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Universal tessellations

DAVID SINGERMAN

ABSTRACT. Ail maps of type (m, n} are covered by a universal map M(m, n) which
lies on one of the three simply connected Riemann surfaces; in fact .#(m, n) covers all
maps of type (r, s) where rjm and s|n. In this paper we construct a tessellation A7 which
is universal for all maps on all surfaces. We also consider the tessellation M0, 3)
which covers all triangular maps. This coincides with the well-known Farey
tessellation and we find many connections between (00, 3) and .#.

1. INTRODUCTION

Let & be an orientable surface without boundary. A map # on & is a
descomposition of & into simply-connected polygonal cells called faces. If m
is the least common multiple of the vertex valencies and n is the least
common multiple of the face valencies then we say that .# has type (m, n). In
[5] it is shown that there is a regular map .#(m, n) on a simply-connected
surface % whose vertices all have valency m and whose faces all have valency
n, and a subgroup M of the automorphism group of .#(m, n) such that .&
=_.#(m, n)fM. This means that & =%/M and the natural projection p-% — &
carries .#(m, n) to .#. Thus .#(m, n) covers .#. (We shall describe .#(m, n)
and its automorphism group in §2.) Hence .#(m, n) is universal for all maps
of type {m, n). In fact we shall see that it is universal for all maps of type (r, s}
where rjm and sin.

The aim of this paper is to describe a tessellation .# which is universal for
all maps. .# will necessarily have vertices and faces of infinite valency and
so we will not count it as a map with the usual definitions. (See [5], for
example.) For this reason we use tessellation to describe these more general
objects that we construct. We shall also construct a tessellation .,l%(oo, 3
which is universal for all triangular maps. This turns out to be an object
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which was first considered nearly a hundred years ago, [4]. It also has
important relations to ./%.

The tessellations that we consider turn out to be related to the classical
modular group PSL(2, Z} and in a companion paper [6] we consider their
algebraic and combinatorial properties in more detail.

Even though we are assuming that our surfaces are orientable and
without boundary, we point out in §4 that .# is universal for all maps on all
surfaces. We find it noteworthy that though .# covers all topological maps it
is arithmetically defined; see Theorem 3.

2. THE MAP .#(m, n)

(See [5] for more details) This map lies on the hyperbolic plane if
(1/m)+(1/m)< 172, the Euclidean plane if (1/m)+(1/n)=1/2, or the sphere if
(}/m)+(1/n)>1/2. We start from a triangle ABC with angles n/2, n/m, n/n
lying in the appropriate plane. We shall call A BC a basic triangle. We construct a
map in which A is an edge centre, B is a vertex and C is a
face centre, as follows. Reflect the triangle in AC to form a triangle BB'C.
We require BB’ to be an edge of the map.
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The angle at C in BB'C is 2n/n so that by rotating the triangle about C we
form n triangles and hence a regular n-gon centred at C. We call this n-gon a
principal face of the tessellation; in §3 it is called a principal triangle. The n-
gon is then one of the faces of the map A (m, n) all of whose vertices have
valency m and all of whose faces have valency n. This is the universal map of
type (m, n). For finite values of m and n it is very well known, for example .#(3,
6) is the honeycomb tessellation. Later, we will be interested in the cases
where m and n can take the ‘value’ oo.

The automorphism group of H(m, n) is the triangle group (2, m, n)
which has presentations.

gp<x, y, Zjxt=y"=2"=xyz=1>
=gp<x, Yt =y"=(y 'x)"=1>.

This group is associated in two ways with the map M (m, n). Firstly, we
consider x, y, z to be rotations through =, 2z/m, 2m/n about A4, B, C
respectively. These rotations then generate a group with fundamental region
BB'C which is isomorphic to I'(2, m, n). In this way ['(2, m, n) acts as a group
of automorphisms of . (m, n).

Another representation of ['(2, m, n) is as a permutation group of the darts
as we now describe. When an edge e of .#(m, n) meets a vertex v we draw an
arrow along e towards v. This arrow is called a dart of .#(m, n) and we let
CYm, n) denote the set of darts of .#(m, n). Each edge carries two darts and we
define % to be the permutation of Q(m, n) of order two which interchanges the
darts of every edge. Thus X has a two-cycle for every edge of .#(m, n). Now
following an anticlockwise orientation daround a vertex v gives us a cyclic
permutation of the m darts pointing towards v and we define a permutation y
which is a product of all such cyclic permutations. Thus y has an m-cycle for
every vertex of .#(m, n). We then find that Z= §7'% is a product of n-cycles,
there being one such cycle for every face of .#(m, n). Now let I'(2, m, n) be the
group generated by X and y. We will show that I'(2, m, n) is isomorphic to
I'(2, m, n).

