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Geometrie orbWolds

WILLIAM D. DUNHAR

ABSTRACT. An orbifold is a topological space which «locally Iooks like» the orbit
space of a properly discontinuous group action on a manifoid. After a brief review of
basic concepts, we consider the special case of 3-dimensional orbifolds of the form
f’\M, where Al is a simply-connected 3-dimensional homogeneous space correspond-
iñg to one of Thurston’s eight geometries, and where f.c Isom(M) acts properly
discontinuously. A general description of these geometric orbifolds is given and the
closed oriented geometric 3-orbifolds with S3 as their underlying topological space are
enumerated (except br hyperbolic orbifolds>.

1. INTRODUCTION

A closed differentiable n-orblfold 0” is a Hausdoríl topological space A?
together with (compatible) modellings of neighborhoods of each point in A?
on IR’5/(finite subgroup of 0(n)), where the point corresponds to the equival-
ence class of the origin. The singular set of 0”, denoted ~ consists of points
for which this finite group is not the trivial group. An oriented orbifold is one
such that alí the finite subgroups are contained in SO(n) and such that the
manifold-with-boundary A? — Ñ(L-) is oriented. Any closed 2-orbifold t92

can be specified by giving a compact surface (= X2), together with a finite
number of distinguished points, cone points in the interior and corder po¡nts
on the boundary, each labelled with an integer >1. The orbifold structure on
~2 is then given by charts U —> 11R2/(cyclic group of order ti) at each cone point
labelled «n» (where U is a neighbourhood of the singular point),
U—.1R2/(dihedral group of order 2n) at each comer point labelled «n», and
U—*1R2/(reflection) at alí other points on the boundary of the surface (so

= {cone points} U OX 2) Any oriented closed 3-orbifold ~3 can be specified
by giving an oriented 3-manifold (= X 3) containing a trivalent graph (= Sc’),
each edge of which is labelled with an integer> 1 such that at each vertex, the
labels n

1, ti2, n3 associated to 4w three incident edges satisfy 1/ni + 1¡n2
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+ 1/ti3> 1. This is because a finite subgroup of 50(3) is either cyclic of order ti
(corresponding to points on edges labelled «n»), dihedral of order 2n
(corresponding to a vertex with incident edges labelled <(2», «2», «n>í),
tetrahedral (2, 3, 3), octahedral (2, 3, 4), or icosahedral (2, 3, 5).

An o’rbifold 0’5+mfibers over a base orbifold B” witli fiber orbifold F»’ if
diere is a map r0’J+m~.B’5 such that inverse images of neighborhoods in B’5
look like (IR” x F’J’ )/(finite group G acting on both factors) and such that ir
looks like projection on IR”/G. In case F

m = S’, we will calI <9½Seifertf¡bered
orbifold (<93 is a Seifert fibered orbifold with empty singular set uf it is a
Seifert fibered manifoid). Orbifolds are discussed in more detail in [Th2],
[Sc], [B52], [DM], and [Du].

There are eight 3-dimensional homogeneous spaces relevant to the study
of compact 3-manifolds (and 3-orbifolds). Resides the 3-dimensional spheri-
cal, Euclidean, and hyperbolic geometries (denoted St E3, H3), diere are four
geometries (denoted S2 x E’, H2 x E’, TJ(H2), and Nil) wich have natural
foliations by straight lines (projecting along which yields S2, H2, ¡fi, E2
respectively), and one geometry (denoted Solv) based on the only simply-
connected 3-dimensional Lie group wich is solvable, but not nilpotent. The
exphcít construction of the eight Lie groups that act transitively on these
spaces is left as an exercise for the reader. me Lie groups should be
«maximal» in some reasonable sense, e.g. we prefer to think of S3 as
0(4)/O(3) (or SO(4)/S0(3) if we restrict our attention to orientable 3-
orbifolds) rather than as, say, U(2)/U(l). A geometric orbifold is one that is
diffeomorphic to f\(G/H), where G/H is one of the aboye homogeneous
spaces, and f < G is a subgroup acting properly discontinuously on G/H by
left multíplícation; equívalently, an orbifold is geometrie if it admits an atlas
of charts (from local universal covers) into the geometry sucli that the
transition maps (and local group actions) are restrictions of isometries. The
eight geometries are discussed in more detail in [Sc].

Although orbifolds are locally the orbit spaces of finite group actions on
manifolds, an orbifold is not necessarily globally dic orbit space of a finite
group action (or even a properly discontinuous gr9up action) on sorne
manifold. An orbifold is bad if its universal cover has non-empty singular set
(otherwise it is qood). AII l-orbifolds are good, and the bad closed 2-orbifolds
are classified in [Th2, Chapter 13]. It is a consequence of a geometric
decomposition for irreducible 3-orbifolds with singular set of dimension =1
[Th4] that irreducible 3-orbifolds which tuve no bad 2-suborbifolds are good
(cf. [MM]); in the case of 3-orbifolds having singular set consisting of isolated
poínts whtch are modelled on LIV/(antipodal map), which are the ones left out
of the aboye theorem, 4w orientable double cover has empty singular set.

The author would like to acknowledge the helpful remarks of 4w referee.
This paper contains the results of the author’s Ph. D. dissertation (and
extends them to other geometries).
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2. MOTIVATION

Orbifolds provide a convenient way of «encoding» properly discontinuous
group actions on manifolds which are not necessarily free. The natural notion
of covering space br orbifolds is such that, for example, the projection from
any manifold to its quotient by a properly discontinuous group action can be
tl-xought of as a covering map. The «complexity» of an orbifold is a
combination of the complexity of its singular set and the complexity of its
underlying topological space. Roughly, the former reflects the extent to which
the fundamental group of the orbifold (defined as the group of covering
transformations of its universal cover) is generated by elements with fixed
points, and the latter reflects the «rest» of the group. If N is the normal
closure in ~~rb«9n) of the covering transformations acting with fixed points,
then ‘tí(X’5)~nTrb(<9’J)/N. Consequently, closed 3-orbifolds whose underlyíng
topological spaces are simply-connected correspond to group actions gen-
erated by elements with faed points. lf tbe orbifoid is orientable and admits a
geometric structure modelled on a geometry other than H3, one can slrnw
(following [Se] br the most part) that X3 must be homeomorphic to 53, Qn
the other hand, the analogous statement for hyperbolic orbifolds is equivalent
to the Poincaré Conjecture, since one can use the existence of universal .links
which are hypdrbolic [HLM] to show that any closed orientable 3-manífold
is dic underlying space of a byperbolic orbifold.

