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Geometric orbifolds

WILLIAM D. DUNBAR

ABSTRACT. An orbifold is a topological space which «locally looks like» the orbit
space of a properly discontinuous group action on a manifold. After a brief review of
basic concepts, we consider the special case of 3-dimensional orbifolds of the form
M\M, where M is a simply-connected 3-dimensional homogeneous space correspond-
ing to one of Thurston’s eight geometrics, and where I <Isom(M) acts properly
discontinuously. A genera! description of these geometric orbifolds is given and the
closed oriented geometric 3-orbifolds with § as their underlying topological space are

enumerated (except for hyperbolic orbifolds).

1. INTRODUCTION

A closed differentiable n-orbifold @™ is a Hausdorff topological space X"
together with (compatible) modellings of neighborhoods of each point in X"
on R7/(finite subgroup of O(n)), where the point corresponds to the equival-
ence class of the origin. The singular set of @", denoted Zor, consists of points
for which this finite group is not the trivial group. An oriented orbifold 15 one
such that all the finite subgroups are contained in SO(n) and such that the
manifold-with-boundary X"— N(Z¢-) is oriented. Any closed 2-orbifold ©?
can be specified by giving a compact surface (=X %), together with a finite
number of distinguished points, cone points in the interior and correr points
on the boundary, each labelled with an integer > 1. The orbifold structure on
(? is then given by charts U—R?/(cyclic group of order n) at each cone point
labelled «n» (where U is a neighbourhood of the singular point), .
U —[R?/(dihedral group of order 2n) at each corner point labelled «n», and
U — R?/(reflection) at all other points on the boundary of the surface (so
T = {cone points} U 8X 2). Any oriented closed 3-orbifold @* can be specified
by giving an oriented 3-manifold (=X 3) containing a trivalent graph (=ZX¢),
each edge of which is labelled with an integer > 1 such that at each vertex, the
labels ny, na, ns associated to the three incident edges satisfy 1/m + 1/n;
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+1/n3> 1. This is because a finite subgroup of SO(3) is either cyclic of order n
(corresponding to points on edges labelled «n»), dihedral of order 2n
(corresponding to a vertex with incident edges labelled «2», @2y, «n»),
tetrahedral (2, 3, 3), octahedral (2, 3, 4), or icosahedral 2, 3, 5.

An orbifold @"*™ fibers over a base orbifold B" with fiber orbifold F™ if
there is a map n:@"*™— B" such that inverse images of neighborhoods in B”
look like (R" x F™)/(finite group G acting on both factors) and such that =
looks like projection on R"/G. In case F™=S!, we will call 0" a Seifert fibered
orbifold (@? is a Seifert fibered orbifold with empty singular set iff it is a
Seifert fibered manifold). Orbifolds are discussed in more detail in [Th2],
[Sc], [BS2], [DM], and [Du].

There are eight 3-dimensional homogeneous spaces relevant to the study
of compact 3-manifolds (and 3-orbifolds). Besides the 3-dimensional spheri-
cal, Euclidean, and hyperbolic geometries (denoted §?, E3, H%), there are four
geometries (denoted % x E', H*x E!, T, (H?), and Nil) wich have natural
foliations by straight lines (projecting along which yields S, H2, H?, E2
respectively), and one geometry (denoted Solv) based on the only simply-
connected 3-dimensional Lie group wich is solvable, but not nilpotent. The
explicit construction of the eight Lie groups that act transitively on these
spaces is left as an exercise for the reader. The Lie groups should be
«maximal» in some reasonable sense, e¢.g. we prefer to think of $° as
O4)/0(3) (or SO4)/SO(3) if we restrict our attention to orientable 3-
orbifolds} rather than as, say, U(2)/U(1). A geometric orbifold is one that is
diffeomorphic to- I'\(G/H), where G/H is oné of the above homogeneous
spaces, and I'< G is a subgroup acting properly discontinuously on G/H by
left multiplication; equivalently, an orbifold is geometric if it admits an atlas
of charts (from local universal covers) into the geometry such that the
transition maps (and local group actions) are restrictions of isometries. The
eight geometries are discussed in more detail in [Sc].

Although orbifolds are locally the orbit spaces of finite group actions on
manifolds, an orbifold is not necessarily globally the orbit space of a finite
group action {or even a properly discontinuous group action} on some
manifold. An orbifold is bad if its universal cover has non-empty singular set
(otherwise it is good). All 1-orbifolds are good, and the bad closed 2-orbifolds
are classified in [Th2, Chapter 13]. It is a consequence of a geometric
decomposition for irreducible 3-orbifolds with singular set of dimension =1
[Th4] that irreducible 3-orbifolds which have no bad 2-suborbifolds are good
(cf. [MM]); in the case of 3-orbifolds having singular set consisting of isolated
points which are modelled on R*/(antipodal map), which are the ones left out
of the above theorem, the orientable double cover has empty singular set.

The author would like to acknowledge the helpful remarks of the referee.
This paper contains the resuits of the author’s Ph. D. dissertation (and
extends them to other geometries).
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2. MOTIVATION

Orbifolds provide a convenient way of «encoding» properly discontinuous
group actions on manifolds which are not necessarily free. The natural notion
of covering space for orbifolds is such that, for example, the projection from
any manifold to its quotient by a properly discontinuous group action can be
thought of as a covering map. The «complexity» of an orbifold i1s a
combination of the complexity of its singular set and the complexity of its
underlying topological space. Roughly, the former reflects the extent to which
the fundamental group of the orbifold (defined as the group of covering
transformations of its universal cover) is generated by elements with fixed
points, and the latter reflects the «rest» of the group. If N is the normal
closure in 7y %(@" of the covering transformations acting with fixed points,
then (X" =ny"*(O")/N. Consequently, closed 3-orbifolds whose underlying
topological spaces are simply-connected correspond to group actions gen-
erated by elements with fixed points. If the orbifold is orientable and admits a
geometric structure modelled on a geometry other than H?, one can show
(following [Se] for the most part) that X 3 must be homeomorphic to $*. On
the other hand, the analogous statement for hyperbolic orbifolds is equivalent
to the Poincaré Conjecture, since one can use the existence of universal links
which are hypeérbolic THLM] to show that any closed orientable 3-manifold
is the underlying space of a hyperbolic orbifold.