As T(2, m, n) acts as a group of automorphisms of .#(m, n) there is an
obvious action of T'(2, m, n) on Q(m, n) which commutes with the action of
(2, m. n). Now T'(2, m, n) clearly acts transitively on Q(m, n) and as .#(m, n} is
connected ['(2, m, n) also acts transitively on £X(m, 1) by proposition 2.2 of [5].
Also, by properties of discrete groups I'(2, m, n) also acts freely on (m, n). As
the actions of [(2, m, n) and ['(2, m, n) commute it is easy to see that I'(2, m, n)
also acts freely on Q(m, n). Thus if aeQ(m, n) and gel (2, m, n) then there is
a unique gel'(2, m, n) such that gla)=g(a). Now

§1J2(®) = ¢132(00) = G291(0) = g24:(20)
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and thus the function ®:['(2, m, n)>T(2, m, n) given by ®G =g~ is an
isomorphism.

We now let .# be any map on an orientable surface %, Then we form
permutations X, Y of the darts analogously to how we formed x, y above.
{We use the orientation of % to define the permutation Y) If .# has type (r, s)
where r|m, s|n, then

X1= YV =(Y1Xp=1

and so if G=gp< X, Y>> there is a homomorphism @:I(2, m, n)—»G. If § is a
dart of .4 and if G is the stabilizer of § in G, then M =©~Y(Gs) is a subgroup
of [(2, m, n). It is called a map subgroup of #. As M <T (2, m, m) it acts a
group of automorphisms of .#(m, n} and so we can form the quotient map
M(m, n)/M. If [0Tm is dart in .#(m, n)/M then gel(2, m, n) acts by
[6]v—[g51n. As (2, m, n) acts freely as a permutation group of the
darts of .#(m, n), the map subgroup M is the stabilizer of the induced
action of I'(2, m, n} on the darts .#(m, n)/M. Thus .# and .//?(nl, n)/M have
the same map subgroup so by [1] or [5] we deduce that H(m, n)/M is
isomorphic to .#. (The concept of map subgroup and its use in the alge-
braic theory of maps first occurred in [5].)

Thus .#(m, n) covers all maps of type (r, s) where rjm and s|n. We now
describe how to construct universal tessellations .#(m, n) where one or both
of m or n can be co. We will see that it makes sense to write k|co for all
positive integers k. The idea behind our construction is that in hyperbolic
geometry there are rotations of infinite order that generate discrete groups,
We remind the reader how this occurs. ’

If we consider the Poincaré upper half-plane model H of hyperbolic
geometry, then the sense-preserving isometries are the real Maobius
transformations, '

az+ b
—

z —_—
cz+d’

a, b, ¢, deR, ad—bc=1,

The rotations are represented by the elliptic elements, those for which
la+d| < 2. These are also characterised by having a single fixed point in IH, the
centre of rotation. Transformations for which [a+d|=2 are called parabolic
and have a single fixed point in RU {o0}. We can think of RU {co} as being
the line at infinity in the hyperbolic plane so parabolic elements are rotations
about ‘a point at infinity’. For this reason, parabolic elements were called
limit rotations in some older books. They can be thought of as elliptic
elements of infinite order.



Universal Tessellations 115

Every parabolic element is conjugate to z—z+1 and so generates an
infinite cyclic discrete group. A triangle group I'(2, oo, n) has a presentation

<X, y, z]x*=z"=xyz=1>,

The ‘relation” y* =1 is regarded as being vacuous but we can read it as
‘y is parabolic. Note that there is a homomorphism from T'(2, oo, n) to
(2, m, n) for all integers n, so that any map subgroup in I'(2, m, n) can be
pulled back to (2, oo, n). The statement kjco is explained by the existen-
ce of a homomorphism from the infinite (parabolic) cyclic group onto
the finite (elliptic) cyclic group of order k.

3. THE UNIVERSAL TRIANGULAR TESSELLATION

Before we describe the universal tessellation, we discuss the universal
triangular tessellation, which turns out to be a more familiar object. The
universal triangular tessellation is denoted by .#(co, 3) and it is constructed
_in the same way as we formed #(m, n). Thus we start with a triangle with
angles n/2, n/3, afco (=0). As ['(2, o0, 3) is isomorphic to T(2, 3, co) which, in
turn, is isomorphic to PSL(2, Z), (the modular group), we choose for our basic
triangle half of the standard fundamental domain for the modular group.