There are other reasons to consider such orbifolds: they provide an
endless variety of examples that can easily be twisted and manipulated, where
«twistedness» of the singular set (now a labelled trivalent graph in 53) in some
sense plays the role of dic topology of a 3-manifold. In the special case where
tlíe singular set is a knot labelled with dic integer n, finding a geometrie
structure for this orbifold immediately implies that the n-fold cyclic branclied
cover of the knot has a structure modelled on the same geometry (in wbich
the action of 7L,, upstairs can be taken to be by isometries).

Geometric orbifolds are conjectured to be the basic building blocks out of
which a general compact 3-orbifold may be constructed, in the samesense
that a general compact 3-manifold is conjectured to be constructable (vla
connected sums and gluing boundary tori together) out of geometric 3-
manifolds. These conjectures have been shown to be true under fairly general
circumstances (Haken manifolds [Tb3], orbifolds with singular set of
dimension~ 1 [Th4]). One purpose of this article is to give a better idea of
what the «trivial» (= non-hyperbolic) pieces of the geometric decomposition
of a 3-orbifold look like. Also, since a 3-orbifold with X3 S3 can obten be
shown by combinatorial methods to be geometrically indecomposible, the
tables at dxc end of this article can be used to give and indirect proof that a
given such orbifold is hyperbolic (by showing that it is geometric, cg. via
[Th4], and doesn’t appear in the tables).
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Henceforth, unless otherwise specified, ALL 3-ORBIFOLDS will be
assumed to be COMPACT, CONNECTED, ORIENTED, and WITHOUT
BOUNDARY; alí 1- and 2-orbifolds wll be assumed to be compact, connected,
and without boundary (but note that Ox” can be non-empty when 0’5 is
closed and non-orientáble).

3. ROUGI-I CLASSIFICATION OF GEOMETRIC ORBIFOLDS

Theorem 1. Suppose <93¡~ a qeorneltic orhjfold. ‘¡ben exacdv one of dic
following kakis:

1) <93 is a hyperbolic orbqbld.
2) ~3 is a SeWert fibered orbfold ivfth base 02, in which case one of (he

following descrigions applies (hoth may apply <f 0~ flbers in niore dian
one way):

a) ~f ox2 = O (X2 denotes dic underlyinq space of <92), ithen X3 is a
closed Selfertfibered rnan~fold, and Se’ consisis offibers (lahelled with
uarious ¿titegers> 1);

b) y’ ox2 has n componemus (n >0), íhen X3 is (he resuk of gluinq solid
i’ori to a Selfen fibered manfoid wfth ti boundary Ion, such fíat (he
menidians of (he toní are glued oflbers on dic boundary. Sc’ consists
offlbers, plus a Montesinos link (labelled «2», onU slighdy modWed)
inside cadí added solid torus (more omí this in § 4).

3) <93 is a solvorbifold, in particular, U fibers oven eiher 51 or S’/reflecíion,
wilh fiber either T2 or T2/( 1800 notation fixing 4 points) =
(5’ >< S’)/(reflection of both fac(ons).

4) 0~ Ls one of the 12 Fuclidean orbifolds (II wi(h X3 53 and 1 wirh
__ IRP3) or 18 sphenical orb¿folds (alt with X3 Sí) which do not

fiben ayer 2-orblfolds.

Furhermore, no 3-orbifoid possesses strucnines from two dlflérern ge-
ametnies.

Proof: The argumcnt in [Sc, Tlím 5.2] (for manifolds) serves to justify the
last setence of the theorem. AII 3-orbifolds modelled on > E’, T,VH2), and
Nil are of type 2 as a consequence of the Fact dic isometry groups of these
geometries preserve fjbrations by lines (which become fibrations by circíes —

generically — and intervais in any orientable compact quotient space, cf. [Sc,
Thm 4.13, Thm 4.15, Thm 4.16]). Most Euclidean and spherical 3-orbifolds
are of type 2 for a similar reason; diere is no fibration preserved by dic entire
isometry group, but most discrete subgroups will preserve sorne family of
parallel lines in E3, or sorne Hopf fibration of 53~ AH 3-orbifolds modelled on
52 x E’ can be remodelled if necessary so that the fibration by lines * x E’
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induces a Seifert fxbering of the orbifold, so such an orbifold is of type 2 as
well; this can be proven by brute force analysis of the discrete subgroups of
the groups of isometries of ~2 y Et. Similar analysis of the isometries of Solv
justifies the statements made about type 3 (cf. [Sc, Thm 4.17]). The numbers
in the description of type 4 are based on the algebraic classifications of
Euclidean and spherical crystallographic group; see § 7 and § 8 for details. u

Remark. Type 4 does not arise in the consideration of geometrie
manlfolds, since it turns out that alí Euclidean and spherical 3-manifolds can
be Seifert-fxbered:

Like oriented cirele bundíes over surfaces, an oriented Seifert fibered 3-
orbifold has an Euler number e; e is a rational number which describes an
obstruction to finding a section, and like the usual Euler number, multiplies if
you pulí back along a covering of the base and divides if you unwrap the
fiber; see [Sc, § 3], [BS3] or [Du] for details. Given a particular Seifert fibered
orbifold (type 2), the table in Figure 1 shows which geometry it should falí
under, merely in terms of the Euler characteristic x of the base 2-orbifold and
the Euler number e of the bundle.

x>0
e=0 S2xE’

e#0

The construction of a geometric structure of the «right» type on a Seifert
fibered manifold (equivalent to fxnding a discrete faithful representation of the
fundamental group into the isometry group of the geometry) is done in [Sc,
Thm 5.3]. The same techniques work in the orbifold setting, with the
exception that Seifert fibered orbifolds with a bad base 2-orbifold and with
Euler number=O are also bad, hence do not admit the 52 >< E1-structure
predicted by the table. On the other hand, if die Euler number is non-zero,
the orbifold does have the predicted spherical structure.