There are other reasons to consider such orbifolds: they provide an
endless variety of examples that can easily be twisted and manipulated, where
«twistedness» of the singular set (now a labelled trivalent graph in S%) in some
sense plays the role of the topology of a 3-manifold. In the special case where
the singular set is a knot labelled with the integer n, finding a geometric
structure for this orbifold immediately implies that the n-fold cyclic branched
cover of the knot has a structure modelled on the same geometry (in which
the action of Z, upstairs can be taken to be by isometries).

Geometric orbifolds are conjectured to be the basic building blocks out of
which a general compact 3-orbifold may be constructed, in the same sense
that a general compact 3-manifold is conjectured to be constructable (via
connected sums and gluing boundary tori together) out of geometric 3-
manifolds. These conjectures have been shown to be true under fairly general
circumstances (Haken manifolds [Th3], orbifolds with singular set of
dimension > | [Th4]). One purpose of this article is to give a better idea of
what the «trivial» (=non-hyperbolic) pieces of the geometric decomposition
of a 3-orbifold look like. Also, since a 3-orbifold with X 3~ S% can often be
shown by combinatorial methods to be geometrically indecomposible, the
tables at the end of this article can be used to give and indirect proof that a
given such orbifold is hyperbolic (by showing that it is geomeltric, e.g. via
[Thd], and doesn’t appear in the tables).
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Henceforth, unless otherwise specified, ALL 3-ORBIFOLDS will be
assumed to be COMPACT, CONNECTED, ORIENTED, and WITHOUT
BOUNDARY; all 1- and 2-orbifolds wil be assumed to be compact, connected,
and without boundary (but note that X" can be non-empty when @" is
closed and non-orientable).

3. ROUGH CLASSIFICATION OF GEOMETRIC ORBIFOLDS

Theorem 1. Suppose @ is a geometric orbifold. Then exactly one of the
Jollowing holds:

1) € is a hyperbolic orbifold.

2) @ is a Seifert fibered orbifold with base @, in which case one of the
Jollowing descriptions applies (both may apply if @ fibers in more than
one wayj:

a) if X*=(J (X* denotes the underlying space of ©%), then X* is a
closed Seifert fibered manifold, and Te» consists of fibers (labelled with
various integers > 1);

b) if 3X* has n components (n>0), then X is the result of gluing solid
tori to a Seifert fibered manifold with n boundary tori, such that the
meridians of the tori are glued to fibers on the boundary. Xe» consists
of fibers, plus a Montesinos link (labelled «2», and slightly modified)
inside each added solid torus (more on this in §4).

3) @ is a solvorbifold; in particular, it fibers over either S* or S freflection,
with fiber either T* or T2[180° rotation fixing 4 points)=
(S' x §")/(reflection of both factors).

4) @* is one of the 12 Euclidean orbifolds (11 with X>~S* and 1 with
X>>RP% or 18 spherical orbifolds (all with X3~$% which do not
Jiber over 2-orbifolds.

Furthermore, no 3-orbifold possesses structures from two different ge-
ometries,

Proof: The argument in [Sc, Thm 5.2] (for manifolds) serves to justify the
last setence of the theorem. All 3-orbifolds modelled on H2 x E!, T,{H?), and
Nil are of type 2 as a consequence of the fact the isometry groups of these
geometries preserve fibrations by lines (which become fibrations by circles -
generically - and intervals in any orientable compact quotient space, cf. [Sc,
Thm 4.13, Thm 4.15, Thm 4.16]). Most Euclidean and spherical 3-orbifolds
are of type 2 for a similar reason; there is no fibration preserved by the entire
isometry group, but most discrete subgroups witl preserve some family of
parallel lines in E3, or some Hopf fibration of $%, All 3-orbifolds modelled on
5% x E' can be remodelled if necessary so that the fibration by lines * x E!
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induces a Seifert fibering of the orbifold, so such an orbifold is of type 2 as
well; this can be proven by brute force analysis of the discrete subgroups of
the groups of isometries of $* x E L Similar analysis of the isometries of Solv
justifies the statements made about type 3 (cf. [Sc, Thm 4.17]). The numbers
in the description of type 4 are based on the algebraic classifications of
Euclidean and spherical crystallographic group; see § 7 and §8 for details. ®

Remark. Type 4 does not arise in the consideration of geometric
manifolds, since it turns out that all Euclidean and spherical 3-manifolds can
be Seifert-fibered:

Like oriented circle bundles over surfaces, an oriented Seifert fibered 3-
orbifold has an Euler number e; ¢ is a rational number which describes an
obstruction to finding a section, and like the usual Euler number, multiplies if
you pull back along a covering of the base and divides if you unwrap the
fiber; see [Sc, § 3], [BS3] or [Du] for details. Given a particular Seifert fibered
orbifold (type 2), the table in Figure 1 shows which geometry it should fall
under, merely in terms of the Euler characteristic ¢ of the base 2-orbifold and
the Fuler number ¢ of the bundle. :

=0 =0 <0

e=0 S2x E! E* H?x E!

e+0 53 Nil T,{H?)
FIGURE 1

The construction of a geometric structure of the «right» type on a Seifert
fibered manifold (equivalent to finding a discrete faithful representation of the
fundamental group into the isometry group of the geometry) is done in [Sc,
Thm 5.3]. The same techniques work in the orbifold setting, with the
exception that Seifert fibered orbifolds with a bad base 2-orbifold and with
Euler number=0 are also bad, hence do not admit the §% x E'-structure
predicted by the table. On the other hand, if the Euler number is non-zero,
the orbifold does have the predicted spherical structure.