This has vertices i, p=(1 +i\/§)/2 and oo.

o.a]

FG. 2

Following the procedure before, we construct a tessellation in which oo is
a vertex, i is an edge-centre and p is a face-centre. The rotation of order 3
about p is z— — 1/{(z—1) which maps (0, o0, p) to (1, 0, p) and then to (o, 1,
p). Thus a principal triangle of the tessellation has vertices 0, 1, and co.
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Now an edge of the tessellation is (00, O), (this is the directed edge going
from <0 to 0), and if we apply the modular transformation

a, b c,deZ ad—bc=1 (1)

Z—

cz+d

then this is mapped to the edge {a/c, b/d). Because of the condition ad —bc=1,
these fractions are in their lowest terms. Coaversely, if a/c and b/d are
fractions in their lowest terms with ad —bc=1, then they are joined by an
edge of the tessellation. (We regard oo =1/0) Thus the universal triangular
tessellation has the extended rationals Q* =QU {0} as vertex sct and two
vertices afc and b/d are joined by an edge if and only if ad —be= £1. We
draw the edges as geodesics in the hyperbolic geometry of the Poincaré half-
plane, that is as semi-circles or lines perpendicular to R. The resulting
tessellation i1s often called the Farey tessellation F. Thus F=.#(co, It
scems to have first been introduced by A. Hurwitz in 1894 [4], with
applications to number theory in mind. It is discussed in more detail in the
companion paper {6], where the elementary result that the underlying graph
is connected is proved.



Universal Tessellations 117
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Part of The Farey Tessellation
(=The Universal Triangular Tessellation)

FIG. 4

Now if M is a subgroup of finite index in I'(2, oo, 3} then (H Ug*)YMisa
surface {as shown in books on the modular group, for example [7]), and so
the Farey tessellation projects to a triangular tessellation on the surface. As
M has finite index, the surface is compact; furthermore, for the same reason,
the vertices have finite valency, so that this tessellation is a triangular map.
We can obtain triangular maps on non-compact surfaces by replacing finite
index with the weaker condition that all parabolic elements of I'(2, o0, 3) have
finite order modulo M. We now show that all triangular maps can be
obtained in this way.

Theorem 1. Let T be a triangular map. Then there is a subgroup
M<I(2, o, 3) such that F/M=T.

Proof. Let X, Y be the permutations of the darts as described in §2. As T'is
triangular, (Y~! X)*=1 so that there is a homomorphism
eI, m, 3)+G=gp<X, Y>. Again, M=0" (Gs) can be regarded as a
map subgroup for T. Now, [(2, o, 3) acts as a group of automorphisms of ¥
and we now observe that its action on the darts of F is regular, that is
transitive and free. To see this note that a dart of F can be represented as an
ordered pair of rationals (a/c, b/d), this being the dart pointing along the edge
from a/c to b/d. This is the image of the principal dart (1/0, 0/1) under the
modular transformation (1). To show that the action is free we just note that .
only the identity fixes the dart (1/0, 0/1).

As T(2, o0, 3) acts regularly on the darts of F we see, as in §2, that the map
subgroup of F/M is M. Thus F/M and T have the same map subgroup and so
F/M~T
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In this sense then, F can indeed be regarded as the universal triangular
tessellation. All triangular tessellations are quotients of F and so F covers all
triangular maps.

4. THE UNIVERSAL TESSELLATION

By considering the groups I'(2, oo, n) for 2> 3, we can construct universal
n-gonal tessellations. The groups I'(2, oo, n)~ T2, n, c0) are Hecke groups and
are rather more complicated than the modular group. (The matrix entries
lie in the field Q(cos n/n). We shall be more interested in jumping straight
to I'(2, oo, o) so that we can construct the universal tesseliation. Luckily,
this group is isomorphic to a subgroup of the modular group.

Let I'o(2) be the subgroup of the modular group consisting of all entries in
(1) for which c is even. It is well-known that ['¢(2) is a non-normal subgroup
of index 3 in the modular group.