Proposition 2. Suppose that &~ Seifert fibers ayer a bad 2-onbjfold ~2 with
non-zero Euler number e: fien

2) <93 is goad.
3) <93 admfts anothen Se(fen Jibening ayer a spherical 2-orbjfold whiclz is

eithen a sphene with 2 cone points labelled «ti», ti ~ 1, or a disk with 2
conner points labelled «ti», n~ 1.

ROURE 1

4) <93 admits a sphenical structure.
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Proof. To prove part (1), it suffices to consider the case where ~2 is a
sphere with a single cone point, or with two cone points labelled with
difl’erent integers. X3 is then a lens space (# 52 y 51 since e ~ O), and Se~’ is
contained in the cores of the two solid tori into which X3 can be decomposed.
Hence <93 is finitely c9vered by an orbifold &~ with underlying space 53,
having singular set either empty, an unknotted circle, or a 2-component Hopf
link, which in turn is frnitely covered by 53, Tbis shows part (1), and the
remaining parts follow from [DM, Remark 3.1 and Tbeorem 5.1]. U

Similarly, given a description of a 3-orbifold as a bundle éver 5’ with fiber
orbifold E and monodromy qxF—*F, the table in Figure 2 shows which
geometry it should falí under, in terms of the Euler characteristie x of F and
the class [~jJ represented by ~2in the mapping class group of E.

The term «hybrid» refers to the fact that in general, such a bundie will have a
geometric decomposition into a number of hyperbolic and H2 x E’-manifolds
with boundaries consisting df tori (or finite quotients of tori) with the various
boundary components identified in pairs. Of course, the lower-right-most
entry is a much deeper fact than tbe others; see [Th3]. The second column is
the one most relevant to tbe present article, since it explains why there are
exceptional braids in the descriptions of solvorbifolds, and suggests (correctly)
tbat the exceptions are listed elsewhere, under other geometries. [Sc, Thm
5.3] is also relevant bere, and there is a similar caveat concerning bad 2-
orbifolds: if the fiber is bad, the bundle will be bad, and the predicted ~2 y E’-
structure will not exist.

4. RATIONAL TANGLES AND MONTESINOS GRAPHS

We need to develop a notation for describing «small» pieces of the singular
set of a 3-orbifold of type 2b in Theorem 1 of the previous section, for use in
the tables that follow. These pieces arise as the intersection of the singular set
witlx 3-balís whose boundaries bit the singular set in four points.

[& (pseudo-) Anosov

FIGuRE 2
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If ni and n are positive integers such that 0< mc
way to write ni/ti as a continued ftaction

m/n=

n/2, there is exactly one

1

.1
k1 +

1
k

if we take k1 k, to be positive integers, and require that k, be =2. We define
the tangled gnaph with panameten ni, ti as in Figure 3 below. When ni and n are
relatively prime, this is just a rational tangle; in Conway’s notation [Co], it
would be denoted by k1k,~1 ... k2k10.

rt ~

ha 1£-
- .¡C’ twtsts

Y

half-twIstS

r- UI
1

hal f—
twtsts

1 even

sttut labelled g.e.d.tm,n1

r mi
2

Sal f—
twlsts

mi
hal f—
twtStS

¿ odd

55. 235

e. a

FIGURE 3
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As an aid to sketching, note that alí twists have «positive slope», in the sense
that alí over-crossings are from lower left to upper right.

This tangle should be thought of as the singular set of a 3-orbifold-with-
boundary, with underlying space a 3-bali, which Seifert fibers over one of the
2-orbifolds-with-boundary D2/(dihedral group) (i.e., over a regular neigh-
borhood of a comer point). The edges of the singular set upstairs are alí
labelled «2», except for the strut in the innermost twist, which is labelled
g.c.d.(m,n) (or omitted, if m and n are relatively prime). The strut is an
exceptional fiber sitting over the comer point; a typical fiber over a boundary
point is a circle on the boundary of the 3-balI isotopic to the great circle in
the yz-plane (if the plane of the paper in Figure 3 is taken to be 1w xy-plane).
This fibration corresponds to an action of the dihedral group of order 2n
(= .ca,ra2=z2 =(uz)”= 1>) on D2 xS’, where a and r act on as
reflections in unes making an angle of + ir/ti (measured from a to z), and
where a and r act on 5’ as reflections in lines making an angle of — mir/n
(measured from a to y). The sign of ni/ti is well-defined, since once an
orientation is fixed on Y y S~, orientations on the factors are determined, up
to the operation of reversing both.

We can extend this notation to the case of -n/2 ~ ni <O by reversing alí
crossings in dic tangle with parameter -m,n. It is also convenient to define a
tangle with parameter 0,n (for ti> 1!) to be two horizontal arcs (labelled «2»)
with a vertical strut labelled «nY>.

Finally, an integer k enclosed in a box will denote two arcs labelled «2»,
with k LEFT-handed half-twists along a horizontal axis (if k <O, use ¡k¡ right-
handed half-twists).

As before, twists with positive parameters have positive siopes.

Joining a bunch of these tangles together in a circle, one obtains a 3-
orbifold-witl-x-boundary whose underlying topological space is a solid torus,
and which fibers over a 2-orbifold-widi-boundary as shown below in Figure
4.

nl

nl.