Proposition 2. Suppose that (* Seifert fibers over a bad 2-orbifold &* with
non-zero Euler number e; then

1) n¢"¥(@3) is finite.
2) &3 is good.

3) 0 admits another Seifert fibering over a spherical 2-orbifold which is
cither a sphere with 2 cone points labelled «n», nz1, or a disk with 2
corner points labelled «», n=1. ‘

4) @3 admits a spherical structure. -
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Proof. To prove part (1), it suffices to consider the case where @2 is a
sphere with a single cone point, or with two cone points labelled with
different integers. X is then a lens space (#5? x S since e£0), and Ze* is
contained in the cores of the two solid tori into which X can be decomposed.
Hence @ is finitely covered by an orbifold @ with underlying space S°
having singular set either empty, an unknotted circle, or a 2-component Hopf
link, which in turn is finitely covered by S® This shows part (1), and the
remaining parts follow from {DM, Remark 3.1 and Theorem 51]. m

Similarly, given a description of a 3-orbifold as a bundle over S! with fiber
orbifold F and monodromy ¢:F—F, the table in Figure 2 shows which
geometry it should fall under, in terms of the Euler characteristic ¥ of F and
the class [¢] represented by ¢ in the mapping class group of F.

>0 ¥=0 7<0
(] finite order S?x E! E? Hx E!
[v] rt_tducible Nil hybrid
[¢] (pseudo-) Anosov Solv H?
FIGURE 2

The term «hybrid» refers to the fact that in general, such a bundle will have a
geometric decomposition into a number of hyperbolic and H? x E'-manifolds
with boundaries consisting of tori {or finite quotients of tori) with the various
boundary components identified in pairs. Of course, the lower-right-most
entry is a much deeper fact than the others; see [Th3]. The second column is
the one most relevant to the present article, since it explains why there are
exceptional braids in the descriptions of solvorbifolds, and suggests (correctly)
that the exceptions are listed elsewhere, under other geometries. [Sc, Thm
5.3] is also relevant here, and there is a similar caveat concerning bad 2-
orbifolds: if the fiber is bad, the bundle will be bad, and the predicted S* x E-
structure will not exist, ’

4. RATIONAL TANGLES AND MONTESINOS GRAPHS

We need to develop a notation for describing «small» pieces of the singular
set of a 3-orbifold of type 2b in Theorem 1 of the previous section, for use in
the tables that follow. These picces arise as the intersection of the stngular set
with 3-balls whose boundaries hit the singular set in four points.
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If m and n are positive integers such that 0 <m<n/2, there is exactly one
way to write m/n as a continued ftaction

1

mn=
ky+
kz+'

ki

if we take ki, ..., k; to be positive integers, and require that k; be >2. We define
the tangled graph with parameter m, n as in Figure 3 below. When m and » are
relatively prime, this is just a rational tangle; in Conway’s notation [Co], it
would be denoted by kikj—1 ... k2K, 0.

- - gp_ﬁn ( v, LH
h) half- W‘\ half-
« ¥ tulsts j__ . \ twists

/EVEH

strut labelled g.c.d. (m,n)

;.), v BH

. 3 —~~

. oo ™ half- \/ c, RH
WAL 5 twlsts . ¢

- “ half-

. + J,f é tulsts

r, L e ™~

half-twists _y
\ .

EEyl N

=2
03

FIGURE 3
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As an aid to sketching, note that all twists have «positive slope», in the sense
that all over-crossings are from lower left to upper right.

This tangle should be thought of as the singular set of a 3-orbifold-with-
boundary, with underlying space a 3-ball, which Seifert fibers over one of the
2-orbifolds-with-boundary D?j(dihedral group) (ie, over a regular neigh-
borhood of a corner point). The edges of the singular sct upstairs are all
labelled «2», except for the strut in the innermost twist, which is labelled
gcd(m,n) (or omitted, if m and »n are relatively prime). The strut is an
exceptional fiber sitting over the corner point; a typical fiber over a boundary
point is a circle on the boundary of the 3-ball isotopic to the great circle in
the yz-plane (if the plane of the paper in Figure 3 is taken to be the xy-plane).
This fibration corresponds to an action of the dihedral group of order 2n
(=<omnol=1*=(61)"=1>) on D?*xS', where ¢ and 7 act on D? as
reflections in lines making an angle of +m/n (measured from ¢ to 1), and
where ¢ and 1 act on S' as reflections in lines making an angle of —mn/n
{measured from ¢ to t). The sign of m/n is well-defined, since once an
orientation is fixed on D? x S*, orientations on the factors are determined, up
to the operation of reversing both.

We can extend this notation to the case of -n/2 <m<0 by reversing all
crossings in the tangle with parameter -m,n. It is also convenient to define a
tangle with parameter O,n {for n>>11) to be two horizontal arcs (labelled «2»)
with a vertical strut labelled «n».

Finally, an integer k enclosed in a box will denote two arcs labelled «2n,
with & LEFT-handed half-twists along a horizontal axis (if k <0, use |k| right-
handed half-twists).

As before, twists with positive parameters have positive slopes.

