Skip to main content
Log in

Existence of Solutions for a Coupled System of Nonlinear Implicit Differential Equations Involving \(\varrho \)-Fractional Derivative with Anti Periodic Boundary Conditions

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper is concerned with a new class of coupled implicit systems involving \(\varrho \)-fractional derivatives of different orders and anti periodic boundary conditions. We first convert the given implicit problem into a fixed point problem and then apply the fixed point theorems due to Krasnoselskii and Banach to establish the existence and uniqueness of its solutions. Examples are given for the illustration of the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to \(1-\)D fractional order diffusion equations. Math. Comp. 87, 2273–2294 (2018)

    MathSciNet  Google Scholar 

  2. Wang, H., Zheng, X.: Well posedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475, 1778–1802 (2019)

    MathSciNet  Google Scholar 

  3. Zheng, X., Wang, H.: An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation. SIAM J. Numer. Anal. 58, 2492–2514 (2020)

    MathSciNet  Google Scholar 

  4. Ding, Y., Wang, Z., Ye, H.: Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Contr. Sys. Techn. 20, 763–769 (2012)

    Google Scholar 

  5. Javidi, M., Ahmad, B.: Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system. Ecol. Modell. 318, 8–18 (2015)

    Google Scholar 

  6. Li, P., Gao, R., Xu, C., Li, Y., Akgul, A., Baleanu, D.: Dynamics exploration for a fractional-order delayed zooplankton-phytoplankton system. Chaos Solitons Fractals 166, 112975, 15 (2023)

    MathSciNet  Google Scholar 

  7. Ali, M.S., Narayanan, G., Shekher, V., Alsaedi, A., Ahmad, B.: Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays. Commun. Nonlinear Sci. Numer. Simul. 83, 105088, 22 (2020)

    MathSciNet  Google Scholar 

  8. Xu, Y., Li, Y., Li, W.: Adaptive finite-time synchronization control for fractional-order complex-valued dynamical networks with multiple weights. Commun. Nonlinear Sci. Numer. Simul. 85, 105239 (2020)

    MathSciNet  Google Scholar 

  9. Ou, W., Xu, C., Cui, Q., Liu, Z., Pang, Y., Farman, M., Ahmad, S., Zeb, A.: Mathematical study on bifurcation dynamics and control mechanism of tri-neuron BAM neural networks including delay. Math. Methods Appl. Sci. (2023). https://doi.org/10.1002/mma.9347

    Article  Google Scholar 

  10. Xu, Y., Li, W.: Finite-time synchronization of fractional-order complex-valued coupled systems. Phys. A 549, 123903 (2020)

    MathSciNet  Google Scholar 

  11. Zhang, F., Chen, G., Li, C., Kurths, J.: Chaos synchronization in fractional differential systems. Phil. Trans. R. Soc. A 371, 201201553 (2013)

    MathSciNet  Google Scholar 

  12. Fallahgoul, H.A., Focardi, S.M., Fabozzi, F.J.: Fractional Calculus and Fractional Processes with Applications to Financial Economics. Theory and Application, Elsevier/Academic Press, London (2017)

    Google Scholar 

  13. Ali, Z., Rabiei, F., Hosseini, K.: A fractal-fractional-order modified predator-prey mathematical model with immigrations. Math. Comput. Simul. 207, 466–481 (2023)

    MathSciNet  Google Scholar 

  14. Ahmad, B., Ntouyas, S.K.: Nonlocal Nonlinear Fractional-Order Boundary Value Problems. World Scientific, Singapore (2021)

    Google Scholar 

  15. Ben-Avraham, D., Havlin, S.: Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  16. Deshpande, A.S., Daftardar-Gejji, V.: On disappearance of chaos in fractional systems. Chaos Solitons Fractals 102, 119–126 (2017)

    MathSciNet  Google Scholar 

  17. Wang, S., Xu, M.: Axial Couette flow of two kinds of fractional viscoelastic fluids in an annulus. Nonlinear Anal. Real World Appl. 10, 1087–1096 (2009)

    MathSciNet  Google Scholar 

  18. Xu, L., Chu, X., Hu, H.: Exponential ultimate boundedness of non-autonomous fractional differential systems with time delay and impulses. Appl. Math. Lett. 99, 106000 (2020)

