Skip to main content
Log in

Normalized Solutions for the Fractional Choquard Equations with Hardy–Littlewood–Sobolev Upper Critical Exponent

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In the present paper, we study the existence of normalized ground states for the following nonlinear fractional Choquard equations with Hardy–Littlewood–Sobolev upper critical exponent:

$$\begin{aligned} (-\Delta )^su=\lambda u+\mu (I_\alpha *|u|^p)|u|^{p-2}u+(I_\alpha *|u|^{2^*_{\alpha ,s}}) |u|^{2^*_{\alpha ,s}-2}u,\quad x\in \mathbb R^{N}, \end{aligned}$$

having prescribed mass

$$\begin{aligned} \int _{\mathbb R^N}|u|^2dx=a>0, \end{aligned}$$

where \(N>2s\), \(s\in (0,1)\), \(\alpha \in (0,N)\), \( \underline{p}:= \frac{N+\alpha }{N}<p<\overline{p}:=\frac{N+2s+\alpha }{N}<2^*_{\alpha ,s}\), \(2^*_{\alpha ,s}:=\frac{N+\alpha }{N-2s}\) is the upper Hardy–Littlewood–Sobolev critical exponent, \(\mu >0\) and \(\lambda \in \mathbb R\). Furthermore, the qualitative behavior of the ground states as \(\mu \rightarrow 0^+\) is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum, D.: Lévy processes: from probability to finance and quantum groups. Notices Am. Math. Soc. 51(11), 1336–1347 (2004)

    Google Scholar 

  2. Appolloni, L., Secchi, S.: Normalized solutions for the fractional NLS with mass supercritical nonlinearity. J. Differ. Equ. 286, 248–283 (2021)

    MathSciNet  Google Scholar 

  3. Bartsch, T., Li, H., Zou, W.: Existence and asymptotic behavior of normalized ground states for Sobolev critical Schrödinger systems. Calc. Var. Partial Differ. Equ. 62, 9 (2023)

    Google Scholar 

  4. Bartsch, T., Liu, Y., Liu, Z.: Normalized solutions for a class of nonlinear Choquard equations. SN Partial Differ. Equ. Appl. 34, 24 (2020)

    Google Scholar 

  5. Bartsch, T., Molle, R., Rizzi, M., Verzini, G.: Normalized solutions of mass supercritical Schrödinger equations with potential. Commun. Partial Differ. Equ. 46, 1729–1756 (2021)

    Google Scholar 

  6. Cingolani, S., Gallo, M., Tanaka, K.: Normalized solutions for fractional nonlinear scalar field equations via Lagrangian formulation. Nonlinearity 34, 4017–4056 (2021)

    MathSciNet  Google Scholar 

  7. Cingolani, S., Gallo, M., Tanaka, K.: Symmetric ground states for doubly nonlocal equations with mass constraint. Symmetry 13, 1–17 (2021)

    Google Scholar 

  8. d’Avenia, P., Siciliano, G., Squassina, M.: On fractional Choquard equations. Math. Models Methods Appl. Sci. 25, 1447–1476 (2015)

    MathSciNet  Google Scholar 

  9. Feng, B., Zhang, H.: Stability of standing waves for the fractional Schrödinger–Hartree equation. J. Math. Anal. Appl. 460, 352–364 (2018)

    MathSciNet  Google Scholar 

  10. Feng, B., Chen, R., Liu, J.: Blow-up criteria and instability of normalized standing waves for the fractional Schrödinger–Choquard equation. Adv. Nonlinear Anal. 10, 311–330 (2021)

    MathSciNet  Google Scholar 

  11. Ji, C., Rǎdulescu, V.D.: Multi-bump solutions for the nonlinear magnetic Choquard equation with deepening potential well. J. Differ. Equ. 306, 251–279 (2022)

  12. Gao, F., Yang, M.: On the Brezis–Nirenberg type critical problem for nonlinear Choquard equation. Sci. China Math. 61, 1219–1242 (2018)

    MathSciNet  Google Scholar 

  13. Gou, T., Jeanjean, L.: Multiple positive normalized solutions for nonlinear Schrödinger systems. Nonlinearity 31, 2319–2345 (2018)

    MathSciNet  Google Scholar 

  14. Guo, Z., Zhao, L.: Ground states for fractional Choquard equations with magnetic fields and critical exponents. Georgian Math. J. 29(5), 699–713 (2022)

    MathSciNet  Google Scholar 

  15. Hirata, J., Tanaka, K.: Nonlinear scalar field equations with \(L^2\) constraint: mountain pass and symmetric mountain pass approaches. Adv. Nonlinear Stud. 19, 263–290 (2019)

    MathSciNet  Google Scholar 

  16. He, X., Rǎdulescu, V.D.: Small linear perturbations of fractional Choquard equations with critical exponent. J. Differ. Equ. 282, 481–540 (2021)

    MathSciNet  Google Scholar 

  17. He, X., Rǎdulescu, V.D., Zou, W.: Normalized ground states for the critical fractional Choquard equation with a local perturbation. J. Geom. Anal. 32, 252 (2022)

    MathSciNet  Google Scholar 

  18. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equation. Nonlinear Anal. TMA 28, 1633–1659 (1997)

    MathSciNet  Google Scholar 

  19. Li, G., Ye, H.: The existence of positive solutions with prescribed \(L^2\)-norm for nonlinear Choquard equations. J. Math. Phys. 55, 121501 (2014)

    MathSciNet  Google Scholar 

  20. Li, G., Luo, X.: Existence and multiplicity of normalized solutions for a class of fractional Choquard equations. Sci. China Math. 63, 539–558 (2021)