Joining a bunch of these tangles together in a circle, one obtains a 3-
orbifold-with-boundary whose underlying topological space is a solid torus,
and which fibers over a 2-orbifold-with-boundary as shown below in Figure
4,

FiIGURE 4



Geometric orbifolds 75

The fibers on the boundary of the solid torus are meridians. The singular set
is a Montesinos link (cf. [Mo], [Oe], {BZ]) if g.c.d(m; n)=1for 1<i<r, and
otherwise is a trivalent graph which we can refer to as a Montesinos graph.
These are the «plugs» which are glued to Seifert fibered manifolds with
boundary to form geometric orbifolds of type 2b in §3.

5. TYPE 2 ORBIFOLDS WITH UNDERLYING SPACE §°

If the underlying topological space of. a Seifert fibered orbifold 0 is
simply-connected, it is not hard to see that the underlying space of @ is §*
and that the 2-orbifold which @ projects to must be either topologically a 2-
sphere, with a certain number of cone points, or topologically a 2-disk, with a
certain number of cone and corner points (half of the proof is in [Se] and the
rest in [Du, Proposition 2.14]). We can denote the former by S*(... unordered
labels of cone points...) and the latter by D(...unordered labels of cone
points...; ...cyclically ordered labels of corner points...). In the former case, the
singular set consists of fibers in some Seifert fibration of 83, i.e. a collection of
«parallel» torus knots, plus possibly one or both of the «axes»; links of this
type are discussed in [BM]. It is easy to check that the Euler numbers of all
such Seifert fibered orbifolds must be nonzero (essentially it is a consequence
of the fact that the left and right Hopf fibrations of $* over S* bave Euler
pumbers + 1 and — 1 respectively). Using the chart in Figure 1, we sce that
the appropriate geometry is $®. Nil or T, (H?), depending on whether the
Euler characteristic of the base orbifold is positive, zero or negative. This
Euler characteristic is easy to compute from a picture of the 3-orbifold, since
the Seifert fibering of $° by (p, g) torus knots corresponds to a projection to
the 2-orbifold S*(|p|, |4]). Adding a torus knot labelled «k» to the singular set
introduces a new cone point labelled «k» downstairs; adding an axis labelled
«k» to the singular set changes the label on one of the original cone points
from |p| to |plk or from |g| to lqlk, as appropriate.

In the latter case, we can construct a model for the 3-orbifold by building
on our description of «plugs» for geometric orbifolds of type 2b in the last
section. By gluing D? xS to the solid torus in Figure 5 (identifying the
boundaries, meridian to longitude), we get a 3-orbifold with underlying space
$3 and singular set a Montesinos graph, fibering over a 2-orbifold with
underlying space D* and singular set =aD?, with r corner points modelled on
R?/(dihedral group of order 2n), 1 <i<r. The Euler characteristic of this 2-
orbifold is easily calculated to be 14+(1/2) Tr_y (=14 1/n) (e.g., via cut-and-
paste arguments in the orientable double cover). The notation has been
contrived so that this orbifold has Euler number e=(-1 12) (k+Zfay myfng)
cf. [BS3], which denotes the Euler number by ep. As a final embellishment,
one can incorporate a finite number of the generic fibers into the singular set,
labelling them with integers dy, da, ..., d,> 1. The base 2-orbifold will now
have s cone points, locally modelled on R?/(cyclic groups of rotations of ‘order



76 William D. Dunbar

Lp.gdy,....dof.g)
with p.g#£0, gcdipg)=1,520,d,>1,...d,> Lzl g2t
{pg >0+ right-handed torus knots; in the figure, g=2, p=7, 5=2)
Base 2-orbifold: $2(|plf)|qlg.d1,.... d5)
Euler characteristic of base =y = ,

2+ Elea( = F4 Ud)+ (= E+ YIpIN +H = 1+ 1lglg)
Euler number=e= —1/pg (+0)

FIGURE 5

d;, 1<j<s), and its Euler characteristic is now
T+ (1/2) Zioy (= 14Yn)+E352, (= 1+ 1/d)).
The Euler number of the bundle is unaffected by this change,

We will discuss briefly the «obvious» symmetries of these orbifolds
(Ieading to «obvious» repetitions in a najve listing, which can be dealt with in
any convenient way). For the moment, our chief concern is that our list be all-
inclusive; later, geometry by geometry, we will address the question of
whether these are «all» the symmetries (the answer is «often yes, sometimes
noy).

Proposition 3:

(1) If {dy,...d}={d},...,ds}, then
L(psq:dh sey ds;f;q} = L(psq.d’l9 AR ] d;:ﬁg)

(2) Lipgidy, .. dfg)=LUg,pidy, ..., dyq,f) = L(—p, - gds, ... dsf.g)

(3) If g=1, then L(p,qd,, ..., d.f,g)= L(p,q:d,, ..., d,,gf;1)
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(4) If p=q=1, then Lip.gdy,....d:f.9)=L(pgd,,...d.fg:1,1)
(5) Reflecting L{p,qd,,...dsf,g) in the plane of projection produces
Lip,—qd,,...dsfg). B

Gll:my ;.. mengdy, ., dy)
where ke Z, —nf2<m<n2, 0> 1, 1igr dj> 1, 1<j<s.
Base 2-orbifold: D¥d,,...ds i, .. ntf)

Euler characteristic of base == 1+ Zi=q(— L+ L))+ {1/ i (= 1+ 1/n))
Euler number = —(1/2)(k + Ztu mifny)

FIGURE 6

Proposition 4:
(1) If {d;,....ds} ={d\, ..., di}, then
G(k:mbnl: oy mhnr:dh ---»ds) = G(k:mhnl; - mrsnr:d’la sevy d;)
(2) Gllk:my,ny: ... mnpdy, ..., dy = Gllkmeny ..o mynidy, vy ds)
(3) Gllemyny; .. myngdy, ..., ds) = Glkimang, ..o meny mynydy, ..., ds)
(4) Glk: —my,2my; .. monedy, . d)=Glk— Loy, 2my; . mpnedy, ... ds)

(5) Reflecting Gll:mym, ... m,npdy, ... ds) in the plane of projection pro-
duces G(—k:—myny; .. —mpnady,...,ds) .