    MathSciNet  Google Scholar 

  19. He, D., Xu, L.: Exponential stability of impulsive fractional switched systems with time delays In: IEEE Transactions on Circuits and Systems II: Express Briefs, https://doi.org/10.1109/TCSII.2020.3037654

  20. Henderson, J., Luca, R., Tudorache, A.: On a system of fractional differential equations with coupled integral boundary conditions. Fract. Calc. Appl. Anal. 18, 361–386 (2015)

    MathSciNet  Google Scholar 

  21. Hristova, S., Agarwal, R., O’Regan, D.: Explicit solutions of initial value problems for systems of linear Riemann-Liouville fractional differential equations with constant delay. Adv. Differ. Equ. 180, 18 (2020)

    MathSciNet  Google Scholar 

  22. Guendouz, C., Lazreg, J.E., Nieto, J.J., Ouahab, A.: Existence and compactness results for a system of fractional differential equations. J. Funct. Spaces Art. 12, 5735140 (2020)

    MathSciNet  Google Scholar 

  23. Ahmad, B., Hamdan, S., Alsaedi, A., Ntouyas, S.K.: On a nonlinear mixed-order coupled fractional differential system with new integral boundary conditions. AIMS Math. 6, 5801–5816 (2021)

    MathSciNet  Google Scholar 

  24. Luca, R.: On a system of fractional differential equations with \(p\)-Laplacian operators and integral boundary conditions. Rev. Roum. Math. Pures Appl. 66, 749–766 (2021)

    MathSciNet  Google Scholar 

  25. Kang, P.: Positive solutions for a singular system of nonlinear fractional differential equations. Stud. Sci. Math. Hungar. 59, 183–195 (2022)

    MathSciNet  Google Scholar 

  26. Nyamoradi, N., Ahmad, B.: Generalized fractional differential systems with Stieltjes boundary conditions. Qual. Theory Dyn. Syst. 22, 6, 18 (2023)

    MathSciNet  Google Scholar 

  27. Kamsrisuk, N., Ntouyas, S.K., Ahmad, B., Samadi, A., Tariboon, J.: Existence results for a coupled system of \((k,\psi )\)-Hilfer fractional differential equations with nonlocal integro-multi-point boundary conditions. AIMS Math. 8, 4079–4097 (2023)

    MathSciNet  Google Scholar 

  28. Ma, L., Wu, B.: On the fractional Lyapunov exponent for Hadamard-type fractional differential system. Chaos 33, 013117, 9 (2023)

    MathSciNet  Google Scholar 

  29. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam, p. 204 (2006)

  30. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Google Scholar 

  31. Sousa, J., da Vanterler, C., de Oliveira, E.: Capelas: On the \(\hat{\psi }\)-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)

    MathSciNet  Google Scholar 

  32. Agarwal, R., Hristova, S., O’Regan, D.: Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives. AIMS Math. 7, 2973–2988 (2022)

    MathSciNet  Google Scholar 

  33. Nieto, J.J.: Fractional Euler numbers and generalized proportional fractional logistic differential equation. Fract. Calc. Appl. Anal. 25, 876–886 (2022)

    MathSciNet  Google Scholar 

  34. Kirane, M., Abdeljabbar, A.: Nonexistence of global solutions of systems of time fractional differential equations posed on the Heisenberg group. Math. Methods Appl. Sci. 45, 7336–7345 (2022)

    MathSciNet  Google Scholar 

  35. Wongcharoen, A., Ntouyas, S.K., Wongsantisuk, P., Tariboon, J.: Existence results for a nonlocal coupled system of sequential fractional differential equations involving \(\psi \)-Hilfer fractional derivatives. Adv. Math. Phys. 2021, 5554619 (2021)

    MathSciNet  Google Scholar 

  36. Kucche, K.D., Mali, A.D.: On the nonlinear \((k,\psi )\)-Hilfer fractional differential equations. Chaos Solitons Fractals 152, 111335 (2021)

    MathSciNet  Google Scholar 

  37. Agarwal, R.P., Assolami, A., Alsaedi, A., Ahmad, B.: Existence results and Ulam-Hyers stability for a fully coupled system of nonlinear sequential Hilfer fractional differential equations and integro-multistrip-multipoint boundary conditions. Qual. Theory Dyn. Syst. 21, 125 (2022)

