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Universal tessellations

DAVID SINGERMAN

ABSTRACT. Ml maps of type (m, ti) are covered by a universal ma~ Jt(m, n) which
lies on one of Ihe three simply connected Riexnann surfaces; in fact J(Qn, ti) covers alí
maps of type (r, s) where rlm and s¡n. In this paper we construct a tessellation ~? which
is universal for aH maps on alí surfaces. Wc also consider the tessellation ~ 3)
which covers alí triangular maps. This coincides with the well-known Farey
tessellation and we fmd many connections between J?(cc, 3) and .4.

1. INTRODUCTION

Let Y be an orientable surface widxout boundary. A map .4 on Y is a
descomposition of Y into simply-connected polygonal celís called faces. If ni
is the least common multiple of the vertex valencies and ti is the least
common multiple of ihe face valencies then we say that .4 has type (ni, ti). In
[5] it is shown tlxat there is a regular map .A(m, ti) on a simply-connected
surface 4 whose vertices alí Uve valency ni and whose faces alí have valency
ti, and a subgroup M of die automorphism group of Jt’(m, ti) suctx that .4
= .J.l(m, n)/M. TIxis means thaI Y = 4V/M and dxc natural projection pAli — Y
carnes .it’(m, ti) to .4. Tbus ¿(ni, ti) covers .4. (We shall describe i’4m, ti)
and its automorphism group in §2.) Hence .if(m, ti) is universal for alí maps
of type (ni, ti). In fact we shall see tlxat it is universal for alí maps of typc (r, s)
where ni and sin.

TIxe aim of ihis paper is to describe a tessellation it’ which is universal fon
alí maps. It’ will necessanily have vertices and faces of infinite valency and
50 we will not count it as a map with the usual definitions. (See [5], for
example.) For this reason we use tessellat¡on to describe ihese more general
objects that we construct. Wc shall also construct a tessellation .4(~, 3)
which is universal for alí triangular maps. This turns out to be an object
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which was first considered nearly a ixundred years ago, [4]. It also has
important relations to .1/.

The tessellations thaI we consider turn out to be related to dxc classical
modular group PSL(2, 7/) and in a companion paper [6] we consider their
algebraic and combinatorial properties in more detail.

Even though we are assuming that our surfaces are orientable and
without boundary, we point out in §4 that .// Ls universal bor alí maps on alí
surfaces. We find it noteworthy that thougtx fi covers alí topological rnaps it
is aritlxmetically defined; see Theorem 3.

2. TI-lE MAP Jt’(m, n)

(See [5] for more details.) This map lies on the lxyperbolic plane if
(1/m)±(1/n)c1/2, dxc Fuclidean ¡ilane if (1/m)± (l/n)=1/2, or the sphere if
(l/m)+(1/n)> 1/2. We start from a triangle ABC witlx angles ir/2, ir/ni, ir/ti
lying in dic appropriate plane. Wc shallcalI ABC abasic triangle. Wc construct a
map in which A is an edge centre, B is a vertex and C is a
face centre, as follows. Reflcct the triangle in AC to form a triangle BB’C.
Wc require 8K to be an edge of thc map.

8
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The angle at C in BB’C is 2n/n so that by rotating the triangle about C we
form ti triangles and hence a regular n-gon centred at C. Wc calI this n-gon a
princ¡pal face of the tessellation; in §3 it is called a principal tr¡angle. The ti-

gon is then one of tIxe faces of dic map -1? (m, n) aH of wlxose vertices have
valency ni and alí of whose faces have valency ti. This is thc universal map of
type (ni, n). For fínite values of m and ti it is very wcll known, for example 49(3,
6) is tIxe honeycomb tessellation. Later, we will be interested in the cases
where ni and ti can take the ‘value’ ca

The automorphism group of fl(m, ti) is the triangle group F(2, ni, ti)
which has presentations.

gp.cx,y,z~x2 yflhzrIxyzl>

=gpcx,

Tixis group is associated in two ways with the map J¡(m, ti). Firstly, wc
consider x, y, z to be rotations through ir, 2iz/ni, 2n/n about A, B, C
rcspectively. Thesc rotations then generate a group with fundamental region
BB’C which is isomorphic to F(2, m, ti). In this way 1(2, ni, ti) acts as a group
of automorphisms of .4(m, ti).