Proof: (3) follows from the fact that (k] half-twist can be slid from one side
of a tangle to the other, (4) from the fact that a left-handed half-twist can be
combined with a tangled graph with parameter —1,2 to produce a tangled
graph with parameter 1,2. B

Proposition 5:
(1) ncl'rb(L(P,qidl 3 reey d.l'j;g)) X1, X2V e ys:h: [h:xl]s [hax2]: [h$y_}],
(xBh™ Y, (x3h™ P, Y9, X, X2y ... ¥s>, where 1<j<s, and ap—bg=1.



78 William D. Dunbar

(2) ny(Glk:myny; ... Mo dy, A <Xy, XY, Yohe (R,
[hyid, che™ b, ¢, (xiN0 B=MIBD ) exe =Ny L xpm g xaxiy xi Y,
W X oxe(rst L oy e >, where 1<igr, 1€j<s,

5,’ = g.c.d.(m,-,n,-), M,‘ = mi/5,-, N[' = n,-/é,-.

Proof: Part (1) can be viewed as an elaboration on the standard
presentations of fundamental groups of Seifert fibered manifolds, using the
Seifert-Van Kampen theorem for orbifolds. The expression in part (2)
describes n{"™(G(...)) as a Zs-extension {via «c») of n§™® of the Seifert fibered
orbifold obtained by pulling back along the orientable double cover of the
base. It is an elaboration on [BZ, 12.33] m

Remark. The quotient group obtained by adding «h» as a relator in either
of the presentations above is n{"® (base 2-orbifold).

' 6. TABLE CONVENTIONS

The diagrams that follow represent singular sets of oriented geometric 3-
orbifolds whose underlying topological space is S* (with the usual orien-
tation). To reduce clutter, all edges which should be labelled «2» have been
left unlabelled. If the orbifold has a bona fide «mirror image» {another
oriented orbifold such that there is an orientation-reversing diffeomorphism
between the two, but no orientation-preserving diffeomorphism), only one of
the pair'is pictured. If, on the other hand, an orbifold admits an orientation-
reversing self-diffeomorphism, its picture is labelled with «@», for «am-
phicheiral». Singular sets which are amphicheiral knots provide an example
of this phenomenon.

The tables should have two properties: completeness (all orbifolds having
geometric structure X of type Y with underlying space $3 appear somewhere
in the appropriate table) and nonredundancy (no orbifold appears more than
once). To show the former, we can use Theorem 1, plus the remarks at the
beginning of §5 (for type 2), plus remarks in §10 {for type 3), plus ad hoc
checking of a finite number of cases (for type 4). The latter property is
virtually impossible to achieve in practice, and we settle for lists of «obvicus»
redundancies (as in Propositions 3 and 4), plus a finite number of special
cases. We will be able to show that all repetitions of type 2 and 4 orbifolds,
and of the type 3 orbifolds that are T2-bundles, have been accounted for. In
fact, it seems likely that only obvious redundancies exist in Solv; cf. the
related results of Sakuma [Sa] on involutions of torus bundles over the circle.
Finally, note that proving completeness requires showing that every orbifoid
labelled as amphicheiral actually is (usually self-evident) and that proving
nonredundancy requires showing that every orbifold labelled as non-
amphicheiral actually isn’t.
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7. TABLES OF EUCLIDEAN ORBIFOLDS
AND NILORBIFOLDS

These orbifolds will fiber over 2-orbifolds having Euler characteristic zero,
which are listed in Table 1. Note that of the 17 orbifolds, 4 have §% as
underlying space (used for type 2a) and 8 have D? as underlying space (used
for type 2b). The type 2 Euclidean orbifolds and nilorbifolds (with underlying
space 5°) consist of the (labelled) Seifert links which project to one of the'4,
and of the Montesinos graphs which project to one of the 8. To realize the
(non-fibering) Euclidean orbifolds of type 4, we construct fundamental
domains for the group actions (as described in [IJ), and fold them up. The
names of the corresponding crystallographic groups (in International no-
tation, in square brackets) are given for all Euclidean orbifolds (in dimension 2
and 3). Since there are a finite number of affine equivalence classes of
crystallographic groups in dimension three (219, of which 54 act preserving
orientation), it is a routine matter to show that all the Euclidean 3-orbifolds
with underlying space S* have been listed; [Mi, Chapter 2] sketches the proof
of the classification theorem.

The second Bieberbach theorem (see [Wo, Thm 3.2.2]) implies that if two
Euclidean 3-orbifolds are diffeomorphic (in fact if they have isomorphic
fundamental groups), then they are affinely equivalent. Hence, the only
Euclidean orbifolds which appear more than once are the ones corresponding
to the crystallographic groups P222, and C222, each of which appears twice,
since each fibers over 2 different bases.

To see that there are no duplications among the nilorbifolds of type 2a
and that the symbol «@» was used correctly, we can use the following facts
about their (unlabelled) singular sets (two links in S? are equivalent if there is a
homeomorphism of $° which restricts to a homeomorphism of the links).

