Skip to main content
Log in

Least Energy Solutions of the Schrödinger–Kirchhoff Equation with Linearly Bounded Nonlinearities

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we consider the following Schrödinger–Kirchhoff equation

$$ -\left( a+b \displaystyle \int _{\mathbb {R}^N} |\nabla u|^2 \ d x \right) \Delta u+V(x)u=f(x,u), \ \hbox {in}\ \mathbb {R}^N, $$

where \(N\ge 3\), a and b are positive parameters, V(x) is a positive and continuous potential. Under some suitable assumptions on the nonlinearity f(xu) which allow it is linearly bounded at infinity, the existence of least energy solutions and their asymptotic behavior as \(b\rightarrow 0\) are established via variational methods. The nonexistence of nontrivial solutions is also established for large b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, V.: Concentration phenomena for a class of fractional Kirchhoff equations in \(\mathbb{R} ^N\) with general nonlinearities. Nonlinear Anal. 195, 111761 (2020)

    MathSciNet  Google Scholar 

  2. Azzollini, A.: The elliptic Kirchhoff equation in \(\mathbb{R} ^{N}\) perturbed by a local nonlinearity. Diff. Integral Equ. 25, 543–554 (2012)

    Google Scholar 

  3. Azzollini, A., d’Avenia, P., Pomponio, A.: Multiple critical points for a class of nonlinear functionals. Ann. Mat. Pura. Appl. 190, 507–523 (2011)

    MathSciNet  Google Scholar 

  4. Batista, A.M., Furtado, M.F.: Existence of solution for an asymptotically linear Schrödinger-Kirchhoff equation. Potential Anal. 48, 609–619 (2019)

    Google Scholar 

  5. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I, II. Arch. Rational Mech. Anal. 82, 313–345 (1983)

    MathSciNet  Google Scholar 

  6. Chen, J., Li, Y.: Existence and concentration of ground state solutions for a critical Kirchhoff type equation in \(\mathbb{R} ^ 2\). Differ. Integral Equ. 35, 451–472 (2022)

    Google Scholar 

  7. Chen, M.Y., Li, Q.: Multi-peak solutions of a type of Kirchhoff equations with critical exponent. Complex Var. Elliptic 66, 1380–1398 (2021)

    MathSciNet  Google Scholar 

  8. Cheng, K., Wang, L.: Nodal solutions for the Kirchhoff-Schrödinger-Poisson system in \(\mathbb{R} ^3\). AIMS Math. 7, 16787–16810 (2022)

    MathSciNet  Google Scholar 

  9. Chipot, M., Lovat, B.: Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal. 30, 4619–4627 (1997)

    MathSciNet  Google Scholar 

  10. Deng, Y.B., Peng, S.J., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \( \mathbb{R} ^{3}\). J. Funct. Anal. 269, 3500–3527 (2015)

    MathSciNet  Google Scholar 

  11. Duan, Y., Tang, C.L.: Multiple solutions for the asymptotically linear Kirchhoff type equations on \({\mathbb{R} }^{N}\). Int. J. Differ. Equat. 2016, 1–9 (2016)

    Google Scholar 

  12. Eisley, G.: Nonlinear vibrations of beams and rectangular plates. Z. Anger. Math. Phys. 15, 167–175 (1964)

    MathSciNet  Google Scholar 

  13. Figueiredo, G., Ikoma, N., Junior, J.: Existence and concentration result for the Kirchhoff type equations with general nonlinearities. Arch. Rational Mech. Anal. 213, 931–979 (2014)

    MathSciNet  Google Scholar 

  14. Figueiredo, G., Vetro, C.: The existence of solutions for the modified \((p(x), q(x))\)-Kirchhoff equation. Electron J. Qual. Theo. 39, 1–16 (2022)

    Google Scholar 

  15. Fučik, S.: Boundary value problems with jumping nonlinearities. Čas. Pěst. Mat. 101, 69–87 (1976)

    MathSciNet  Google Scholar 

  16. He, X.M., Zou, W.M.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \( \mathbb{R} ^{3}\). J. Differ. Equ. 252, 1813–1834 (2012)