Anoiher representation of ~(2, ni, ti) is as a permutation group of the darts
as we now describe. When an edge e of .4(m, ti) meets a vertex y we draw an
arrow along e towards u. TIxis arrow is called a dart of -Jt’(m, ti) and we let
Q(ni, ti) denote the set of darts of .,fl(m, ti). Each edge carnes two darts and we
define .~ to be the permutation of Q(m, ti) of order two which interchanges ihe
darts of every edge. Thus .~ has a two-cycle for every edge df .4(ni, ti). Now
following an anticlockwise orientation áround a vertex y gives us a cyclic
permutation of thc ni darts pointing towards u and we define a permutatíon y
whiclx is a product of alí such cyclic permutations. Thus y has an ni-cyclc for
cvery vertex of .>#(m, ti). Wc tben find that 2 = jV’~ is a product of n-cycles,
there bcing one such cycle for every face of .4(m, ti). Now let r(2, ni, ti) be the
group generated by £ and 5k Wc will show thai r(2, m, ti) is isomorptxic to
F(2, ni, ti).

As r(2, ni, ti) acts as a group of automorphisms of .4(ni, ti) there is
obvious action of ~(2, ni, ti) on Q(ni, ti) which comnxutes with the action of
r(2, ni, ti>. Now F(2, ni, ti) clearly acts transitively on Q(ni, ti) and as ¡((ni, ti) is
connected ~(2, ni, ti) also acts transitively on O(mn, ti) byproposition 2.2 of [5].
Also, by properties of discrete groups f’(2, ni, n) also acts freely on 04ni, ti). As
the actions of 172, ni, ti) and ~(2, m, ti) commute it is easy to see that 172, ni, ti)
also acts freely on 04m, ti). Thus if ~eQ(ni, ti) and ~Er<2,ni, ti) then ihere is
a unique gefl2, ni, ti) such thai ~(x)=g(a). Now
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and thus tIxe funetion (frr(2, ni, ti)-.r(2, ni, n) given by <V(~)=g —I is an
isomorphism.

We now leí .4 be any map on an orientable surface Y. Then we form
permutaíions X, Y of the darts analogously to how we formed x, y aboye.
(We use tIxe orientation of Y to define the permutation Y.) lf .11 has type (r, s)
where r¡m, s¡n, thcn

X2= r=(Y-’Xy~1

and so ifG=gpcX, Y> there isa lxomomorphism 0:172, m, n)—*G. If 8 isa
dan of.# and ifG¿ is the stabilizer of¿ in G, then M=0’(G4 isa subgroup
of [‘(2, ni, n). It is called a map subgroup of .4. As M <[‘(2, m, n) it acts a
group of automorphisms of .if(m, n) and so we can form the quotient map
,4(m, n)/M. If [8]M is dart in 49(m, n)/M tIxen ge172, ni, ti) acts by
[8]M —*[g¿]M. As F(2, ni, ti) acts freely as a permutation group of the
darts of .i(m, ti), the map subgroup M is dxc stabilizer of the induced
action of [‘(2, ni, ti) on the darts .1<m, n)/M. Thus .4 and ¡((ni, n)/M have
the same map subgroup so by [1] or [5] we deduce that .4(m, n)/M is
isomorplxic to .4. (The concept of map subgroup and its use in the alge-
braic tbeory of maps fxrst occurred in [5].)

Thus .A?(m, ti) covers alí maps of type (r, s) wbere rlm and s¡n. Wc now
describe lxow to coñstruct universal tessellations .4(m, ti) where one or both
of ni or ti can be m. We will see ttxat it makcs sense to write k¡~ for alí
positive integers k. Thc idea behind our construction is that in hypcrbolic
geomctry there are rotations of infinite order that generate discrete groups.
We remind the reader bów tIxis occurs.

If we consider the Poincaré upper half-plane modei IH of hyperbolic
geometry, then the sense-preserving isometries are the real Móbius
transformations,

az±b
cz+U’ a, b, c, dei?, ad—bc= 1.