    MathSciNet  Google Scholar 

  21. Liu, M., Zou, W.: Normalized solutions for a system of fractional Schrödinger equations with linear coupling. Minimax Theory Appl. 7, 303–320 (2022)

    MathSciNet  Google Scholar 

  22. Lieb, E.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1976/1977)

  23. Lieb, E., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)

    Google Scholar 

  24. Lions, P.L.: The concentration-compactness principle in the calculus of variations: the locally compact case, Part II. Ann. Inst. H. Poincaré C Anal. Non Linéaire 2, 223–283 (1984)

  25. Li, G., Ye, H.: The existence of positive solutions with prescribed \(L^2\)-norm for nonlinear Choquard equations. J. Math. Phys. 55, 121501 (2014)

    MathSciNet  Google Scholar 

  26. Luo, H., Zhang, Z.: Normalized solutions to the fractional Schrödinger equations with combined nonlinearities. Calc. Var. Partial Differ. Equ. 59, 143 (2020)

    Google Scholar 

  27. Li, Q., Zou, W.: The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the \(L^2\)-subcritical and \(L^2\)-supercritical cases. Adv. Nonlinear Anal. 11, 1531–1551 (2022)

    MathSciNet  Google Scholar 

  28. Li, X., Ma, S.: Choquard equations with critical nonlinearities. Commun. Contemp. Math. 22(04), 1950023 (2020)

  29. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    MathSciNet  Google Scholar 

  30. Mederski, J., Schino, J.: Least energy solutions to a cooperative system of Schrödinger equations with prescribed \(L^2\)-bounds: at least \(L^2\)-critical growth. Calc. Var. Partial Differ. Equ. 61, 10–31 (2022)

    Google Scholar 

  31. Moroz, V., Schaftingen, J.V.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    MathSciNet  Google Scholar 

  32. Moroz, V., Schaftingen, J.V.: Existence of ground states for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015)

    Google Scholar 

  33. Moroz, I.M., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schrödinger–Newton equations. Class. Quantum Gravity 15, 2733–2742 (1998)

    Google Scholar 

  34. Meng, Y., He, X.: Multiplicity of concentrating solutions for Choquard equation with critical growth. J. Geom. Anal. 33, 78–29 (2023)

    MathSciNet  Google Scholar 

  35. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    MathSciNet  Google Scholar 

  36. Pekar, S.: Untersuchung über die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    Google Scholar 

  37. Penrose, R.: Ongravity’s role in quantum state reduction. Gen. Relativ. Gravitat. 28, 581–600 (1996)

    Google Scholar 

  38. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269, 6941–6987 (2020)

    MathSciNet  Google Scholar 

  39. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279, 108610–43 (2020)

    MathSciNet  Google Scholar 

  40. Shang, X., Ma, P.: Normalized solutions to the nonlinear Choquard equations with Hardy–Littlewood–Sobolev upper critical exponent. J. Math. Anal. Appl. 521, 126916–29 (2023)

    MathSciNet  Google Scholar 

  41. Wei, J., Wu, Y.: Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities. J. Funct. Anal. 283, 109574 (2022)

    Google Scholar 

  42. Ye, H.: Mass minimizers and concentration for nonlinear Choquard equations in \(^N\). Topol. Methods Nonlinear Anal. 48(2), 393–417 (2016)

    MathSciNet  Google Scholar 

  43. Ye, W., Shen, Z., Yang, M.: Normalized solutions for a critical Hartree equation with perturbation. J. Geom. Anal. 32, 242 (2022)

    MathSciNet  Google Scholar 

  44. Yuan, S., Chen, S., Tang, X.: Normalized solutions for Choquard equations with general nonlinearities. Electron. Res. Arch. 28, 291–309 (2020)

    MathSciNet  Google Scholar 

  45. Yang, T.: Normalized solutions for the fractional Schrödinger equation with a focusing nonlocal \(L^2\)-critical or \(L^2\)-supercritical perturbation. J. Math. Phys. 61, 051505 (2020)

    MathSciNet  Google Scholar 

  46. Yao, S., Chen, H., Rǎdulescu, V.D., Sun, J.: Normalized solutions for lower critical Choquard equations with critical Sobolev perturbation. SIAM J. Math. Anal. 54, 3696–3723 (2022)

    MathSciNet  Google Scholar 

  47. Zuo, J., Rădulescu, V.D.: Normalized solutions to fractional mass supercritical NLS systems with Sobolev critical nonlinearities. Anal. Math. Phys. 12, 140 (2022)

    MathSciNet  Google Scholar 

  48. Zuo, J., Liu, C., Vetro, C.: Normalized solutions to the fractional Schrödinger equation with potential. Mediterr. J. Math. 20(4), 216 (2023)

    Google Scholar 

  49. Zhen, M., Zhang, B.: Normalized ground states for the critical fractional NLS equation with a perturbation. Rev. Mat. Complut. 35, 89–132 (2022)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by the BIT Research and Innovation Promoting Project (Grant No. 2023YCXY046), NNSF (Grant Nos. 11971061 and 12271028), BNSF (Grant No. 1222017) and the Fundamental Research Funds for the Central Universities. The second author was supported by NNSF (Grant Nos. 12171497, 11771468 and 11971027). The authors thank the referees for many helpful comments which clarify the paper.

Author information

Authors and Affiliations

Authors

Contributions

Yuxi Meng and Xiaoming He wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yuxi Meng.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., He, X. Normalized Solutions for the Fractional Choquard Equations with Hardy–Littlewood–Sobolev Upper Critical Exponent. Qual. Theory Dyn. Syst. 23, 19 (2024). https://doi.org/10.1007/s12346-023-00875-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00875-z

Keywords

Mathematics Subject Classification

Navigation