FIGURE 4



Geometric orby’olds 75

The fibers on the boundary of the solid torus are meridians. The singular set
isa Montesinos link (cf. [Mo], [Qe], [BZ]) u g.c.d.(m1, n~)= 1 for 1 =iCn,and
otherwise is a trivalent graph which we can refer to as a Montesinos graph.
These are dxc «plugs» which are glued to Seifert fibered manifolds with
boundary to form geometric orbifolds of type 2b in § 3.

5. TYPE 2 ORIIIFOLDS WITH LJNDERLYING SPACE 53

If ihe underlying topological space of. a Seifert fibered orbifold <9
3is

simply-connected, it is not hard to see that the underlying space of <9~ is 53
and that the 2-orbifold which ~3 projects to must be either topologically a 2-
sphere, with a certain number of cone points, or topologically a 2-disk, with a
certain number of cone and comer points (half of the proof is in [Se] and the
rest in [Ou, Proposition 2.14]). Wc can denote the former by 52<.. unordered
labels of cone points...) and the latter by D2(... unordered labels of cone
points...; ...cyclically ordered labeis of comer points...). In the former case, Ihe
singular set consists of fibers in sorne Seifert fibration of 53, i.e. a collection of
«parallel» torus knots, plus possibly one or both of the «axes»; links of this
typeare discussed in [HM]. It is easy to check that the Euler numbers of alí
such Seifert fibered orbifolds must be nonzero (essentially it is a consequence
of the fact that the left and right Hopf fibrations of 53 over 52 have Euler
numbers + 1 and —1 respectively). Using the chart in Figure 1, Wc see that
the appropriate geometry is 53, Nil or T

1(H
2), depending on whether the

Euler characteristic of the base orbifoid is positive, zero or negative. This
Euler characteristic is easy to compute from a picture of the 3-orbifold, since
the Seifert fibering of 53 by (p, q) torus knots corresponds to a projection to
the 2-orbifold ~2(lpj,¡q¡). Adding a torus knot labelled «k» to the singular set
introduces a new cone point labelled «k» downstairs; adding an axis labelled
«k» to dxc singular set changes the label on one of the original cone pbints
from ¡p¡ to jp¡k or from ql to q¡k, as appropriate.

In the latter case, we can construct a model for the 3-orbifold by building
on our description of «plugs» for geometric orbifolds of type 2b in the Iast
section. By gluing D2 y 51 to thc solid torus in Figure 5 (identifying the
boundaries, meridian to longitude), we get a 3-orbifold with undcrlying space
53 and singular set a Montesinos graph, fibering over a 2-orbifold with
underlying spacc D2 and singular set = 0D, with r comer points modelled on
1R2/(dihedral group of order 2ti~), 1 ci ~ r. The Euler characteristic of Uds 2-
orbifold is easily calculated to be 1 +(1/2) Sr... (—1 + 1/ti¡) (cg., via cut-and-
paste arguments in the orientable double cover). The notation has been
contrived so that this orbifold has Euler number e=(— 1/2) (k+S~,i m

1/n¡);
cf. [B53], which denotes the Euler number by e0. As a final embellishment,
one can incorporatc a finite number of the generic fibers into the singular set,
labelling them with integers U1, U2 d~> 1. The base 2-orbifold will now
have s cone points, locally modelled on 1R

2/(cyclic groups of rotations oforder
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lpI•f

L(p,q:di . d,f,g)
with p,q~0, g.c4.(p,q) 1, s=0,d1>l cl,> l,f=l,g=1.
<pq>0...right-handed torus knors; in the figure, q=

2, p=7, s=2)
Base 2-orbifoid: S2(¡p[f,¡q¡g,d

1 cl,)
Euler characterisfie of base= x =

Euler number=e= — l/pq (#0)

FIGURE 5

U1, l=j~s), and its Euler characteristic is now

1+(1/2) ~ (—1+1/ní)+S~1 (—1+1/U1).

The Euler number of thc bundlc is unafiected by this change.

Wc will discuss briefly dic «obvious» symmetries of these orbifolds
(leading to «obvious» repetitions in a naive listing, which can be dealt with in
any convenient way). For the moment, our chief concern is that our list be alí-
inclusive; later, geometry by geometry, we will address the question of
whether these are «alí» the symmetries (the answcr is (<often ycs, sometimes
no»).

Proposition 3:

(1) If {U1,..., d~}={d1 d}, fien
L(p,q:d1 d~~q) = L(p,q:d~ d~fg)

(2) L(p,q:d1 d;fg) = L(q,p:d1 d5:g,f) = L( — p, — q:d1 d4g)

(3) Jfq= 1, then L(p,q:d1 U5fg)=L(p,q:d1 d,,gf 1)

¿5

di
4
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(4) If p= q = 1, fien L(p,q:dt d4g) =L(p,q:U1 d3f,g: 1,1)
(5) Reflecting L(p,q:d1 d5fg) in fie plane of projection produces

L(p,—q:di djg). U

Al

—~ .—

di

cl,)
wbere kel, —n,/2~m¡~n¡/2, a,> l, 1 ~icr;d1> 1, 1 ~=j=s.
Base 2-orbifoid: D

2(d, 4,; n, n.)
Euler charaeteristic of base=x= 1 +E~,(— 1 + t/dfl4-(I/2)Sr=

1 (—1 + l/n,)
Euler number = —( l/2)Qc + El.. ,mjn,)

FIGURE 6

Proposition 4:
(1) Jf{U1 U1}={d;,..~ á~}, then

G(k:mt,nu; ...; m,,n,:dí 4,) = G(k:m1,nt; ...; m~,n,¿d’~ U;)

(2) G(k:mi,nu: ...; m,,n,:dí, ..., U,) = G(k:m,,n,; ...; mu,nt:dí U,)

<3) G(k:mt,ní; ...; m,,n¿di U,) = G(k:m2,n2; ...; m,,n~; m~,n1 :di U,)
(4) G(k: — m1,2m1: ...; m,,ngd1 U,) = G(k — 1 :m1 ,2m1; ...; m,,n,:d1, ..., U,)

(5) Reflec(ing G(k:mu,nhn..;m,,n.:dí U,) in the plane of projection pro-

duces G(—k:—mí,tir...; —m,,nr:dí U,)
Proof: <3) follows from dxc fact that jk¡ half-twist can be slid from one side

of a tangle to the other, <4) from the fact that a left-handed half-twist can be
combined with a tangled graph with parameter — 1,2 to produce a tangled
graph with parameter 1,2. U

Proposition 5:
(1) ‘tr~L(p,q:U1 Uffg))~=cx1,x2,y, y,,h: [h,x1],[h,x2],[h,y1jj,

(xlilCbY, (xlh 99, >jd,>, XIX2YI •.. »>, where l~jcs, atid ap—bq=1.