Thc rotations are represented by the elliptic elements, those for whiclx
Ia+dI <2. These are also characterised by having a single fixed point in IH, the
centre of rotation. Transformations for which ¡a + d¡ = 2 are called parabolic
and have a single fixed point in IR U {oú}. We can think of IR U {aÚ} as being
the line at infxnity in the hyperbolic plane so parabolic elements are rotations
about ‘a point at inflnity’. For ihis reason, parabolic elements were called
limit rotations in some older books. They can be ttxought of as elliptic
elements of infinite order.
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Every parabolic clement is conjugate to z—*z+ 1 and so generates an

infinite cyclic discrete group. A triangle group [‘(2,~, n) has a presentation

.cx,y,z¡x2 =z~=xyz=1=.

The ‘relation’ y”> = 1 is regarded as being vacuous but we can read it as
y is parabolic’. Note that there is a bomomorphism from 172, aD, n) to
[‘(2, m, n) for alí integers n, so tbat any map subgroup in [‘(2, ni, ti) can be
pulled baek to [‘(2, n, ti). The statemcnt kIcc is explained by the existen-
ce of a bomomorphism from tbe infinite (parabolic) cyclic group onto
the rmite (elliptic) cyclic group of order k.

3. THE UNIVERSAL TRIANGULAR TESSELLATION

Before we describe the universal tessellation, WC discuss the universal
triangular tessellation, which turns out to be a more familiar object. Ihe
universal triangular tessellation is denoted by ¡((ce, 3) and it is constructed
in tbe same way as we formed .i(m, ti). Thus we start with a triangle with
angles iz/2, ir/3, Ir/a) (=0). As [‘(2, ce, 3) is isomorphic to [‘(2, 3, ce) which, in
turn, is isomorphic to PSL(2, 7/), (the modular group), we choose br our basic
triangle half of tbe standard fundamental domain for the modular group.
This has vertices i, p = (1 + ¡<‘3)12 and ce.

“9

p

Follawing the procedure before, we construct a tessellation in which ce is
a verte; i is an edge-centre and p is a face-centre. The rotation of order 3
abaut p Ls z—. — 1/(z— 1) whicb maps (0, ce, p) to (1, 0, p) and then to (ce, 1,
p). Thus a principal triangle of tbe tessellation has vertices 0, 1, and ce.

¡

nG. 2
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“9

0 ¡

FIQ. 3

Now an edgc of the tcsseilation Ls (co, O), (this Ls thc directed cdgc going
from co to O), and it we apply the modular transformation

az+b
a, b, e, de7L ad—bc=I (1)cz±d

then this is mappcd to tIte edge (a/e, b/d). Because of tIte condition att — be = 1,
tbese fractions are in their lowest tenns. Conversely, it a/e and b/d are
fractions in tbeir lowest terms with ad—bc= 1. tben tbcy are joined by an
cdgc of tbc tesscllation. (Wc rcgard = 1/O.) Thus tIte universal triangular
tessellatian has tIte extended rationais Q* — Q U { co} as vertcx set and two
vertíces a/e and b/d are joined by art edge il’ and only it ad—bc= + 1. Wc
draw the edges as geodesics iii the hyperbolic geomctry of tIte Poincaré hall’-
plane, that Ls as semí-circies or Enes perpendicular to R. TIte resulting
tessdllation is oftcn called tIte Farey tessellation fiL TItus E= .k(co, 3). It
secms to bave firsí been introduced by A Hurwitz in 1894 [4]. witb
applications (o number theory ir’ miad. It is discussed iul more detail iii tIte
companion paper [6], wherc tIte elemcntary result that tIte undcrlying grapb
is cannected is proved.



Universal Tesselloiians 117

Part of The Farey Tessellation
(=1be Universal Triangular Tessellation)

FKI. 4

Now it M isa subgroup of limite index in 172, co, 3) then (IH U Qt)/M is a
surface (as shown ir’ books art the modular group, for example [7]), and so
the Farey tessellation projccts to a triangular tessellation on tIte surface. As
M has limite mdcx, tIte surface is compact; furtbermore, for tIte same reason,
tIte vertices have limite valency, so tbat this tessellation is a triangular map.
Wc can obtain triangular ¡naps art non-compact surfaces by replacing limite
index with tIte weaker condition that al! parabalic clements of ¡‘(2, co, 3) Itave
limite arder modulo M. Wc now shaw that alí triangular maps can be
obtained in tbis way.

