Skip to main content
Log in

Non-existence Results for a Nonlinear Fractional System of Differential Problems

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The non-existence of solutions is discussed for a system of fractional differential equations including two types of fractional derivatives: the Caputo fractional derivative (CFD) and the Riemann–Liouville fractional derivative (RLFD). The nonlinear sources are nonlocal in time. The system we consider is more general than those previously discussed in the literature. Our results are obtained by using several properties of fractional derivatives, the test-function method and by applying some integral inequalities. Finally, we provide some examples to illustrate our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Agarwal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A: Math. Theor. 40(24), 6287–6303 (2007)

    Article  MathSciNet  Google Scholar 

  2. Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109(3), 973–1033 (2010)

    Article  MathSciNet  Google Scholar 

  3. Agarwal, R.P., Belmekki, M., Benchohra, M.: A survey on semilinear differential equations and inclusions involving Riemann–Liouville fractional derivative. Adv. Differ Equ. 2009(1), 1–47 (2009)

    Article  MathSciNet  Google Scholar 

  4. Anastassiou, G.A.: Opial type Inequalities involving Riemann–Liouville fractional derivatives of two functions with applications. Math. Comput. Model. 48, 344–374 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bas, E., Ozarslan, R., Baleanu, D., Ercan, A.: Comparative simulations for solutions of fractional Sturm–Liouville problems with non-singular operators. Adv. Differ Equ. 2018(1), 1–19 (2018)

    Article  MathSciNet  Google Scholar 

  6. Ercan, A., Ozarslan, R., Bas, E.: Existence and uniqueness analysis of solutions for Hilfer fractional spectral problems with applications. Comput. Appl. Math. 40(1), 1–18 (2021)

    Article  MathSciNet  Google Scholar 

  7. Furati, K.M., Tatar, N.-E.: An existence result for a nonlocal fractional differential problem. J. Fract. Calc. 26, 43–51 (2004)

    MathSciNet  Google Scholar 

  8. Furati, K.M., Tatar, N.-E.: Behavior of solutions for a weighted Cauchy-type fractional differential problem. J. Fract. Calc. 28, 23–42 (2005)

    MathSciNet  Google Scholar 

  9. Furati, K.M., Kirane, M.: Necessary conditions for the existence of global solutions to systems of fractional differential equations. Fract. Calc. Appl. Anal. 11(3), 281–298 (2008)

    MathSciNet  Google Scholar 

  10. Kassim, M.D., Ali, S.M., Abdo, M.S., Jarad, F.: Non-existence results of Caputo-type fractional problem. Adv. Diff. Eq. 2021, 1–12 (2021)

    Google Scholar 

  11. Kassim, M.D., Furati, K.M., Tatar, N.-E.: On a differential equation involving Hilfer–Hadamard fractional derivative. Abstr. Appl. Anal. 2012, 1–17 (2012)

    MathSciNet  Google Scholar 

  12. Kassim, M.D., Furati, K.M., Tatar, N.-E.: Non-existence for fractionally damped fractional differential problems. Acta Math. Sci. 37(1), 119–130 (2017)

    Article  MathSciNet  Google Scholar 

  13. Kassim, M.D., Tatar, N.-E.: Convergence of solutions of fractional differential equations to power-type functions. Electron. J. Diff. Equ. 2020(111), 1–14 (2020)

    MathSciNet  Google Scholar 

  14. Kassim, M.D., Tatar, N.-E.: Asymptotic behavior of solutions of fractional differential equations with Hadamard fractional derivatives. Fract. Calc. Appl. Anal. 24(2), 483–508 (2021)

    Article  MathSciNet  Google Scholar 

  15. Kassim, M.D., Tatar, N.-E.: Non-existence of global solutions for fractional differential problems with power type source term. Mediterr. J. Math. 18(6), 1–13 (2021)

    Article  Google Scholar 

  16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Oxford (2006)

    Book  Google Scholar 

  17. Kilbas, A.A., Marichev, O.I., Samko, S.G.: Fractional Integral and Derivatives (Theory and Applications). Gordon and Breach, Switzerland (1993)

    Google Scholar 

  18. Kirane, M., Medved, M., Tatar, N.-E.: On the non-existence of blowing-up solutions to a fractional functional differential equations. Georgian Math. J. 19, 127–144 (2012)

    Article  MathSciNet  Google Scholar 

  19. Kirane, M., Tatar, N.-E.: Non-existence of solutions to a hyperbolic equation with a time fractional damping. Zeitschrift für Anal. und ihre Anwendung 25, 131–142 (2006)

    Article  Google Scholar 

  20. Kirane, M., Tatar, N.-E.: Absence of local and global solutions to an elliptic system with time-fractional dynamical boundary conditions. Sib. J. Math. 48(3), 477–488 (2007)

