Skip to main content
Log in

Pointed Gromov-Hausdorff Topological Stability for Non-compact Metric Spaces

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We combine the pointed Gromov-Hausdorff metric with the locally \(C^0\)-distance to obtain the pointed \(C^0\)-Gromov-Hausdorff distance between maps of possibly different non-compact pointed metric spaces. The latter is combined with Walters’s locally topological stability proposed by Lee–Nguyen–Yang, and GH-stability from Arbieto-Morales to obtain the notion of topologically GH-stable pointed homeomorphism. We give one example to show the difference between the distance when taking different base points in a pointed metric space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arbieto, A., Rojas, C.A.M.: Topological stability from Gromov-Hausdorff viewpoint. Discrete Contin. Dyn. Syst. 37(7), 3531–3544 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boyd, C.: On the structure of the family of Cherry fields on the torus. Ergod. Theory Dyn. Syst. 5(1), 27–46 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, vol. 33. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  4. Chulluncuy, A.: Topological stability for flows from a Gromov-Hausdorff viewpoint. Bull. Braz. Math. Soc. New Ser. 53(1), 307–341 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chung, N.-P.: Gromov-Hausdorff distances for dynamical systems. Discrete Contin. Dyn. Syst. 40(11), 6179–6200 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Das, T., Lee, K., Richeson, D., Wiseman, J.: Spectral decomposition for topologically Anosov homeomorphisms on noncompact and non-metrizable spaces. Topol. Appl. 160(1), 149–158 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. David, G.C.: Tangents and rectifiability of Ahlfors regular Lipschitz differentiability spaces. Geom. Funct. Anal. 25(2), 553–579 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Devaney, Robert L.: An Introduction to Chaotic Dynamical Systems, 2nd Edition. Addison-Wesley advanced book program, 3rd edn. CRC Press, Boca Raton, Florida; Abingdon, Oxon (2022)

  9. Dong, M., Lee, K., Morales, C.: Gromov-Hausdorff stability for group actions. Discrete Contin. Dyn. Syst. 41(3), 1347 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fukaya, K.: Hausdorff convergence of Riemannian manifolds and its applications. In: Recent Topics in Differential and Analytic Geometry, pp. 143–238. Academic Press, Boston, Massachusetts (1990)

  11. Grove, K., Petersen, P.: Manifolds near the boundary of existence. J. Differ. Geom. 33(2), 379–394 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Herron, D.A.: Gromov-Hausdorff distance for pointed metric spaces. J. Anal. 24(1), 1–38 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Irwin, M.C.: Smooth Dynamical Systems, vol. 17. World Scientific, Singapore (2001)

  14. Jansen, D.: Notes on pointed Gromov–Hausdorff convergence. arXiv preprint arXiv:1703.09595 (2017)

  15. Khan, A.G., Das, P., Das, T.: GH-stability and spectral decomposition for group actions. arXiv preprint arXiv:1804.05920, (2018)

  16. Kleiner, B., Mackay, J.M.: Differentiable structures on metric measure spaces: a primer. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 16(1), 41–64 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Lee, K., Nguyen, N.-T., Yang, Y.: Topological stability and spectral decomposition for homeomorphisms on noncompact spaces. Discrete Contin. Dyn. Syst. 38(5), 2487–2503 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, X., Shicheng, X.: A parametrized compactness theorem under bounded Ricci curvature. Front. Math. China 13(1), 67–85 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Meena, K., Yadav, A.: Clairaut Riemannian maps. Turk. J. Math. 47(2), 794–815 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meena, K., Yadav, A.: Conformal submersions whose total manifolds admit a Ricci soliton. Mediterr. J. Math. 20(3), 1–26 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  21. Flores, A.E.M., Nardulli, S.: Generalized compactness for finite perimeter sets and applications to the isoperimetric problem. J. Dyn. Control Syst. 28, 59–69 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Palis, J., Jr., De Melo, W.: Geometric Theory of Dynamical Systems. An Introduction. Springer, New York (1982)

  23. Petersen, Peter: Riemannian Geometry Graduate. Texts in Mathematics, 3rd edn. Springer, Cham (2016)

  24. Rong, X.: Convergence and collapsing theorems in Riemannian geometry. In: Handbook of Geometric Analysis (Vol. II), pp. 193–299. Higher Education Press and International Press, Beijing, Boston (2010)

  25. Rong, X., Shicheng, X.: Stability of almost submetries. Front. Math. China 6(1), 137–154 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rong, X., Shicheng, X.: Stability of \(e^\epsilon \)-Lipschitz and co-Lipschitz maps in Gromov-Hausdorff topology. Adv. Math. 231(2), 774–797 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sakai, T.: Riemannian Geometry, vol. 149. American Mathematical Soc, Providence, Rhode Island (1996)