11,
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(2) ir?rb(G(k:m, ,n1; ...; mrn,,:di U,)) .c xx x,,y1 y,,h,c: [I¡,x¡],

(y~ ... yjx1 ... xrc(ys ... W )c
1h’<>, where 1 ~ 1 ~

= g.c.d.(ni~,n~, M~ = m
1/¿1, N~ = ti~/¿~.

Proof: Part (1) can be viewed as an elaboration on the standard
presentations of fundamental groups of Seifert fibered manifolds, using the
Seifert-Van Kampen theorem for orbifolds. The expression in part (2)
describes iryrb(G(...)) as a Z2-extension (via «c») of nrb of the Seifert fibered
orbifold obtained by pulling back along the orientable double cover of the
base. It is an elaboration on [BZ, 12.33]. u

Remark. The quotient group obtained by adding «h» as a relator in either
of the presentations aboye is irra (base 2-orbifold).

6. TABLE CONVENTIONS

The diagrams tliat follow represent singular sets of oriented geometric 3-
orbifolds whose underlying topological space is 53 (with the usual onen-
tation). To reduce clutter, alí edges which should be labelled «2» tuve been
left unlabelled. lf the orbifold has a bona fide «mirror image» (another
oriented orbifoid such that diere is an orientation-reversing diffeomorphism
between the two, but no orientation-preserving difYeomorphism), only one of
the pairis pictured. If, on Uxe other hand, an orbifold admits an orientation-
reversing self-diffeomorphism, its picture is labelled with «a» br «am-
phicheiral». Singular sets which are ampliicheiral knots provide an example
of this phenomenon.

11w tables should tuve two properties: completeness (al! orbifolds having
geometric structure X of type Y widx underlying space 53 appear somewhere
in the appropriate table) and nonredundancy (no orbifold appears more than
once). To show the former, we can use Theorem 1, plus tlie remarks at the
beginning of § 5 (for type 2), plus remarks in § 10 (for type 3), plus ad hoc
cbecking of a finite number of cases (for type 4). Ihe latter property is
virtually impossible to achieve in practice, and we settle for lists of «obvious»
redundancies (as in Propositions 3 and 4), plus a finite number of special
cases. We will be able to strnw that alí repetitions of type 2 and 4 orbifolds,
and of the type 3 orbifolds that are T

2-bundles, tuve been accounted for. In
fact, it seems likely that only obvious redundancies exist in Solv; cf. dic
related results ofSakuma [Sa] on involutions of torus bundíes over thecircle.
Finally, note that proving completeness requires showing that every orbifold
labelled as amphicheiral actually is (usually self-evident) and that proving
nonredundancy requires showing that every orbifold labelled as non-
ampl-iicheiral actually isn’t.
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7. TABLES OF EUCLIDEAN ORBIFOLDS
AND NILORBIFOLDS

These orbifolds will fiber over 2-orbifolds having Euler characteristic zero,
which are listed in Table 1. Note that of the 17 orbifolds, 4 have 52 as
underlying space (used for type 2a) and 8 have ¡Y as underlying space (used
for type 2b). the type 2 Euclidean orbifolds and nilorbifolds (with underlying
space 53) consist of the (labelled) Seifert links which project to one of the4,
and of the Montesinos graphs which project to one of the 8. To realize dxc
(non-fxbering) Euclidean orbifolds of type 4, we construct fundamental
domains for the group actions (as described in [1]), and fold them up. The
names of the corresponding crystallographic groups (in International no-
tation, in square brackets) are given for alí Euclidean orbifolds (in dimension 2
and 3). Since there are a finite number of affine equivalence classes of
crystallographic groups in dimension three (219, of which 54 act preserving
orientation), it is a routine matter to show that alí the Euclidean 3-orbifolds
with underlying space 53 have been listed; [Mi, Chapter 2] sketches the proof
of the classifxcation theorem.

The second Bieberbach theorem (see [Wo, Thm 3.2.2]) implies that if two
Euclidean 3-orbifolds are diffeomorphic (in fact if they have isomorphic
fundamental groups), then they are affinely equivalent. Hence, the only
Euclidean orbifolds which appear more than once are the ones corresponding
to the crystallographic groups P2221 and C222, each of which appears twice,
since each fibers over 2 different bases.

To see that there are no duplications among the nilorbifolds of type 2a
and that the symbol «a» was used correctly, we can use the following facts
about their (unlabelled) singular sets (two links in 53 are equivalent if there is a
homeomorphism of 53 which restricts to a homeomorphism of the links).

TABLE 1
Closed 2-orbWo¡ds with ~= 0

D
2(2,2;) S’(2,2,2.2)
[¡»ng]

D2(;2,2,2,2) S2(2,4,4)«itZ [pmm]
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TABLE 1. (Continuation)

D(4;2)
[$g]

D1(3;3)
[p3Jm]

D2(;2,4,4)
LP4,nJ

D’(;3,3,3)
LP3 1 inj

D’(;2,3,6)
[p6mJ

‘o

It-

o-

o

o

D’(2;2,2)
[cmmj ji

A
S’(3,3,3)
LP3)

S’(2,3,6)
LP6]

[PI]

K
LP2]

A
[pmj

i~1
[cnij

RP’(2,2)
[pgg]
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TABLE 2
Nilorbifolds: type 2a

Fibering over Sft2,2,2,2):

Fibering over S’(2,4,4):

4 ‘/4

Fibering «ver S2(3,3,3):

3

3)3

Fibering over S3(2,3,6}:

\.

