Skip to main content
Log in

Infinitely Many Nodal Solutions for Kirchhoff-Type Equations with Non-odd Nonlinearity

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this study, we investigate the existence of infinitely many radial sign-changing solutions with nodal properties for a class of Kirchhoff-type equations possessing non-odd nonlinearity. By combining variational methods and analysis techniques, we prove that for any positive integer k, the equation has a radial solution that changes signs exactly k times. Furthermore, we demonstrate that the energy of such solutions is an increasing function of k. Owing to the inherent characteristics of these equations, the methods used herein significantly differ from those used in the existing literature. Particularly, we discover a unified method to obtain infinitely many radial sign-changing solutions with nodal properties for local and nonlocal problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Volume 140 of Pure and Applied Mathematics, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

  2. Bartsch, T., Willem, M.: Infinitely many radial solutions of a semilinear elliptic problem on \({\mathbb{R} }^N\). Arch. Rational. Mech. Anal. 124(3), 261–276 (1993)

    Article  MathSciNet  Google Scholar 

  3. Cao, D., Zhu, X.-P.: On the existence and nodal character of solutions of semilinear elliptic equations. Acta Math. Sci. Eng. Ed. 8(3), 345–359 (1988)

    Article  MathSciNet  Google Scholar 

  4. Chen, B., Ou, Z.-Q.: Sign-changing and nontrivial solutions for a class of Kirchhoff-type problems. J. Math. Anal. Appl. 481(1), 123476 (2020)

    Article  MathSciNet  Google Scholar 

  5. Deng, Y., Peng, S., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \({\mathbb{R} }^3\). J. Funct. Anal. 269(11), 3500–3527 (2015)

    Article  MathSciNet  Google Scholar 

  6. Figueiredo, G.M., Nascimento, R.G.: Existence of a nodal solution with minimal energy for a Kirchhoff equation. Math. Nachr. 288(1), 48–60 (2015)

    Article  MathSciNet  Google Scholar 

  7. Gao, L., Chen, C., Zhu, C.: Existence of sign-changing solutions for Kirchhoff equations with critical or supercritical nonlinearity. Appl. Math. Lett. 107, 106424 (2020)

    Article  MathSciNet  Google Scholar 

  8. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

  9. Guo, H., Tang, R., Wang, T.: Infinitely many nodal solutions with a prescribed number of nodes for the Kirchhoff type equations. J. Math. Anal. Appl. 505(2), Paper No. 125519 (2022)

  10. He, X., Zou, W.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \({\mathbb{R} }^3\). J. Differ. Equ. 252(2), 1813–1834 (2012)

    Article  Google Scholar 

  11. Kim, Seunghyeok, Seok, Jinmyoung: On nodal solutions of the nonlinear Schrödinger–Poisson equations. Commun. Contemp. Math. 14(6), 1250041 (2012)

    Article  MathSciNet  Google Scholar 

  12. Kirchhoff, G.R.: Mechanik. Teubner, Leipzig (1883)

    Google Scholar 

  13. Li, F., Gao, C., Zhu, X.: Existence and concentration of sign-changing solutions to Kirchhoff-type system with Hartree-type nonlinearity. J. Math. Anal. Appl. 448(1), 60–80 (2017)

    Article  MathSciNet  Google Scholar 

  14. Li, F., Zhu, X., Liang, Z.: Multiple solutions to a class of generalized quasilinear Schrödinger equations with a Kirchhoff-type perturbation. J. Math. Anal. Appl. 443(1), 11–38 (2016)

    Article  MathSciNet  Google Scholar 

  15. Li, Q., Teng, K., Xian, W.: Ground states for Kirchoff-type equations with critical or supercritical growth. Math. Methods Appl. Sci. 40(18), 6732–6746 (2017)

    Article  MathSciNet  Google Scholar 

  16. Li, Y., Geng, Q.: The existence of nontrivial solution to a class of nonlinear Kirchhoff equations without any growth and Ambrosetti–Rabinowitz conditions. Appl. Math. Lett. 96, 153–158 (2019)

    Article  MathSciNet  Google Scholar 

  17. Liang, Z., Li, F., Shi, J.: Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(1), 155–167 (2014)

    Article  MathSciNet  Google Scholar 

  18. Lions, J.-L.: On some questions in boundary value problems of mathematical physics. In: Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proceedings of the International Symposium, Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), volume 30 of North-Holland Mathematics Studies, pp. 284–346. North-Holland, Amsterdam (1978)

  19. Liu, Z., Wang, Z.-Q.: On the Ambrosetti–Rabinowitz superlinear condition. Adv. Nonlinear Stud. 4(4), 563–574 (2004)

    Article  MathSciNet  Google Scholar 

  20. Liu, Z., Wang, Z.-Q.: Vector solutions with prescribed component-wise nodes for a Schrödinger system. Anal. Theory Appl. 35(3), 288–311 (2019)

    Article  MathSciNet  Google Scholar 

  21. Mao, A., Zhang, Z.: Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition. Nonlinear Anal. 70(3), 1275–1287 (2009)

    Article  MathSciNet  Google Scholar 

  22. Michel, W.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser, Boston (1996)

  23. Miranda, C.: Un’osservazione su un teorema di Brouwer. Boll. Un. Mat. Ital. 2(3), 5–7 (1940)

    MathSciNet  Google Scholar 

  24. Nehari, Z.: Characteristic values associated with a class of non-linear second-order differential equations. Acta Math. 105, 141–175 (1961)

