ail, and
therefore at least two, areas of R/S(B). If R is the union of exactly two areas {;
and 0;, then by property b} 5(0,,0,) is connected and since B is admissible it is
clearly a piecewise affine one to one curve. If not, choose two areas enclosed
by co and having a common boundary of positive length. Let ¢; be the
external boundary of the union of these areas. We iterate the process and
obtain a sequence of Jordan curves in R, ¢, ¢;, €2, ... where each curve is
enclosed by the preceeding. Since the number of areas is finite, one sees easily
that this process must finish at some ¢, enclosing exactly two areas, and then
we use again b) and the admissibility of B. F;

Lemma 8. Let B a normal segmentation. Then there exists another
segmentation B’ with S(B}=5(B") and such that the number of curves of B’ is
strictly less than the number of areas of R/S(B").

Proof. Let ¢; be a curve as given by lemma 7. Define B, as B minus the
segments of ¢;. Then B, is still a normal segmentation and-has ong connected
component less than B. Moreover, B, is admissible. Indeed, the boundary of
0; and 0; has been completely removed by removing c¢,. Iterating this process
we define a sequence of curves ¢, ¢a, ..., Cp, ... until some By defines only one
connected component, R. Since By is admissible, that means that S(B;} is
empty. Thus B =(cyh<« is a segmentation which has the required properties,

Lemma 9. Let o be the number of areas of a normal B. Then the number y of
geometrical crossings and the number B of geometrical curves of B verify:

y<2e—1), and B<L3a-—1)-2

Proof. The curves ¢, of the preceding proof contain at most two
geometrical crossings of the segmentation By 4, at their ends. Thus passing
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from By ., to By eliminates at most two geometrical crossings. By iteration
we obtain the first announced inequality. Let now f, be the number of
geometrical curves of B,. Note that the support of ¢; is one of them. One has
clearly

Bi<Pi-1-3

Indeed, if no crossing point disappears by removing cg, the only
geometrical curve which is suppressed is ¢,. If a crossing point contained in R
disappears, this means that exactly three geometrical curves meet at this
point, one of which is c¢,. By removing ¢, we transform both other
geometrical curves in one. If a crossing point in the boundary of R
disappears, that means that ¢, is the only geometrical curve with tip at this
point and no other geometrical curve disappears. Thus removing ¢, from
S(By) suppresses at most three geometrical curves, one for each tip and c;
itself. Take into account that removing the last c;, which is Jordan in R,
suppresses only one geometrical curve. This yields the announced estimate.

5. EXISTENCE AND REGULARITY PROPERTIES
OF OPTIMAL SEGMENTATIONS

We beging by showing that all properties proved above for normal
segmentations remain valid as we pass to the limit. From the previous
paragraphs, it is clear that we can choose a sequence B" of normal
segmentations with the following properties:

a) B"=(c})y is made of a constant number of one to one piecewise affine
curves from ]0, 1] into R whose tips lay all in a finite set of points, A=(a/}.

b) The points af are the geometrical crossings of B”.
¢) Each sequence af converges to a point a; of the closure of R.

d) Each curve ¢i converges uniformly to a Lipschitz curve ci in the
closure of R.

e) The sequence E(B") tends to MinsE(B"), this minimum being taken
among all C' segmentations.

Properties ¢) and b) are obtained by reparametrizing each B" so that each
curve is made of a chain of segments where only the first and the last contain
a geometrical crossing at the tip. In other terms, we reparametrize B" so that
all curves of B" have geometrical curves as supports. By Lemma 9 we get an
uniformly bounded number of curves and crossing points which we can make
constant by extracting a subsequence.
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Properties ¢) and d) are obtained by Acoli-Arzela theorem and extraction
of a subsequence.

Property e) is due to the straightforward fact that a C! segmentation can
be replaced by a piecewise affine one whose cnergy is arbitrarily close.

Set B=(cy)x. Since parts of the curves can a priori be contained in the
boundary of R, B cannot be called a segmentatlon We shall now prove that
it is a smooth segmentatlon

Lemma 10. The only geometrical crossings of B are the a;.