Theorem 1. Leí T be a triangular map. Then diere is a subgroup
M=r(2,co, 3) such thai F/MsT.

Proof. Let X, Y be the permutatians of tIte darts as described in §2. As T is
tnangular, (Y’ X)3 = 1 so that there is a honíomorpbism
S:f’(Z a), 3)—.G=gp<X, Y>. Apir’, M=0’ (Gá) can be regarded as a
map subgroup bar T. Now, ¡‘(2, cID, 3) acts as a group of automorphisms a! E
and we now observe that jIs action on tIte darts of ¡E Ls reguiar, that is
transitive and free. To see this note that a dart of ¡E can be represented as an
ordered pair of rationais (a/e, b/d), this being tIte dart pointing along tIte edge
from a/e to b/d. TItis 18 tIte image of tIte principal dan (1/0, 0/1) under tIte
modular transfarmation (1). To shaw that the action is free wejust note tItat
only tIte identity fixes the dad (1/0, 0/1).

As 172, cn, 3) acts regularly on tIte darts of ¡E we see, as in §2, tbat tIte map
subgroup of ¡E/M is M. Thus E/M and Tbave the same map subgroup and so
E/M T

O Y 1 3
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In this sense then, ¡E can indeed be regarded as the universal triangular
tessellation. AII triangular tessellations are quotients of ¡E and so ¡E covers alJ
triangular maps.

4. THE UNIVERSAL TESSELLATION

By considering the groups [‘(2, a), n) for n>3, we can construct universal
n-gonal tesscllations. The groups [‘(2, a), n)rs [‘(2,n, co) are Hecke groups and
are rather more complicated than the modular group. (The matrix entries
he in the ¡¡cId Q(cos Ir/ti). We shall be more interested in jumping straight
to ¡‘(2, co, co) so that we can construct the universal tessellation. Luckily,
tbis group is isomorphic to a subgroup of ihe modular group.

Let [‘~(2)be the subgroup of the modular group consisting of alí entries in
(1) for which c is even. It is well-known that [‘~(2) is a non-normal subgroup
of index 3 in the modular group.

Leí 1’ be thc hyperbolic triangle with vertices (1 + ¡1/2, 0 and ca lf we
reflecí T in the imaginary axis, then wc obtain tbe byperbolic quadrilateral Q
baunded by tbc circíes ¡z—(L/2)J=1/2, Iz+(1/2)I=1/2 and the hines Re(z)=
+ 1/2. By using isometrie circíes, it is casily seen that Q is a fundamental
domain for r~(2), (see [3], for example) and as T has angles ir/2, O and O it
follows that F~(2) is isom~rphic to [‘(2, a), a)). See Fig. 5. (As the referce has
pointed out, it is more consistcnt with the previous paragraphs to use a
triangular fundamental region bounded by the hyperbolic lines Re(z) = 0,
Re(z)= 1/2, Iz— 1/4¡= 1/4.)

“9

7
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Wc now construct the tessellation .11 = .4(~, co), (which we show later
is a universal tessellation). Wc regard T as a basic triangle, O as a face centre;
and (1 +¡)/2 asan edge centre. Tixe parabolic subgroup fxxing O in [‘~(2)is dxc
cyclic subgroup gencrated by

2

2z+ 1

so a principal face of the tessellation is

U A”(Q)

Theorem 2. Let ni be an integer not equal to O or — 1, aná let 5m denote the
circle wifi real centre wh¡ch passes through 1/2m atid 1/(2m + 2). Then

U Ak(Q) ¡s the region P ¡ti IH bounded by the circíes Sm(m = 1, + 2, ±3,...)
— a)

atid fie unes Re(z) = ±1/2. (See Fig. 6.)

Proof. Wc note that

Ak(z) = z/(2kz±1)

so that Ak(a))= 1/2k, Ak(1/2)z 1/(2k±2),Ak(O)0, Ak(~ 1/2) 1/(2k—2).