    MATH  Google Scholar 

  28. Sinaei, Z.: Convergence of harmonic maps. J. Geom. Anal. 26(1), 529–556 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer Science and Business Media, Berlin (2009)

    MATH  Google Scholar 

  30. Walters, P.: Anosov diffeomorphisms are topologically stable. Topology 9(1), 71–78 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wong, J.: An extension procedure for manifolds with boundary. Pac. J. Math. 235(1), 173–199 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yadav, A., Meena, K.: Riemannian maps whose total manifolds admit a Ricci soliton. J. Geom. Phys. 168, 1–13 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yadav, A., Meena, K.: Clairaut Riemannian maps whose total manifolds admit a Ricci soliton. Int. J. Geom. Methods Mod. Phys. 19(2), 22500241–225002417 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the anonymous referees for their careful proofreading of the original manuscript. Their efforts significantly contributed to enhancing the quality of the presentation of our results. We thank Carlos Morales and Serafín Bautista for always being close to help. The second author is indebted to Stefano Nardulli for all the excellent advice and intuitive explanations of the geometry of non-compact metric spaces and the encouragement to work with them. The second author would also like to thank Minciencias Colombia for the postdoctoral project 80740-738-2019 and Universidad Nacional de Colombia Sede Manizales for its hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Mauricio Sánchez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author was supported by Minciencias Colombia grant number 80740-738-2019 and Universidad Nacional de Colombia sede Manizales.

Appendix A Appendix

Appendix A Appendix

Proposition A.1

(triangle inequality) Let \(\left( X_{m}, x_{m}\right) \) be pointed metric spaces for \(m=1,2,3\). If \(d^p_{GH}\left( (X_{m}, x_{m}),(X_{n}, x_{n})\right) \le 1 / 2\) for \((m,n)=(1,2)\) and (2, 3), then

$$\begin{aligned} d^p_{GH}\left( (X_{1}, x_{1}),(X_{3}, x_{3})\right) \le 2\left[ d^p_{GH}\left( (X_{1}, x_{1}),(X_{2}, x_{2})\right) + d^p_{GH}\left( (X_{2}, x_{2}),(X_{3}, x_{3})\right) \right] \end{aligned}$$

Proof

Let \(i_{mn}\in \textrm{App}_{\varepsilon _{mn}}\left( (X_{m}, x_{m}),(X_{n}, x_{n})\right) \), where (mn) equal to (1, 2), or (2, 3). We use the notation \(B^{m}\) for \(B^{X_m}\), and \(d^{m}\) for \(d^{X_m}\), and take \(\varepsilon _{mn}<\frac{1}{2}\). Then we have that \(i_{mn}(x_m)=x_n\),

$$\begin{aligned} dis(i_{mn})|_{B^m(x_m,\varepsilon _{mn}^{-1})}<\varepsilon _{mn}, \quad B^n(x_n,\varepsilon _{mn}^{-1}-\varepsilon _{mn}) \subset N_{\varepsilon _{mn}}\left( i_{mn}(B^n(x_n, \varepsilon _{mn}^{-1}))\right) . \end{aligned}$$

We call \(i_{13} = i_{23} \circ i_{12}\), and let \(\varepsilon _{13}=2\left( \varepsilon _{12}+\varepsilon _{23}\right) \). We want to show that \(i_{13}\in \textrm{App}_{\varepsilon _{13}}\left( (X_{1}, x_{1}),(X_{3}, x_{3})\right) \).

Observe that \(\varepsilon _{mn}<2\varepsilon _{mn}< \varepsilon _{13}< 1\),

Let \(p\in B^{1}\left( x_{1}, \varepsilon _{13}^{-1}\right) \subset B^{1}\left( x_{1}, \varepsilon _{12}^{-1}\right) \), and since \(dis(i_{12})|_{B^1(x_1,\varepsilon _{12}^{-1})}<\varepsilon _{12}\) and \(i_{12}(x_1)=x_2\) we have that

$$\begin{aligned} |d^1(p,x_1)-d^2(i_{12}(p),x_2)|\le \varepsilon _{12}, \end{aligned}$$

then

$$\begin{aligned} d^2(i_{12}(p),x_2)&\le d^1(p,x_1)+\varepsilon _{12}\\&\le \varepsilon _{13}^{-1}+\varepsilon _{12}\\&\le \frac{1+2\varepsilon _{12}(\varepsilon _{12} +\varepsilon _{23})}{2(\varepsilon _{12}+\varepsilon _{23})} \le \frac{1}{(\varepsilon _{12}+\varepsilon _{23})}\\&\le \frac{1}{\varepsilon _{23}}. \end{aligned}$$

Note that we use that \(\varepsilon _{mn}<1/2\).