    Article  Google Scholar 

  21. Kirane, M., Laskri, Y., Tatar, N.-E.: Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives. J. Math. Anal. Appl. 312(2), 488–501 (2005)

    Article  MathSciNet  Google Scholar 

  22. Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities: Cauchy’s Equation and Jensen’s Inequality. Birkh äuser, Cham (2009)

    Book  Google Scholar 

  23. Laskri, Y., Tatar, N.-E.: The critical exponent for an ordinary fractional differential problem. Comput. Math. Appl. 59, 1266–1270 (2010)

    Article  MathSciNet  Google Scholar 

  24. Mehandiratta, V., Mehra, M., Leugering, G.: Existence and uniqueness results for a nonlinear Caputo fractional boundary value problem on a star graph. J. Math. Anal. Appl. 477(2), 1243–1264 (2019)

    Article  MathSciNet  Google Scholar 

  25. Mehandiratta, V., Mehra, M., Leugering, G.: Fractional optimal control problems on a star graph: optimality system and numerical solution. Math. Control Relat. Fields 11(1), 189–209 (2021)

    Article  MathSciNet  Google Scholar 

  26. Mehandiratta, V., Mehra, M., Leugering, G.: Distributed optimal control problems driven by space-time fractional parabolic equations. Control. Cybern. 51(2), 191–226 (2022)

    Article  MathSciNet  Google Scholar 

  27. Mehandiratta, V., Mehra, M., Leugering, G.: Well-posedness, optimal control and discretization for time-fractional parabolic equations with time-dependent coefficients on metric graphs. Asian J. Control. 25(3), 2360–2377 (2023)

    Article  MathSciNet  Google Scholar 

  28. Messaoudi, S.A., Said-Houari, B., Tatar, N.-E.: Global existence and asymptotic behavior for a fractional differential equation. Appl. Math. Comput. 188(2), 1955–1962 (2007)

    MathSciNet  Google Scholar 

  29. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    Google Scholar 

  30. Mitidieri, E., Pohozaev, S.I.: A priori estimates and blow-up of solutions to non-linear partial differential equations and inequalities. Proc. Steklov Inst. Math. 234, 3–383 (2001)

    Google Scholar 

  31. Nasir, J., Dokuyucu, M.A., Akdemir, A.O.: New variants of Hermite–Hadamard type inequalities via generalized fractional operator for differentiable functions. Turk. J. Sci. 7(3), 185–201 (2022)

    Google Scholar 

  32. Oldham, K.B., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Elsevier, London (1974)

    Google Scholar 

  33. Ozarslan, R., Ercan, A., Bas, E.: Novel fractional models compatible with real world problems. Fractal Fract. 3(2), 1–12 (2019)

    Article  Google Scholar 

  34. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier, London (1998)

    Google Scholar 

  35. Rashid, M., Kalsoom, A., Ghaffar, A., Inc, M., Sene, N.: A Multiple fixed point result for \(\left( \theta ,\phi ,\psi \right) \)-type contractions in the partially ordered \(s\)-distance spaces with an application. J. Funct. Sp. 2022, 1–10 (2022)

    MathSciNet  Google Scholar 

  36. Sarıkaya, M.Z., Bilişik, C.C.: Opial–Jensen and functional inequalities for convex functions. J. Frac. Calc. Nonlinear Syst. 3(2), 27–36 (2022)

    Article  Google Scholar 

  37. Sene, N.: Fundamental results about the fractional integro-differential equation described with Caputo derivative. J. Funct. Sp. 2022, 1–10 (2022)

    Article  MathSciNet  Google Scholar 

  38. Tariq, M., Soubhagya, K.S., Nasir, J., Awan, S.K.: Some Ostrowski type integral inequalities using hypergeometric functions. J. Fract. Calc. Nonlinear Syst. 2(1), 24–41 (2021)

    Article  Google Scholar 

  39. Tatar, N.-E.: Non-existence results for a fractional problem arising in thermal diffusion in fractal media. Chaos Solitons Fractals 36, 1205–1214 (2008)

    Article  MathSciNet  Google Scholar 

  40. Tatar, N.-E.: Existence results for an evolution problem with fractional nonlocal conditions. Comput. Math. Appl. 60, 2971–2982 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author T. Abdeljawad would like to thank Prince Sultan University for the support through the TAS research lab.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contribution in this manuscript.

Corresponding author

Correspondence to Thabet Abdeljawad.

Ethics declarations

Conflicts of interest

There exist no competing interest regarding this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassim, M.D., Abdeljawad, T. Non-existence Results for a Nonlinear Fractional System of Differential Problems. Qual. Theory Dyn. Syst. 23, 17 (2024). https://doi.org/10.1007/s12346-023-00869-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00869-x

Keywords

Mathematics Subject Classification

Navigation