    Google Scholar 

  17. Jia, H.F.: Ground state solutions for the nonlinear Kirchhoff type equations with lower term. J. Math. Phys. 61, 111506 (2020)

    MathSciNet  Google Scholar 

  18. Gu, G.Z., Yang, X.Y., Yang, Z.P.: Infinitely many sign-changing solutions for nonlinear fractional Kirchhoff equations. Appl. Anal. 101, 5850–5871 (2022)

    MathSciNet  Google Scholar 

  19. Jia, H.F., Luo, X.: Existence and concentrating behavior of solutions for Kirchhoff type equations with steep potential well. J. Math. Anal. Appl. 467, 893–915 (2018)

    MathSciNet  Google Scholar 

  20. Ji, C., Fang, F., Zhang, B.: A multiplicity result for asymptotically linear Kirchhoff equations. Adv. Nonlinear Anal. 8, 267–277 (2019)

    MathSciNet  Google Scholar 

  21. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    Google Scholar 

  22. Li, C., Li, S.J., Liu, Z.L., Pan, J.Z.: On the Fučik spectrum. J. Differ. Equ. 244, 2498–2528 (2008)

    Google Scholar 

  23. Li, Q., Teng, K.M., Wu, X.: Ground states for Kirchhoff-type equations with critical growth. Commun. Pur. Appl. Anal. 17, 2623–2638 (2018)

    MathSciNet  Google Scholar 

  24. Li, Y.H., Li, F.Y., Shi, J.P.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ. 253, 2285–2294 (2012)

    MathSciNet  Google Scholar 

  25. Li, S., Liang, S., Repov, D.D.: On critical exponential Kirchhoff systems on the Heisenberg group. Rend. Circ. Mat. Palermo II. Ser. (2022). https://doi.org/10.1007/s12215-022-00815-x

    Article  Google Scholar 

  26. Li, F.Y., Rong, T., Liang, Z.P.: Fučik spectrum for the Kirchhoff-type problem and applications. Nonlinear Anal. 182, 280–302 (2019)

    MathSciNet  Google Scholar 

  27. Li, G.B., Ye, H.Y.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \( \mathbb{R} ^{3}\). J. Differ. Equ. 257, 566–600 (2014)

    Google Scholar 

  28. Li, L., Sun, J.J.: Existence and multiplicity of solutions for the Kirchhoff equations with asymptotically linear nonlinearities. Nonlinear Anal. RWA. 26, 391–399 (2015)

    MathSciNet  Google Scholar 

  29. Liang, S.H., Pucci, P., Zhang, B.L.: Multiple solutions for critical Choquard-Kirchhoff type equations. Adv. Nonlinear Anal. 10, 400–419 (2021)

    MathSciNet  Google Scholar 

  30. Liu, Z.L., Su, J.B., Weth, T.: Compactness results for Schrödinger equations with asymptotically linear terms. J. Differ. Equ. 231, 501–512 (2006)

    Google Scholar 

  31. Lions, J.L.: On some questions in boundary value problems of mathematical physics, in: Contemporary developments in continuum mechanics and partial differential equations, North-Holland Mathematics Studies , vol. 30, 284–346 (Amsterdam: North-Holland, 1978)

  32. Liu, Z.S., Guo, S.J.: Positive solutions for asymptotically linear Schrödinger-Kirchhoff-type equations. Math. Methods Appl. Sci. 37, 571–580 (2014)

    MathSciNet  Google Scholar 

  33. Mao, A.M., Zhang, Z.T.: Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition. Nonlinear Anal. 70, 1275–1287 (2009)

    MathSciNet  Google Scholar 

  34. Nie, J.J.: Existence and multiplicity of nontrivial solutions for a calss of Schrödinger-Kirchhoff-type equations. J. Math. Anal. Appl. 417, 65–79 (2014)