Proof. Assume that a new geometrical crossing a appears as we pass to
the limit. We first consider the case where a is in R. Fix ¢ very small so that
&% «<Ce for all the constants C which we shall introduce in the following. In
particular, we shall neglect the terms of order € in all the following estimates.
{They will be neglected as they correspond to area integrals in disks of radius
¢ if we «gain» some length term of order Ce by changing the segmentation in
this disk). Assume moreover that ¢ < min;jja — ;|| and take n large enough such
that

E(B")<liminf,E(B") + &%, |laf —ail| <%, |lck—cull<é

" Since the curves ci are piecewise affine, the number of their crossings with
the boundary of D 1s finite. Moreover, one can associate by pairs these
crossings on each curve: to the first crossing of ¢ with b(D), we associate the
second along the parametrization of cf, to the third the fourth and so on.
These pairs of points are clearly the boundaries of all maximal pieces of
curves of B with supports contained in D,

Let us now replace each one of these pieces of curves by an affine curve.
Since the ¢} do not cross in D, these affine curves do not cross. By this
smoothing the connected components of R/S(B) remain unchanged outside D
and. the length of the curves goes down. Call B’ the segmentation obtained
after adding to B the affine curves in D defined above, removing from B the
curves meeting D, and adding the reparametrizations of the parts outside D of
these curves.

We still have E(B)<mins E(B)+ Ce?. (In fact we can take C=4n+1).
Now consider two affine curves [w,v] and [x,y] of B’ which have been
obtained by smoothing two parts of curves of B" passing at a distance less
than & from a. Since a is a geometrical crossing of B, such curves exist for
large n. The lengths of the corresponding pieces of curves are greater than
2e—2¢? since they pass at a distance less than &* from the center a of D.
Moreover, the smoothing cannot make these lengths decrease more than .
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Thus [,v] and [x,y] are in fact nearby diameters of D and they do not cross.
By eventually echanging u and v we obtain that {ju—x|| and |lv—y|| are less
than Cg?. The contradiction comes by modifying B as follows: we add to B’
the segments {u,x] and [v,y] and remove one of the segments [u,v] or [x,y].
This does not modify the connected components outside D. Thus we have
substracted from E(B’) a length of order 2¢, which is a contradiction.

If now a new geometrical crossing appears in B on the boundary of R: we
leave the proof to the reader.

Lemma 11. The geometrical curves of B are C'.

Proof, Let ¢ be a curve of B, parametrized by the length s along the curve.

If we replace the curve between two points c(s) and c(s+¢) by the

corresponding segment, the isoperimetric inequality proves that the areas of

both connected components touching ¢ changes less than Ce®. B being

minimal, we obtain: ||c(s + &) —c(s)]| > & + C¢*, and C depends only on g and R.

- One deduces easily from this relation that ¢ is C' and that ¢’ is Lipschitz with
constant less than 2C.

Lemma 12. The geometrical crossing points of B.are as announced in the
main theorem of the introduction.

Proof. Assume by contradiction that more than three curves arrive to
a geometric crossing point a or that exactly three arrive, but with angle
different from 120°. Then two of these curves form an angle strictly less than
120°. Let ¢ very small and D as above. Call « and v the first crossings of both
curves with the boundary of B and w the unique point such that the lines wu,
wo, wa have 120° angles. Remove from the segmentation the pieces of curves
au and av and add the segments wu, wo, wa. This modification does not alter
the connected components outside D, changes the area terms with order &
and reduces the length of B with order & impossible. ‘

Conclusion. By Lemma 1, we have E(B)< liminf, E(B") and since B is a C'
segmentation, it is clear that E achieves its minimum at B.

Lemma 13. If ¢ is continuous, each interior point x of a curve ¢ verifies the
following Euler-Lagrange equation:

(Curvature of ¢ at x)=(jump of (u— g)"' accross ¢ at x)

Proof. Comes from a classical perturbation method in elasticity theory.
See Blat and Morel [1].
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