Ihus tIxe images of the four vertices of Q lic on the boundary of 1’. As Q is
hyperbolically convex, Ak(Q) E P so that

o,

U A”(Q)EP.

T ~ O

The Poíygon P

Fm. 6
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Now A((— 1 +i)/2=(1 ± i)/2,A(ce)= 1/2, 50 that the vertical line segment
from (—.1 +i)/2 to ao is mapped to the vertical line segment from (]+i)/2 to
1/2. Thus the vertical line segmení L from 1/2 to a) bounds the polygon
Q’=QUA(Q). The image of L under Ak, (k=l +2 ±3,...) is the upper-

lxalf of the circle Sk. Ihus these semi-circles Sk also bound U Ak(Q). The
—~

image of L under A~’ is the vertical line segment from — 1/2 to a). Ihus

U t’(Q)=P.

We consider 1’ as being an infinite-sided polygon with vertices 1/2k
(keZ — {0}) and a). We do not consider O as a vertcx. However, as O is fixed by
dxc parabolic (or Jimit rotation) A, which cyclically permutes tIxe vertices of P,
we regard O as aface-centre of 1’.

Ihe tessellation it then, is the union of al! images of P under [‘o(2).As P
is a union of r~(2)— images of dxc fundamental domain Q, it’ is indeed a
tessellation of the upper half-plane.

Before we actually prove the universal propcrty of.]?, we note some of its
propertxes, particularly ob its underlying graph

Pan of The Universal Tessellaíion 4

—i o k-h-4& K 47 & lv
Fío. 7

Theorem 3. (a) The verúces of Ji are (he rabanaL wifi even denoniinawr,
including 1/O=cc.

(b) The faces centre of fi are (he rationais wifi odd deno,nina¡tor.
(e) Twa vertices a/b, e/U are joined by en edge y’ and only y’ cd — be = + 2.
(U) [‘~(2)aets regularly on dic direcíed edges of.4. _
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(e) Twa rationals x/y, u/y are face centres of adjaeetit faces y’ and mUy y’
xv—yu= +1.

(f) A vertex a/b belangs w a face wifi centre x/y y’ ami anly y’ ay— bx =

+ 1.
Proal’. (a)The vertices of P are the images of co under A1e[’

0(2). Hence the
vertices of fi are the [‘o(2)-imagesof a) = 1/O. Let

T(z) = (pz + q)/(2rz + s) e [‘~(2).

Then 7<cíú)=p/2r which has even denominator. Conversely, given Ihe rational
p/2r with (p, 2r)= 1 we can find integers q, s such that ps—2qr= 1. TIxus ihere
exisis a transformation Te[’0(2) with 7<o4=p/2r.

(b) The face-centres are the [‘o(2)-imagesof O. Ihe image of O under T
aboye is ¿¡/s and s is odd as ps—2qr= 1.

(e) Similarly, the edges of .4 are the [‘o(2)-imagesof ¡be edgc (1/0, 1/2)
from co to 1/2. The image of this edge under T is

(p/2r, (p + 2q)/(
2r +2s))

and p<2r+ 2s) — 2r(p +2q) = 2(sp — 2rq) = 2.

Conversely, if ad — be = 2, and b, U are even, a, e are odd then
az+(c—a)/2 e[’

0(2)
bz± (U—b)/2

and maps (1/0, 1/2) lo (a/b, e/U). If ad — be —2, then wc just change the
direction of the edge.

(U) In (e) we showed that [‘~(2)acts transitively on the directed edges.
However, if Te[’0(2) fixes both 1/0 and 1/2 then Tis the identity, so the action
is regular.

(e) We note that 1 = 1/1 is a face-centre of a face adjacent to P. Hence alí
such faces have centres Ak(1). Thus ib x/y and u/y are adjacent face-centres,
then for some Sel?o(2), S(O/1)=x/y, S(l/1)=u/v. As 0.1—1.1= —1, WC find
that xv—yu= —1. As aboye, U xv— vu= —1 Ihen we can find art Se[’o(2)
with S(0/1)=x/y, S(1/1)=u/v, so ¡bat x/y, u/y are adjacent face-centres.