3 6

6

3.

3

6~)
¡

6

~~~~~/

(~~9a
3

( 3

~‘CN%~) 4 4 4

3

3
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TABLE 3
Euclidean orbifolds and nilorbifolds: type 2b

k#0 (ni»
Fibering over D2(;2,2,2,2):

k=0 [P222,] a

k=0 EP222J a

k

k# —2 (ni» k~—2 EP222,] a

k=—t EF222] a

k#—I (nil) k=—1 [C222J a

k#0 (nil)

k#—t (ni»

n alí 1< (ni»
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TABLE 3. (Continuation)

Fibering «ver D2(2;2,2):

k#0 (¡dI)

al’ 1< (nil)

Fibering over

k#O (ni»

k=0 [C222] a

k=0 [P42
123 a

83

k#—I (ni»

aB k (ah)
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TABLE 3. (Continuation)

Fibering Over Dft3;3):

k=0 [P321J a

Fibering over

k

y-
k-i-m¡/2+n¡2¡4±,n,14#0(ni»

k= —Ini1 =O,n¡2=m3=2 [P4222J a

e
— Ini1 =l,n¡2=O,m3=2 [1422) ~

k=m1=n,2=m3=0 [P422] ~

k=,n1=0,m2= l,m,= —1 [14i223 ~

t

k=0,ni, = l,m2=m,= —x [P4122J

k#O (¡di)

alí /< (ni»
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TABLE 3. (Continuation)

k=mí=mu~m30EP
3l2) a

Fibering over

k+m¡/2+m
2/3+tfls/ó#O (ni!)

k=m,0,m2.1,?fl3 —2 [P6222]

k=I,m1=mi=ms’—l [P3,12]

k=m,=mz=>115
0 [P622] ai

k=0,,n¡=t,mvtfl3 —1 LP6,22]

¡‘¡bering over

85

k+(m¡+m
2+m3)¡

3tO (ni!)

k=m¡=O,niz= — t,m
3= 1 [R32] ~

k = — l,,n1 = l,nt, =0,m3 = 3 [P6322] a
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TABLE 4
Euclidean orbilolds: typc 4

EP432] ~ [F23] a

[P4232] a

[P213] a

2
3

[123] a

[¡23] a

(underlying space —FP’=3-ba¡l

86

[¡‘432] a

[P23] a [F4~32] a

[l4~32] a

½
[P4~32]

[1432] a

w/antipodal: bdr-4bdy)
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Proposition 6:
(1) A tonus knot of type (p,q) is non-trivial 1ff ¡p¡ and q~ are bofi>I.

(2) A non-trivial (anis kno is not amphicheiral.
(3) Twa non-trivial torus knots of types (p,q) atid (p’,q’) are equivalent 1ff

(p’,q’)=(±p,±q)or
(4) A link of s components, whic,h are fibers in sornefixed Sey’ertfibering of

53, is no amphicheiral y’ s ~ 3.
(5) Let L atid L’ be twa links, each consisting of s fibers (regulan ar

exceptional) in Sey’ent J¡benings of 53 by (p,q) atid (p’,q’) (orus knots
respective/y (Wifi O< q~ cp, Oc Iq’I ~ p’, g.c.d.(p,q) = g.c.U.(p’,q’)= 1). Let
5 : = # of components of L U {exceptional fibers}, la 5’ be simulanly
defined, atid suppose mm {S,S’} ~ 3 <5 and 5’ equal (he nutnben of cone
points in he base 2-orb(folds, afier labelling ihe components of L and L’).
Theti L atid L’ are equivalent Uf ¡‘ = p’, I~I = ¡q’~ and one of the following
holds (in particular, 5 = 5’):

(a) Both links consis enúrely of regular fibers.
(b) Bath links contain exactly one exceptiotial fiber, of orUer p = p’.
(c) Bofi links contain exactly one exceptional fiber, of order jq~ = Iq’I.
(U) Both links contain twa excepUonal ]¡bers.

Proof. Parts (I)-(3) are proven in [BZ, 3.E], and part (4) in [BM]. To
prove (5) (the «if» direction is trivial), assume that L and 1.1 are equivalent,
and look first at the components of L: you have either s (non-trivial) torus
knots of type (p,q), s — 1 (non-trivial) torus knots of type (p,q) and 1 trivial
knot, s—2 (non-trivial) torus knots of type (p,q) and 2 trivial knots, or s trivial
knots. 5 ~ 3 implies that diese situations are mutually exclusive. Clearly, L’
must have the same sorts of components. The first situation falís under case
(5a), and using (1)-(3), we can conclude that p=p’ and q¡=jq’j, as desired..
Similarly, the tliird situation falís under case (5d) and (1)-(3) suflice to
complete tlie argument. In the second situation, we could be either in case
(Sb) or in case (5c), but these cases can be distinguished by calculating the
linking number of the trivial component with one of the others (orient the
fibers compatibly); you get q and (sign q) p, respectively. In the fourth
situation, we could be in case (Sa) or in case (5b), but linking numbers again
serve to resolve ambiguities. Since we want to consider the links as
unoriented, we need to note that dxe magnitudes of dxe linking numbers
suffice to determine the equivalence classes. U

Corollary ‘7. ¡fthere Ls an onientation-preservitig Uy’feomorphism between the
twa 3-orby’olUs L(p,q:d1 U8:f,g) and L(p’,q’:U’¡ U:J’,g’) with OcIqI=p,

fp>1,gq> 1,fp’>L,g’q’> 1, mm {S,S’}~3, fien p=p’, q=q’,s=s’, {dí,..., d,}
U%}, f=f ami g=g’. U
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[BZ, Ibm 12.28] generalizes to show that there are no duplications in the
list of nilorbifolds of t~pe 2b (when the Euler number is restricted to positive
values); none of these orbifolds is amphicheiral. Finally, diere are no
nilorbifolds of type 2a which are also of type 2b, since the center of nrb is
infinite cyclic for the former and trivial for the latter.

8. SPI-IERICAL ORBIFOLOS AND ~2 y E’-ORBIFOLDS