    MathSciNet  Google Scholar 

  35. Perera, K., Zhang, Z.T.: Nontrivial solutions of Kirchhoff-type problems via the Yang-index. J. Differ. Equ. 221, 246–255 (2006)

    MathSciNet  Google Scholar 

  36. Pucci, P., Xiang, M.Q., Zhang, B.L.: Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations. Adv. Nonlinear Anal. 5, 27–55 (2016)

    MathSciNet  Google Scholar 

  37. Rădulescu, V.D., Vetro, C.: Anisotropic Navier Kirchhoff problems with convection and Laplacian dependence. Math Meth Appl Sci. 46, 461–478 (2023)

    MathSciNet  Google Scholar 

  38. Shen, Z.P., Yu, J.S.: On positive least energy solutions for the nonlinear Kirchhoff type equations in \({\mathbb{R} }^3\). Appl. Anal. 99, 2137–2149 (2020)

    MathSciNet  Google Scholar 

  39. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. 7, 447–526 (1982)

    Google Scholar 

  40. Sun, J.T., Wang, K.H., Wu, T.-F.: On indefinite Kirchhoff-type equations under the combined effect of linear and superlinear terms. J. Math. Phys. 62, 031505 (2021)

    MathSciNet  Google Scholar 

  41. Tang, X.H., Cheng, B.T.: Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Differ. Equ. 261, 2384–2402 (2016)

    MathSciNet  Google Scholar 

  42. Wang, L.L., Han, Z.Q.: Multiple small solutions for Kirchhoff equation with local sublinear nonlinearities. Appl. Math. Lett. 59, 31–37 (2016)

    MathSciNet  Google Scholar 

  43. Wang, Z.P., Zhou, H.S.: Positive solution for a nonlinear stationary Schrödinger-Poisson system in \( \mathbb{R} ^{3}\). Discrete Contin. Dyn. Syst. 16, 809–816 (2007)

    Google Scholar 

  44. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Google Scholar 

  45. Wu, Y., Liu, S.B.: Existence and multiplicity of solutions for asymptotically linear Schrödinger-Kirchhoff equations. Nonlinear Anal. RWA. 26, 191–198 (2015)

    Google Scholar 

  46. Wu, Q., Wu, X.-P., Tang, C.-L.: Existence of positive solutions for the nonlinear Kirchhoff type equations in \(\mathbb{R} ^3\). Qual. Theor. Dyn. Syst. 21, 155 (2022)

    Google Scholar 

  47. Xiang, M.Q., Zhang, B.L., Radulescu, V.D.: Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian. Nonlinearity 29, 3186–3205 (2016)

  48. Zhang, F.B., Du, M.: Existence and asymptotic behavior of positive solutions for Kirchhoff type problems with steep potential well. J. Differ. Equ. 269, 10085–10106 (2020)

    MathSciNet  Google Scholar 

  49. Zhang, B.L., Radulescu, V.D., Wang, L.: Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian. P. Roy. Soc. Edinb A. 149, 1061–1081 (2019)

    MathSciNet  Google Scholar 

  50. Zhu, X.C., Wang, C.J., Xue, Y.F.: Constraint minimizers of Kirchhoff-Schrödinger energy functionals with \(L^2\)-subcritical perturbation. Mediterr. J. Math. 18, 224 (2021)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referees for valuable comments and suggestions, which helped us to improve our manuscript. Y. Liu was supported by National Natural Science Foundation of China (No. 12101020). L. Zhao was supported by National Natural Science Foundation of China (No. 12171014, 12171326).

Author information

Authors and Affiliations

Authors

Contributions

YL: wrote the main manuscript text. LZ: proposed the methodology and performed the analysis. All authors reviewed the manuscript.

Corresponding author

Correspondence to Leiga Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhao, L. Least Energy Solutions of the Schrödinger–Kirchhoff Equation with Linearly Bounded Nonlinearities. Qual. Theory Dyn. Syst. 23, 4 (2024). https://doi.org/10.1007/s12346-023-00859-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00859-z

Keywords

Mathematics Subject Classification

Navigation