    MathSciNet  Google Scholar 

  38. Kiataramkul, C., Ntouyas, S.K., Tariboon, J.: Existence results for \(\psi \)-Hilfer fractional integro-differential hybrid boundary value problems for differential equations and inclusions. Adv. Math. Phys. 2021, 1–12 (2021)

    MathSciNet  Google Scholar 

  39. Laadjal, Z., Jarad, F.: Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Math. 8, 1172–1194 (2023)

    MathSciNet  Google Scholar 

  40. Cen, Z., Liu, L.-B., Huang, J.: A posteriori error estimation in maximum norm for a two-point boundary value problem with a Riemann-Liouville fractional derivative. Appl. Math. Lett. 102, 106086, 8 (2020)

    MathSciNet  Google Scholar 

  41. Iskenderoglu, G., Kaya, D.: Symmetry analysis of initial and boundary value problems for fractional differential equations in Caputo sense. Chaos Solitons Fractals 134, 109684 (2020)

    MathSciNet  Google Scholar 

  42. Huang, H., Zhao, K., Liu, X.: On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Math. 7, 19221–19236 (2022)

    MathSciNet  Google Scholar 

  43. Zhao, K.: Existence, stability and simulation of a class of nonlinear fractional Langevin equations involving nonsingular Mittag-Leffler kernel. Fractal Fract. 6, 469 (2022)

    Google Scholar 

  44. Zhao, K.: Existence and UH-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions. Filomat 37, 1053–1063 (2023)

    MathSciNet  Google Scholar 

  45. Alsaedi, A., Alghanmi, M., Ahmad, B., Alharbi, B.: Uniqueness results for a mixed \(p\)-Laplacian boundary value problem involving fractional derivatives and integrals with respect to a power function. Electron. Res. Arch. 31, 367–385 (2023)

    MathSciNet  Google Scholar 

  46. Laledj, N., Salim, A., Lazreg, J.E., Abbas, S., Ahmad, B., Benchohra, M.: On implicit fractional \(q\)-difference equations: analysis and stability. Math. Methods Appl. Sci. 45, 10775–10797 (2022)

    MathSciNet  Google Scholar 

  47. Bouriah, S., Benchohra, M., Nieto, J.J., Zhou, Y.: Ulam stability for nonlinear implicit differential equations with Hilfer-Katugampola fractional derivative and impulses. AIMS Math. 7, 12859–12884 (2022)

    MathSciNet  Google Scholar 

  48. Salim, A., Benchohra, M., Graef, J.R., Lazreg, J.E.: Initial value problem for hybrid \(psi \)-Hilfer fractional implicit differential equations. J. Fixed Point Theory Appl. 24, 7, 14 (2022)

    Google Scholar 

  49. Vivek, D., Elsayed, E.M., Kanagarajan, K.: Attractivity of implicit differential equations with composite fractional derivative. Georg. Math. J. 30, 151–158 (2023)

    MathSciNet  Google Scholar 

  50. Guo, X., Zeng, H., Han, J.: Existence of solutions for implicit fractional differential equations with \(p\)-Laplacian operator and anti-periodic boundary conditions (Chinese). Appl. Math. J. Chin. Univ. Ser. A 38, 64–72 (2023)

    Google Scholar 

  51. Jiang, D., Bai, C.: Existence results for coupled implicit \(\psi \)-Riemann-Liouville fractional differential equations with nonlocal conditions. Axioms 11(103), 1–14 (2022)

    Google Scholar 

  52. Krasnoselskii, M.A.: Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 10, 123–127 (1955)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their useful comments on their work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in writing and reviewing this manuscript.

Corresponding author

Correspondence to Ravi P. Agarwal.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghanmi, M., Agarwal, R.P. & Ahmad, B. Existence of Solutions for a Coupled System of Nonlinear Implicit Differential Equations Involving \(\varrho \)-Fractional Derivative with Anti Periodic Boundary Conditions. Qual. Theory Dyn. Syst. 23, 6 (2024). https://doi.org/10.1007/s12346-023-00861-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00861-5

Keywords

Mathematics Subject Classification

Navigation