TaBLE 1
Closed 2-orbifolds with y =0

D*2,2) e §%(2,22.2)
[pmg] M1 [r2]

D*;2,2,2.2)
[pmm]

5%(2,4.4)
[p4]
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TasLE 1. {Continuation)

D3(2;2,2)
[emm)]

D42
[p44]

D*(33)
fp31m]

D*;24.4)
[pdm]

D%(;3,3,3)
[p31m]

D¥(;2,3,6)
[pbm]

5%3,3.3)
i3]

5%(2,3.6)
[p6]

T
P22 %]

{p2}

Lpm]

M
[em]

RPY22)
[paa]



Fibering over 5§%(3,3,3):
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TABLE 3
Euclidean orbifolds and nilorbifolds: type 2b

Fibering over D*(2.2):

L3 @

k#0 (nil) k=0[P222,] @

Fibering over D222 2).

k= —1 (nil) i k=—1[C222] @

k=0 [P222] ®

5_0_9 S C@

k£ —2 (nil) k=—-21P222,]1 8

k£ —1 (nil) k=—1[F222]a
6 6%

all k (nil) alt k {nil)
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TaBLE 3. (Continuation)

Fibering over D222y

ki —1 (nil) k=-1[12,2,2] @
k0 (nil) k=0 [C222] ®
@
all k {nil)

Fibering over D*(4;2):
UDE O b

k0 (nil) k=0 [P42,2] @

(_/

all k (nil)
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TABLE 3. {Continuation)

Fibering over D%(3;3);

@ J
k40 (nil)
s
g/
all k (nil)

Fibering over D%(;2,4,4);

Tkl

(('EI@ZG:E3

k4 my 2+ maf4 4 mafd £ 0 (nil)

k=—1m=0my=m;=2 [P4,22]

k=~ Lm =1m=0ms=2[1422] @

3 —_

Qhs

k=0[P321] a

()
-

k=m1 =m; =M3=0 [P422] @

—— e N

Fag
~—

k=my=0my=1my=—1[14,22] &

k=0m =my=my=—1 [P4,22)
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TaBLE 3. {Continuation)

Fibering over D*(;3,3,3):

__1k}

e’

K+ (my -+ mz +ma)f3 %0 (nil)

k=m,=my=my=0[P312] @

o %
& b d 8 3
k=m;=0m;=—1my=1[R32] @ k=lm=my=mz=~1 [P3,12]

Fibering over D?(;2,3,6)

Gos) &

k=m|=m;=m3=0 [P622] a

K+ my 2 4 miaf3 + maf6 #0 (nil)

k=m10,mz = 1,m3= -2 [P6222] k =0,m1 = l,mz =my= — 1 [P6122]

k= — l,m1 = l,m; =0,m3=3 [P6322] a
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TABLE 4
Euclidean orbifolds: type 4

ANPAN

N

(P432] @ (F23] @ [Fa32] @
@ 3
[P4,32] @ [14,32] @
3 3 4
3 3
3
[P23] a [F4:32} 3 [1432] @
3
[P2,3]) a [12,3]@ {P4,32]

NS

[123] @

(underiying space =RP?=3-ball w/antipodal: bdy—bdy)
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Proposition 6:
(1) A torus knot of type (p,q) s non-trivial iff |p| and |g| are both>1.

(2) A non-trivial torus knot is not amphicheiral.

(3) Two non-trivial torus knots of types (p.q) and (p',q') are equivalent iff
(r'g)=(xp,+q) or (p',q)=(L4q,Lp)

(4) A link of s components, which are fibers in some fixed Seifert fibering of
§2, is not amphicheiral if s=3.

(5) Let L and L' be two links, each consisting of s fibers (regular or
exceptional) in Seifert fiberings of S* by (p,q) and (p',q) torus knots
respectively (with 0<|gi<p, 0<|q|<P, gcd(pg)=gcd(p'g)=1). Let
S :=# of components of LU {exceptional fibers}, let S’ be similarly
defined, and suppose min {S,5'} 23 (S and S’ equal the number of cone
points in the base 2-orbifolds, after labelling the components of L and L)).
Then L and L' are equivalent iff p=p', |gl=|q't and one of the Sfollowing
holds (in particular, S=S5'):

(a) Both links consist entirely of regular fibers.

(b) Both links contain exactly one exceptional fiber, of order p=p'.
(c) Both links contain exactly one exceptional fiber, of order |q|= lq'}.
(d) Both links contain two exceptional fibers. :

Proof. Parts (1)<(3) are proven in [BZ, 3.E], and part (4) in [BM]. To
prove (5) (the «if» direction is trivial), assume that L and L' are equivalent,
and look first at the components of L: you have either s (non-trivial) torus
knots of type (p,g), s—1 (non-trivial) torus knots of type (p,g) and 1 trivial
knot, s — 2 (non-trivial) torus knots of type (p.g) and 2 trivial knots, or s trivial
knots. S>3 implies that these situations are mutually exclusive. Clearly, L’
must have the same sorts of components. The first situation falls under case
(5a), and using (1)-(3), we can conclude that p=p' and |q|=\q|, as desired..
Similarly, the third situation falls under case (5d) and (1)<(3) suffice” to
complete the argument. In the second situation, we could be either in case
(5b) or in case (5¢c), but these cases can be distinguished by calculating the
linking number of the trivial component with one of the others (orient the
fibers compalibly); you get ¢ and (sign g)'p, respectively. In the fourth
situation, we could be in case (5a) or in case (5b}, but linking numbers again
serve to resolve ambiguities. Since we want to consider the links as
unoriented, we need to note that the magnitudes of the linking numbers
suffice to determine the equivalence classes. B

Corollary 7. If there is an orientation-preserving diffeomorphism between the
two 3-orbifolds L(p,q:di,...ds:f,g) and L{p'.g"di, ..., d.-f.g) with 0<igl<p,
0<|fi<p, gcd. (p@)=gcd.(pg)=1, di>1, di>1 (for 1gigs, 1€i<S),
fo>1,99>1,7p>1,49>1,min {55123, then p=p,q=4q,s=5, {d,...ds}
= {d;, .,.,d},}, f=f' and g -—-g’. [ |
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[BZ, Thm 12.28] generalizes to show that there are no duplications in the
list of nilorbifolds of type 2b (when the Euler number is restricted to posilive
values), none of these orbifolds is amphicheiral. Finally, there are no
nilorbifolds of type 2a which are also of type 2b, since the center of 79" is
infinite cyclic for the former and trivial for the latter.