Let T be the hyperbolic triangle with vertices (1+1)/2, 0 and 0. If we
reflect T in the imaginary axis, then we obtain the hyperbolic quadrilateral Q
bounded by the circles |z—(1/2)|=1/2, |z+(1/2)]=1/2 and the lines Re(z)=
1 1/2. By using isometric circles, it is easily seen that Q is a fundamental
domain for ['g(2), (see [3], for example) and as T has angles n/2, 0 and 0 it
follows that I'e(2) is isomorphic to I'(2, oo, o). See Fig. 5. (As the referee has
pointed out, it is more consistent with the previous paragraphs to use a
triangular fundamental region bounded by the hyperbolic lines Re{z)=0,
Re(z)=1/2, |z—1/4]=1/4)

@©
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We now construct the tessellation .# = .#(co, o), (which we show later
is a universal tessellation). We regard T as a basic triangle, 0 as a face centre,
and (1 +i)/2 as an edge centre. The parabolic subgroup fixing 0 in I'o(2) is the
cyclic subgroup generated by

z
Alz)= 2z41

so a principal face of the tessellation is
u 449
k=—w

Theorem 2. Let m be an integer not equal to 0 or — 1, and let S,, denote the
circle with real centre which passes through 1/2m and 1/(2m+2). Then

U AX(Q) is the region P in H bounded by the circles Syim=1, £2, £ 3, ..)
k=—a —_
and the lines Re(z)= +1/2. (See Fig. 6.)

Proof. We note that
ANy =z/(2kz+ 1)

s0 that AXoo)=1/2k, AX1/2)=1/(2k+2), A{0)=0, AX(—1/2)=1/2k~2).

Thus the images of the four vertices of Q lie on the boundary of P. As Q is
hyperbolically convex, AX(Q)< P so that

U A;‘(Q)EP_

k=—

The Polygon P
FIG. 6
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Now A((—~1+i}/2=(1+1)/2, A(oo)=1/2, so that the vertical line segment
from (—1+1)/2 to o0 is mapped to the vertical line segment from (1+4i)/2 to
1/2. Thus the vertical line segment L from 1/2 to o0 bounds the polygon
Q'=QUA(Q). The image of L under A* (k=1, +£2, +3, ...} is the upper-

frel

half of the circle Si. Thus these semi-circles S, also bound U AYQ). The
k=—w
image of L under 47" is the vertical line segment from —1/2 to o. Thus

G AHQY=P.

k=~

We consider P as being an infinite-sided polygon with vertices 1/2k
(keZ —{0}) and o0. We do not consider 0 as a vertex. However, as 0 is fixed by
the parabolic (or limit rotation) A, which cyclically permutes the vertices of P,
we regard 0 as a face-centre of P.

The tessellation .# then, is the union of all images of P under I'g(2). As P
is a union of I'¢(2)— images of the fundamental domain Q, . is indeed a
tessellation of the upper half-plane.

Before we actually prove the universal property of .#, we note some of its
properties, particularly of its underlying graph.

Part of The Universal Tessellation &

FiG. 7

Theorem 3. (a) The vertices of .# are the rationals with even denominator,
including 1/0=co.

(b) The faces centre of .# are the rationals with odd denominator.

(c) Two vertices afb, c/d are joined by an edge if and only if ad —bc= +2.

(d) To(2) acts regularly on the directed edges of 4.
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{e) Two rationals x/y, ufv are face centres of adjacent faces if and only if
xp—yu=+1,

() A vertex afb belongs to a face with centre x/y if and only if ay—bx=
+1.

Proof. (a) The vertices of P are the images of co under 4"€['o(2). Hence the
vertices of .# are the ['g(2)-images of oo =1/0. Let

T(z)=(pz + q)/(2rz+s)eT(2).

Then T{cc)= p/2r which has even denominator. Conversely, given the rational
p/2r with (p, 2r)=1 we can find integers ¢, s such that ps —2qr = 1. Thus there
exists a transformation Telo(2) with Toc)=p/2r.

(b) The face-centres are the I'g(2)-images of 0. The image of 0 under T
above is g/s and s is odd as ps—2gr=1.