Ihese orbifolds will fiber over over 2-orbifolds which are quotients of S~
by finite subgroups of Q(3). The finite subgroups of Q(3) are Usted (up to
conjugacy) in Table 5, using the Schónflies naming convention. Note that of
the ¡4 types (some containing an infinite number of orbifolds, some
containing one orbifold), 8 are topologically disks, and 5 are topologically
spheres. Several types degenerate to the same orbifold wtxen the parameter ti
equals 1: CIV=Cíh, D

1 =C2, D.1~=C2~, Díd=C2h.

TAnu~ 5
Closed 2-orbílolds with

n=l

D
2(:n,n) S2(n,n)

[C~~] . EC.]

D2(n;) /Ls\ S1(2,2,n>
[C,h] LX [D,3

Dft2;n> S2(2,3,3)

¿rn[anal

D2(3;2) (2,3,4)
[T~]

D2(;2,2,n) S2(2,3,5)
[D,hJ ¡7]
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TABLa 5. (Continuation)

3,3)
[T,,]

D’(;2,3,4)
[Oh]

D2(;2,3,5)
[1k]

Bad 2-orbifolds: S2(m), S’(m,n),D2(;m), D’(:ni,n) — wbere rn#n. (m,n> 1)

TABLa 6
Spberical orbifolds: type 2a

n>l, 3~aC5,k#0

S3 (with empty singular set) f¡bers over S20.
Fibering over S2(n,n) (fg=i are divisors of n):

g

89

RP2(n)

Fibering «ver S’(2,2,n) (1=i is a divisor of ti):
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TABLE 6. (Continuation)

Fibering over S’(2,3,a):

a

¡‘¡bering Over S’(2,3,4):

(20
y-

Fibering over 52(2,3,5):

TABLE 7

.Spherical orbifoids and 5’ x E’-orb~fi,¡cls: Jipe 2/,

•1> i

Fibering «ver

o
k—0(S’xE’) a

90

a

a Jis.

k#O (5’)
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k±m,In+nu/n#O(Sa)

¡‘ibering over

TABLE 7. (Continuation)

Fibering over

k=ni¡=,n2=0(S’XE’) ~

Qc,n

k—0 (S
2 x E’)

Fibering over

k—m—0(S2yE¡) ~

¡‘¡bering over

k=m=0(S2xE’) ak+m/2#0 (S3)

k#0 (S’)

k+mln#0 (S2)

¡‘ibering over

k+ nii/2+nt
2/2+m,/n#O (S

3) k=mí=m
2=m3=0(S

2xE’) a



92 William D. Dutibar

TABLE 7. (Continuation)

k= —i,m,=n2=1,mn3=0 (S’ xE’) a — Ini1 =0,m1= i,2m,=n <S’ ~<E’) a

¡‘ibering over

=~n2=Jn —0 (S
2 ~ E’) a

k=m¡=0,m,=i,m,=—1 (S’x ¡E’) ~

Fibcring over

¡‘ibering over
k

k+m,12+m
2/3+m,I5#0 (S’)

k=,n¡=,nz=,n3=O(S’xE’) a

— ini, = 1,ni, =0,,n3=2 (5’ x E’) a

k E a

k+m¡12+m,/3+nza/3#0 (¡E’)

k+m,12±Inz/3+,n,/4#0(¡E’)
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TABLE 8
Spherical orbifolds: type 4

a

cs~
a

eSDa

a
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As in the previous section, we use an algebraic classifxcation theorem (in
[TS], of the fínite subgroups of SQ(4)) to determine the groups which will
correspond to spherical orbifolds of type 4, and then fold np fundamental
domains for the group actions (on 53) to fxnd the orbifolds. These groups
are characterized by the fact that their images under the 2 maps

proj¿
SO(4)—*SO(3) x SO(3) —‘ SQ(3), i= 1,2,

are both non-cyclic, non-dihedral groups.
Qne could, without much further troubje, name the «spherical crystallo-

graphic groups» (using the convention of [IS]) corresponding to the spherical
orbifolds in these tables. We hope to do this in a future article.

The listed 52 y E’-orbifolds can mostly be distinguished from each other
by comparing singular sets on combinatorial grounds (edge labeis, number of
vertices, number of components). Upon inspection, only one duplication is
uncovered, that of the orbifold whose singular set consists of a theta-graph
and a circle, with alí edges labelled «2», arising from the «obvious» symmetry
G(—L:O,2;1,2;l,2:)=G(—l;l,2;L,2;O,2:).

The spherical orbifolds are trickier to sort out. A rigidity theorem due to
DeRham (see [Ro, Thm 4.3]) says that diffeomorphic spherical orbifolds of
any dimension are in fact isometric. Hence dic only problem is that of fxnding
the same kind of degeneracies that occurred when enumerating the spherical
2-orbifolds (i.e., difl’erent descriptions of the same subgroup of SQ(4)). Mere
are a few duplications that crept in:
L(4,3:2:l,l)=G(— l:l,2;l,3;l,3:)
L(5,3:2:1,1)= G(— l:l,2;1,3;1,5:)
L(3,2:2:l,2)= G(— l:l,2;1,3;l,4:)

G(k—1:1,2;l,2;m,n:)= .~ G(O:—n~ kn±m:2) u k±(rn¡n)>O
(G(O:n, —kti—m:2) if k±(m/n).cO

(. L(—k,2:2:n,1) k odd
Also, there are many ways to represent the same 2-bridge link (possibly with
struts connecting the pairs of bridges at each end) as a Montesinos graph
G(k:in¡,n;rn2,n:).

9. H
2 y E1-ORBIFOLDS AND T

1(H
2)-ORBIFOLDS

In terms of displaying the orbifolds, not much improvement can be made
over the figures in § 5, since hyperbolic base orbifolds are «generic». The facts
used in § 7 to weed out duplications and to prove non-amphicheirality apply
to this case as well.



G eome(ric orbU’olds 95

10. SOLVORBIFOLDS

As mentionned in Theorem 1, solvorbifolds alí fiber over either the cirele
or O: =circle/reflection, with generic fiber either 7’2 or S2(2,2,2,2). Thus, any
solvorbifold is either the mapping torus of some self-map of T2 (resp.
52(2222)) or can be split into 2 orbifolds-with-boundary which are of the