8. SPHERICAL ORBIFOLDS AND $? x E'-ORBIFOLDS

These orbifolds will fiber over over 2-orbifolds which are quotients of 52
by finite subgroups of O(3). The finite subgroups of O(3} are listed (up to
conjugacy} in Table 5, using the Schénflies naming convention. Note that of
the 14 types (some containing an infinite number of orbifolds, some
containing one orbifold), 8 are topologically disks, and 5 are topologically
spheres. Several types degenerate to the same orbifold when the parameter n
equalS 1: Cll,:C“,, Dl "-—'Cz, ‘D.lh=C20: Dld=c2k-

TABLE §
Closed 2-orbifolds with x>0

nzl

"

D) S*n,n)
[Cal . [Cnl

[

£

DZ(n;) S;(2,2,n)
[Cos [0.]

[} (A

>0

D2 §%2.3.3)
[Dnd‘_] [7‘_'
D¥3;2) 5%2,34)
[T (4]
, B £\
D;2.2.n) 532,35
[Dnn] 1
£ [\
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TaBLE 5. (Continuation)

D(;2,3,3) RP(n)
[Tp,] '[SZH]

D*(;2,34)
[04]

D¥(:2,3,5)
sl

Bad 2-orbifolds: $2(m), $*(mm),DY;m), D*(;mm) — where m#n. (mnu>1)

TABLE 6
Spherical orbifolds: type 2a

a>1, 3ga<gs k+0

$3 (with empty singular set) fibers over $%().
Fibering over S*(nn) {f,g =1 are divisors of n):

Fibering over S%(2,2,n) (f =1 is a divisor of n):

89
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Fibering over $%(2,34):

Fibering over $%(23.4):

W,

Fibering over $%(2,3,5);

.Spherical orbifolds and $* x E'-orbifolds: type 2b

William D. Dunbar

TABLE 6. (Continuation)

TasLE 7

nxl

Fibering over D)

k0 (59

k=0(S*xE"Y) @
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TaBLE 7. (Continuation)

Fibering over D*(n,n):

2D ©

k 4 myfni-+mzfn#0 (5%) k=m=m;=0(S?xE') d

Fibering over Dn;):
k0 (5% . k=0($*xEY 2
Fibering over D}{2;n)
=/ @
k+mfn=£0 (5% k=m=0 (S*<E,)) @
Fibering over D*(3;2):

@:&/-_)3 _ @)a

k+mj240 (5% k=m=0{S*xE") @

Fibering over D*(;2.2,n):

Cedd @

Ermy 24myf2+myind0 (8 k=m =my=m;=0(S*<xEY) @
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TABLE 7. (Continuation)

©

k= —1my=my=1m=0(S*%xE") A k=—1m=0my=12my=n (S x E'} @

Fibering over D*(;2,3.3):

o ®

— — 2 1
K-+ my /24 myf3 -+ maf3 40 (5 k=my=my=m;=0 (5> E') &

59

et
ke=m =0m=1my=—1(xEY

Fibering over D¥(;2,34);

- @

-

- k=m=my=my=0($2xE") @
k+myf24maf3 +myj45£0 (S

k=—1 n11—1n11—0m3—2 ($2xEY) @
Fibering over D*(;2,3,5):
3

T PDATD

k4 myf24+my/3+ myf540 (S k=my=m;=m;=0(5*=xE"} Q
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TABLE 8
Spherical orbifolds: type 4
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As in the previous section, we use an algebraic classification theorem (in
[TS], of the finite subgroups of SO(4)) to determine the groups which will
correspond to spherical orbifolds of type 4, and then fold up fundamental
domains for the group actions (on S°) to find the orbifolds. These groups
are characterized by the fact that their images under the 2 maps

SO(4)—S0(3) x SO(3) 2% 50(3), i=12,

are both non-cyclic, non-dihedral groups.

One could, without much further trouble, name the «spherical crystallo-
graphic groups» (using the convention of [TS]) corresponding to the spherical
orbifolds in these tables. We hope to do this in a future article.

The listed S$* x E'-orbifolds can mostly be distinguished from each other
by comparing singular sets on combinatorial grounds (edge labels, number of
vertices, number of components). Upon inspection, only one duplication is
uncovered, that of the orbifold whose singular set consists of a theta-graph
and a circle, with all edges labelled «2», arising from the «obvious» symmeltry
G(—1:0,2;1,2;1,2:y =G — 1;1,2;1,2:0,2)).

The spherical orbifolds are trickier to sort out. A rigidity theorem due to
DeRham (see [Ro, Thm 4.3]) says that diffeomorphic spherical orbifolds of
any dimension are in fact isometric. Hence the only problem is that of finding
the same kind of degeneracies that occurred when enumerating the spherical
2-orbifolds (i.e., different descriptions of the same subgroup of SO(4)). Here
are a few duplications that crept in:

Li4,3:21, 1) =G(—1:1,2;1,3;1,3)
L(5,3:2:1, 1} =G(—1:1,2:1,3;1,5)
L(3,2:2:1,2)=G(—1:1,2;1,3;1,4)

GO —n, kn+m2y if k+mn)=>0

Glk—1:1,2;1,2;mn) = {
GOn, —kn—m2)y if k4+(mm)<0

! L(=k/21:22:n1} Kk even
| L(—k22n1) k& odd

Also, there are many ways to represent the same 2-bridge link (possibly with
struts connecting the pairs of bridges at cach end) as a Montesinos graph
Gik:my n,my ).