(c) Similarly, the edges of .# are the To(2)-images of the edge (1/0, 1/2)
from oo to 1/2. The image of this edge under T is

(p/2r, (p+29)/(2r + 25))
and p(2r+2s)=2rp+2q)=2(sp—2rq)=2.
Conversely, if ad —bc=2, and b, d are even, a, ¢ are odd then

z az+(c—a)f2
bz +(d—b)2

and maps (1/0, 1/2) to (a/b, ¢/d). If ad —bc= —2, then we just change the
direction of the edge.

elo(2)

(d) In (¢) we showed that I'g(2) acts transitively on the directed edges.
However, if Telo(2) fixes both 1/0 and 1/2 then Tis the identity, so the action
is regular. :

(¢) We note that 1=1/1 is a face-centre of a face adjacent to P. Hence all
such faces have centres A*(1). Thus if x/y and u/v are adjacent face-centres,
then for some Sely(2), S(0/1)==x/y, S(1/1)=ufv. As 0.1—1L.1=—1, we find
that xo—yu= —1. As above, if xv —yu= —1 then we can find an Sel’o(2)
with $(0/1)=x/y, S(1/1)=u/v, so that x/y, ufv are adjacent face-centres.

(/) The vertices of P are 1/2k (keZ) and the facecentre is 0/1. As
1.1 —2k.0=1, the result follows as in {e).

Corollary 1. .# is isomorphic to the subtessellation of the Farey tessellation
whose vertices have odd numerator.
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Proof. By parts (a) and (c) of the theorem, the function which takes a/2b to
a/b is the required isomorphism. - -

Corollary 2. The dual of .# has vertices x/y (y odd) with x/y joined to ufv by
an edge if and only if xv— yu= +1. Thus the dual of .# is the subtessellation of
the Farey tessellation whose vertices have odd denominator.

Proof. This follows from (e) above.

Corollary 3. If we triangulate .4 by joining vertice to face centres by edges,
then we get the Farey tessellation.

Proof. This follows from (f).

Remark. It is shown in [6] that the underlying graph of .# is a suborbital
graph for the modular group and is topologically a tree.

We now prove the universal property of the tessellation .#. We just follow
the procedure in §3 for triangular tessellations.

If M <To(2) then (HUQ*/M is a surface and if all the parabolics of M
have finite order mod M then .# projects to a map on the surface, for then all
faces and vertices have finite valency. For example, if A (the parabolic
generator fixing 0) has order k mod M, then P projects to a k-gon on the
surface. Furthermore, we have the following result.

Theorem 4. Let .# be a map on a surface . Then there is a subgroup
M <T'(2) such that #H/M~ 4.

Proof. Let X, Ybe the permutations of the darts as described in §2. Then
X?=1 and because I'y(2)~T(2, oo, c0) there is a homomorphism .
$To(2)>G=gp<X, Y>. As Ty(2) acts regularly on the darts of .# by
theorem 3(d), we can show that .# ~.#/M where M =¢~!(G;) in the same
way as in theorem 1.

‘Even though we have been assuming that our surfaces are orientable and
without boundary, the above result does apply to more general surfaces. For
let .# be a map on a surface % which is either non-orientable, or has
boundary, or both. Then, following [1], we can form the canonical double
#* of .#, which lies on the canonical double ¥ of &. The surface &4 is
orientable and without boundary so % is covered by H. Also, &4 covers &
in the more general sense that we allow folding if & has boundary. Hence in
this more general sense .# covers .#. (In fact, .# will have a map subgroup
tying in the reflection group containing ['¢(2) with index 2.)

5. BIPARTITE MAPS

By theorem 3(b), the facecentres of .# are rationals with odd
denominator. By theorem 3(e), if two faces are adjacent then the numerators
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of the face-centres cannot have the same parity. Thus we can two-colour the
faces of .# according to the parity of the numerator. Now it is easy to see that
the subgroup of To(2) which preserves the set of rationals of the form
odd/odd, and hence those of the form even/odd, is T'(2), the principal
congruence subgroup of level 2; this is defined by

az b a b 1 0
az+b = = 2.
== a, b c,deZ, ad—bc=1, (c ) ( 1) mod

This has index 2 in ['o(2) and is isomorphic to the triangle group I'(co, ce, ).

If M<I(2), then as M preserves the two-colouring of M, MM is
bipartite, and all bipartite maps occur in this way.

- Now by a result of Walsh [8], bipartite maps are in one-to-one
correspondence with hypermaps. 1t is shown in [2] that hypermaps
correspond to subgroups of I'(co, @, o) in the same way that maps
correspond to subgroups of (2, oo, c0). This section can thus be viewed as an
interpretation of Walshes theorem in terms of the modular group.

~
I would like to thank Gareth Jones for his helpful criticism and advice
and also Rose Cassell for drawing the diagrams.

The material in this paper formed the subject of one of a series of talks I
gave on maps in Madrid during July 1987. 1 would like to thank Universidad
a Distancia for their hospitality and financial support. '
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