(f) The vertices of P are 1/2k (ke Z) and Ihe face-centre is 0/1. As
1.1 — 2k.O= 1, tbe result follows as in (e).

Corollary 1. .4 is ¡sornarpide to ihe subtessellation ql 11w Farey tessellation
whose vertices boye add nurnerator.
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Proal’. By parts (a) and (c) of the theorem, the function which takes a/2b to
a/b is ihe required isomorphisnx.

Corollary 2. TIte dual of .4 has vdrtiees x/y (y add) wifi x/y jained to u/y by
an cUqe y’ ami only y’ xv— yu = ±1. TItus rIte dual of fi Ls rIte subessellation of
tIte Farey tessellation whose vertices have odd denorninator.

Proal’. Tixis follows from (e) aboye.

Corollary 3. ¡f we triangulate JI by joining verhce toface centres by edges,
tIten we ge tIte Farey tessellation.

Proaf. Ibis follows from (f).

Remark. It is shown in [6] that the underlying graph of JI is a suborbital
graph for the modular group and is topologically a tree.

We now prove ¡be universal properíy of dxc tessellation .4. We just follow
tIxe procedure in §3 for triangular tcssellations

lf M <[‘~(2) thcn (JH U Q*)/M is a surface and if alí thc parabolics of 41
have finite order mod 41 ¡ben JI projccts to a map on the surface, for then alí
faces and vertices have finite valency. For example, if A (the parabolic
generator fixing 0) has order k mod 41, then P projects to a k-gon on thc
surface. Furthermore, we have the following result.

Theorem 4. Let .4’ be a rnap on a surface Y. TIten diere is a subgroup

Proal’. Let X, Ybc the permutations of the darts as described in §2. Tlxen
= 1 and because Fo(2)=[’(2, co, cío) therc is a homomorphism

4>J’o(2)—*G=gpcX, Y>. As [‘~(2) acts regularly on the darts of .4’ by
theorem 3(d), we can show that .4’=JI/M where M=<’(Gó) in the same
way as in theorcm 1.

Even though we have been assuming that our surfaces are orientable and
without boundary, Ihe aboye result does apply to more general surfaces. For
leí .4 be a map on a surface Y which is either non-orientable, or has
boundary, or botlx. Then, following [1], we can form the canonical double

11d of .4’, which lies on the canonical double Y
4 of Y. The surface 94 is

onentable and without boundary so 94 is covered by IH. Also, 94 covers Y
in the more general sense ~hat wc allow folding ib Y has boundary. Hence in
this more general sense .4’ covers .4’. (In fact, .4’ will have a map subgroup
lying in the reflection group containing F~(2) with index 2.)

5. BIPARTITE MAN
By theorem 3(b), the face-centres of It are rationals witb odd

denominator. By thcorem 3(e), if two faces are adjacent then the numerators
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of the face-centres cannol have the sanie parity. Thus we can two-colour the
faces of.4 according to the parity of the numerator. Now it is easy to see that
ihe subgroup of [‘~(2) Whlch preserves thc set of rationals of the fon
odd/odd, and hence those of ihe fon even/odd, is [‘(2), the principal
congruence subgroup of level 2; this is defined by

az + b a, b, e, del!, aU—be=I, (a ““j (1 ~ mod 2.
Z ez + U’ \e U) \0 1]

This has index 2 in [‘~(2)and is isomorphic to the triangle group [‘(co,a), cn).

Ib 41 <[‘(2), thcn as M preserves the two-colouring of JI, .>II/M is
bipartite, and alí bipartite maps occur in this way.

Now by a result of Walsh [8], bipartite maps are in one-to-one
correspondence with hypermaps. It is shown in [2] that hypermaps
correspond to subgroups of [‘(co, a), a)) in thc same way that maps
correspond to subgroups of [‘(2, a), so). This section can thus be vicwed as an
interpretation of Walshes theorem in terms of the modular group.

1 would like to thank Gareth Jones for his helpful criticism and advice
and also Rose Cassell for drawing the diagranis.

The material in this paper formed Ihe subject of one of a sedes of talks ¡
gaye on maps in Madrid during July 1987. 1 would likc to thank Universidad
a Distancia for their hospitality asid financial support.
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