Gikzny=

9. H?x E'-ORBIFOLDS AND T;(H*-ORBIFOLDS

In terms of displaying the orbifolds, not much improvement can be made
over the figures in § 5, since hyperbolic base orbifolds are «genericr. The facts
used in § 7 to weed out duplications and to prove non-amphicheirality apply
to this case as well.



Geometric orbifolds 95

10. SOLYORBIFOLDS

As mentionned in Theorem 1, solvorbifolds all fiber over either the circle
or 1:=circle/reflection, with generic fiber either T* or §%2,2,2,2). Thus, any
solvorbifold is either the mapping torus of some self-map of T° (resp.
$%(2,2,2,2)), or can be split into 2 orbifolds-with-boundary which are of the
form (T? x I)/(involution reversing both factors) (resp. (8%(2,2,2,2) x I)/(...)} by
removing a regular neighborhood of a (generic) fiber. There are only a finite
number of these pieces, up to diffeomorphism. Reversing the process yields all
solvorbifolds (plus some nilorbifolds and some Euclidean orbifolds). Con-
sequently, it is clear that only those fibering over [ can have underlying space
$3, most coming from gluing together two twisted I-bundles over D*(;2,2,2,2),
D*(2,2;), or D*(2;2,2) (each having the 3-ball as underlying space), and a few
coming from gluing together two twisted I-bundles over the annulus or the
Mébius band - with boundary points modelled on R?/reflection - {each
having a solid torus as underlying space).

In the former case, all gluing maps can be considered as elements of the
mapping class group of the four-times-punctured sphere, which is a (split)
extension of Z, x Z; by PSL(2,Z). Because PSL(2,Z) is isomorphic to Z * Zs,
we can find nice representatives of conjugacy classes, of the form

()Bxlafitle.. ptly, where yeZy x Z,.

The final refinement comes from noting which elements of the mapping
class group (acting on the boundary} extend across each of the I-bundles. The
idea is to incorporate the o on the left end of the word and the y on the right
end into the «standard» picture for the I-bundles. The braid « can be pushed
into the twisted I-bundle over D*(2,2;) only at the cost of allowing two
alternative ways to draw it, since « does not extend across this bundle (it does
extend over the other two bundles). Similarly, two elements of Z; x Z; do not
extend across the I-bundle over D*2;2,2), and we need two alternative
pictures for this bundle. Thus -there are 25 a priori subcases (5=1+2+2
choices for the top, 5 for the bottom). Making use of the symmetries to be
described in Proposition 9 and the following remark, we can reduce
consideration to 11 subcases listed in Figure 7.

top
bottom D*;2.2,2,2) D*22) D222 .
D*2,2,2,2) 1 2,3 7
D*(2,2)) 4,56 8.9
D*(2;2,2) 10,11

FIGURE 7
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These words (read left to right) in the letters «, f, and £ !, can be
translated into 3-strand braids (read top to bottom) in the «letters» given in
Figure 8.

WA

In fact, with the reductions now made, the word can be described by giving
the successive exponents of f. There are exceptional sequences yielding
Euclidean and nilorbifolds, which fall into three classes:

subcases 1-6:
+1,+1,..,+1or —1,—1,.., —1 (of length=1) or &

subcases 7-9;
+L+01 ., +1,—1or —1,—1,..,—1,+1 {of lengthz=2) or +1 or —1
or & '

subcases 10-11:

~L+L+1.,+1,—1 or +1,—1,—1,..,~1+1 (of length=3} or
+lL,+tor —1L,—lor +1lor —1lor &

The following proposition notes an obvious collection of symmetries
(giving a sufficient condition for amphicheirality).

Proposition 8: In subcases 1,4 and 10, reflecting a solvorbifold (with B-
exponent sequence ) in the xz-plane (taking the plane of the paper to be the

xy-plane) produces a solvorbifold in the same subcase with B-exponent sequence
— .7, read backwards.

Proof. Immediate using a=a~!, W

Proposition 9: In subcases 1,56, and 10, rotating a solvorbifold (with j-
exponent sequence &) by 180° about a horizontal line in the plane of the paper
produces a solvorbifold in the same subcase with fi-exponent sequence & read
backwards.

Proof. Immediate, since the «letters» o and f are mapped to « and afo
respectively. B
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TABLE 9
Solvorbifolds: type 3

kt=2{>2
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Remark. Another way to alter an orbifold in Table 9 so that it appears
different is to add yy, for some yeZ, x Z,, at the beginning or end of the
word, and then use conjugacy relations to push one of the y's to the other end
of the word, at which point it has become a possibly different element
y' €43 x Z,. This is most useful when one of the ends is a twisted I-bundle
over D*(2;2.2).

The T%-bundles over [ are all distinct {except for the obvious
orientation-preserving symmetry interchanging k and /, and the obvious
orientation-reversing symmetry negating both k and /), as one can verify using
the classification of 2-bridge knots and linking numbers of the components
with each other (well-defined up to ‘sign, since the components of the links are
unoriented). Calculating of the monodromy of the T?-bundles over S! which
double-cover distinguishes any remaining cases (e.g, k=1,/=5from k= —1,
I=5). In particular, such an orbifold is an amphicheiral solvorbifold iff k = —/
(and k+#0).
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