Now if \(p_1,p_2\in B^{1}\left( x_{1}, \varepsilon _{13}^{-1}\right) \), \(i_{12}(p_1),i_{12}(p_2)\in B^{2}\left( x_{2}, \varepsilon _{23}^{-1}\right) \), then

$$\begin{aligned}&|d^1(p_1,p_2)-d^3(i_{13}(p_1),i_{13}(p_2))|\\&\quad \le |d^1(p_1,p_2)-d^2(i_{12}(p_1),i_{12}(p_2))| +|d^2(i_{12}(p_1),i_{12}(p_2))-d^3(i_{13}(p_1),i_{13}(p_2))|\\&\quad \le \varepsilon _{12}+\varepsilon _{23}<\varepsilon _{13}. \end{aligned}$$

Then \(dis(i_{13})|_{B^1(x_1,\varepsilon _{13}^{-1})} <\varepsilon _{13}\).

For the third part, let \(p_3\in B^{3}\left( x_{3}, \varepsilon _{13}^{-1}-\varepsilon _{13}\right) \subset B^{3}\left( x_{3}, \varepsilon _{23}^{-1}\right) \subset N_{\varepsilon _{23}}\left( i_{23}B^2(x_2,\varepsilon _{23}^{-1})\right) \), then there exists \(p_2\in B^2(x_2,\varepsilon _{23}^{-1})\), such that \(d^3(i_{23}(p_2),p_3)<\varepsilon _{23}\), and using the distortion of \(i_{23}\)

$$\begin{aligned} d^{2}\left( p_{2}, x_{2}\right)&\le d^{3}(i_{23} (p_{2}), x_{3})+\varepsilon _{23} \\&\le d^{3}(i_{23}(p_{2}), p_{3}) +d^{3}(p_{3},x_3)+\varepsilon _{23}\\&\le \varepsilon _{13}^{-1}-\varepsilon _{13}+2\varepsilon _{23} =\varepsilon _{13}^{-1}-2\varepsilon _{12}\\&\le \varepsilon _{12}^{-1}-\varepsilon _{12}, \end{aligned}$$

that is, \(p_{2} \in B^{2}\left( x_{2}, \varepsilon _{12}^{-1}-\varepsilon _{12}\right) \subset N_{\varepsilon _{12}}\left( i_{12}B^1(x_1,\varepsilon _{12}^{-1})\right) \). So there is \(p_{1} \in B_{1}\left( x_{1}, \varepsilon _{12}^{-1}\right) \) such that \(d^{2}\left( i_{12}\left( p_{1}\right) , p_{2}\right) <\varepsilon _{12},\) and again by the dilation of \(i_{12}\)

$$\begin{aligned} d^{1}\left( p_{1}, x_{1}\right)&\le d^{2}(i_{12}(p_{1}), p_{2})+d^{2}(p_{2}, x_{2})+\varepsilon _{12} \\&<\varepsilon _{12}+\varepsilon _{13}^{-1}-\varepsilon _{13} +2\varepsilon _{23}+\varepsilon _{12}\\&= \varepsilon _{13}^{-1}, \end{aligned}$$

that is \(p_1\in B^1(x_1,\varepsilon _{13}^{-1})\). Now using the distortion of \(i_{23}\) we have

$$\begin{aligned} d^{3}\left( i_{13}\left( p_{1}\right) , p_{3}\right)&\le d^{3}\left( i_{13}\left( p_{1}\right) , i_{23} \left( p_{2}\right) \right) +d^{3}\left( i_{23} \left( p_{2}\right) , p_{3}\right) \\&= d^{3}\left( i_{23}(i_{12}(p_{1})), i_{23}(p_{2})\right) +d^{3}\left( i_{23}(p_{2}), p_{3}\right) \\&\le d^{2}\left( i_{12}(p_{1}), p_{2}\right) +\varepsilon _{23}+d^{3}\left( i_{23}(p_{2}), p_{3}\right) \\&\le \varepsilon _{12}+2 \varepsilon _{23} \\&<\varepsilon _{13}. \end{aligned}$$

That is \(B^3(x_3,\varepsilon _{13}^{-1}-\varepsilon _{13})\subset N_{\varepsilon _{13}}(i_{13}(B^1(x_1,\varepsilon _{13}^{-1})))\).

Making (mn) equal to (2, 1), or (3, 2), and interchanging 1 by 3, we get that the same result for \(i_{31}\), and the proof is complete. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acevedo, L.E.O., Sánchez, H.M. Pointed Gromov-Hausdorff Topological Stability for Non-compact Metric Spaces. Qual. Theory Dyn. Syst. 22, 157 (2023). https://doi.org/10.1007/s12346-023-00842-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00842-8

Keywords

Mathematics Subject Classification

Navigation