    Article  MathSciNet  Google Scholar 

  25. Shuai, W.: Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J. Differ. Equ. 259(4), 1256–1274 (2015)

    Article  MathSciNet  Google Scholar 

  26. Strauss, W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55(2), 149–162 (1977)

    Article  MathSciNet  Google Scholar 

  27. Sun, D., Zhang, Z.: Uniqueness, existence and concentration of positive ground state solutions for Kirchhoff type problems in \(\mathbb{R} ^3\). J. Math. Anal. Appl. 461(1), 128–149 (2018)

    Article  MathSciNet  Google Scholar 

  28. Sun, J., Li, L., Cencelj, M., Gabrovšek, B.: Infinitely many sign-changing solutions for Kirchhoff type problems in \(\mathbb{R} ^3\). Nonlinear Anal. 186, 33–54 (2019)

    Article  MathSciNet  Google Scholar 

  29. Wu, K., Zhou, F.: Nodal solutions for a Kirchhoff type problem in \(\mathbb{R} ^N\). Appl. Math. Lett. 88, 58–63 (2019)

    Article  MathSciNet  Google Scholar 

  30. Zhang, Z., Perera, K.: Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math. Anal. Appl. 317(2), 456–463 (2006)

    Article  MathSciNet  Google Scholar 

  31. Zhao, J., Liu, X.: Nodal solutions for Kirchhoff equation in \(\mathbb{R} ^3\) with critical growth. Appl. Math. Lett. 102, 106101 (2020)

    Article  MathSciNet  Google Scholar 

  32. Zhong, X.-J., Tang, C.-L.: The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem. Commun. Pure Appl. Anal. 16(2), 611–627 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Natural Science Foundation of China (Grant Nos.  12271313, 12101376 and 12071266) and Fundamental Research Program of Shanxi Province (Grant Nos. 202203021211309, 202103021224013, 20210302124528 and 202203021211300). The authors would like to thank the referees for their valuable and constructive suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanping Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Lemma A.1

Let \(g_i\in C(\mathbb {R}_+)\) for \(i=1,2,\dots ,k+1\). If

$$\begin{aligned} \lim _{r\rightarrow \infty }\frac{g_i(r)}{r}=\infty ,\ \ i=1,2,\dots ,k+1, \end{aligned}$$
(6.1)

then

$$\begin{aligned} \lim _{t\in \mathbb {R}_+^{k+1},|t|\rightarrow \infty }\frac{\sum _{i=1}^{k+1} g_i(t_i)}{\sum _{i=1}^{k+1}t_i}=\infty . \end{aligned}$$

Proof

According to the condition (6.1), \(g_i\) is bounded below, there exists \(C>0\) such that \(g_i(r)\geqslant -C\) for \(r\in \mathbb {R}_+\) and \(i=1,2,\dots ,k+1\). For any given \(M>0\), again according to (6.1), there exists \(R>0\) such that

$$\begin{aligned} \frac{g_i(r)-kC}{r}>(k+1)M,\ \ r\geqslant R,i=1,2,\dots ,k+1.\ \ \end{aligned}$$

Thus, when \(t\in \mathbb {R}_+^{k+1}\) with \(|t|=(\sum _{i=1}^{k+1}t_i^2)^{1/2}\geqslant \sqrt{k+1}R\), from the inequality \(|t|\leqslant \sqrt{k+1}\max \{t_1,t_2,\dots ,t_{k+1}\}\), it follows that \(\max \{t_1,t_2,\dots ,t_{k+1}\}\geqslant R\). Without loss of generality, we may assume that \(t_1=\max \{t_1,t_2,\dots ,t_{k+1}\}\). This implies that

$$\begin{aligned} \frac{\sum _{i=1}^{k+1}g_i(t_i)}{\sum _{i=1}^{k+1}t_i} \geqslant \frac{g_1(t_1)-kC}{(k+1)t_1}>M. \end{aligned}$$

This completes the proof. \(\square \)

Now, we present a simple implicit function theorem. Let us denote \(D=[c_1,d_1]\times [c_2,d_2]\times \dots \times [c_k,d_k]\).

Lemma A.2

Let \(F\in C([a,b]\times D)\). Assume that for each \(y\in D\), \(F(\cdot ,y)\) is decreasing on [ab] and there exists \(x_0\in [a,b]\) such that \(F(x_0,y)=0\). Then there exists an implicit function \(f\in C(D)\) such that \(F(f(y),y)=0\) for \(y\in D\).

Proof

According to the condition of Lemma A.2, there exists an implicit function \(f:D\rightarrow [a,b]\) such that \(F(f(y),y)=0\) for \(y\in D\). Now, we prove the continuity of f. In fact, suppose that f is discontinuous at some \(y_0\in D\). Then there exists \(\{y_n\}\subset D\) satisfying \(y_n\rightarrow y_0,x_n:=f(y_n)\rightarrow z_0\), but \(z_0\ne f(y_0)\). However, according to the continuity of F, we have that

$$\begin{aligned} F(z_0,y_0)=\lim _{n\rightarrow \infty }F(f(y_n),y_n)=0. \end{aligned}$$

Thus \(z_0=f(y_0)\). This leads to a contradiction, which completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zhang, C. & Liang, Z. Infinitely Many Nodal Solutions for Kirchhoff-Type Equations with Non-odd Nonlinearity. Qual. Theory Dyn. Syst. 23, 3 (2024). https://doi.org/10.1007/s12346-023-00857-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00857-1

Keywords

Navigation