form (T2 y I)/(involution reversing both factors) (resp. (52(2,2,2,2) x I)¡(...)) by
removing a regular neighborhood of a (generie) fiber. There are only a finite
number of these pieces, up to diffeomorphism. Reversing the process yields alí
solvorbifolds (plus some nilorbifolds and some Euclidean orbifolds). Con-
sequently, it is clear that only those fxbering over 1 can have underlying space
53, most coming from gluing together two twisted 1-bundíes over D2(;2,2,2,2),

or D2(2;2,2) (each having the 3-balI as underlying space), and a few
coming from gluing togedier two twisted 1-bundíes over the annulus or the
Mébius band — with boundary points modelled on R2/reflection r (each
having a solid torus as underlying space).

In the former case, alí gluing maps can be considered as elements of the
mapping class group of the four-times-punctured sphere, which is a (split)
extension of 7/~ y Z2 by PSL(2,7Z). Because PSL(2,7Z) is isomorphic to ~2 * 7/3,
we can fxnd nice representatives of conjugacy classes, of the form

(~)fi±itifi±i«...fi±iy,where Y612 y 7/2.

The final refmement comes from noting which elements of the mapping
class group (acting on the boundary) extend across each of the 1-bundíes. Ihe
idea is to incorporate the ~ on the left end of the word and the y on the right
end into the «standard» picture for the 1-bundíes. The braid ~ can be pushed
into the twisted 1-bundle over D2(2,2;) only at the cost of allowing two
alternative ways to draw it, since ~ does not extend across Uds bundle (it does
extend over the other two bundíes). Similarly, two elements of 7/2 x 7/2 do not
extend across the 1-bundle over D2(2;2,2), and we need two alternative
pictures for this bundle. Ihus there are 25 a priori subcases (5 = 1 + 2 + 2
clioices for the top, 5 for the bottom). Making use of the symmetries to be
described in Proposition 9 and the following remark, we can reduce
consideration to 11 subcases listed in Figure 7.

top
bottom D%2,2,2,2) D2(2,2;) D2(2;2,2)

D2(2,2,2,2) 1 2,3 7

D2(2,2;) 4,5,6 8,9

D2(2;2,2) 10,11

FIGURE 7
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words (read left to right) in the letters ~, fi, and fi’, can be
into 3-strand braids (read top to bottom) in the «letters» given in

a
—1a

k Nl
FIGURE 8

In fact, with the reductions now made, the word can be
the successive exponents of fi. There are exceptional
Euclidean and nilorbifolds, whicli falí into three classes:

described by giving
sequences yielding

subcases 1-6:
+1,+1,..~ +1 or —L,—l,..., —1 (of length~l) orO

subcases 7-9:
±1,+1,..~+1,—1 or —l,—1,..., —1,±I<oflength~2)or +1 or —I
orO

subcases 10-11:
—1,+1,±L,...,±1,—l or ±1,—1,—1,...,---I,+l (of length~3) or

or —1,—1 or +1 or —1 or 0
Ihe following proposition notes an obvious collection of symmetries

(giving a sufficient condition for amphicheirality).

Proposition 8: In subeases 1,4 and 10, reflecting a solvorby’old (with fi-
exponent sequence Y) ¡ti Ihe xz-platie (taking the plane of the paper ¡to be the
xy-plane) produces a solvorbifold in the same subcase with f3-exponen¡t sequence
_ 1/’, read backwards.

Proof. Immediate using ~ U

Proposition 9: In subcases 1,5,6, and .10, rotating a solvorbfrold (with fi-
exponent sequence Y) by 1800 about a horizontal Une ¡ti the plane of ¡the paper
produces a solvorby’old in (he sanie subcase wfth fi-expaneti sequence Y read
backwards.

Proof. Immediate, since tixe «letters» cx and /3 are mapped to « and ~/3a
respectively. U

These
transíated
Figure 8.
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TABLE 9
Solvorbifo!ds: type 3

2

QE-)

o

8

3

o
1

7

1k!—21>2
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Remark. Another way to alter an orbifold in Table 9 s~ that it appears
different is to add yy, for sorne ye 7/~ x 7/2, at the beginning or end of the
word, and tixen use conjugacy relations to push one of the y’s to the other end
of the word, at which point it has become a possibly different elemení

y 7/2. This is most useful when one of the ends is a twisted 1-bundie
over D2(2;2,2).

The T2-bundles over 1 are alí distinct (except (br the obvious
onentatíon-preserving symmetry interchanging k and 1, and the obvious
orientation-reversing symmetry negating both k and fl, as one can verify using
tIxe classification of 2-bridge knots and linking numbers of the components
with each other (well-defined up to sign, since the components of the links are
unoriented). Calculating of the monodromy of the T2-bundles over S’ which
double-cover distinguishes any remaining cases (cg., k= 1,1=5 from k= —1,
1=5). In particular, such an orbifold is an amphiclxeiral solvorbifold iff k= —,

(and k ~ 0).
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