Skip to main content
Log in

Minkowski Dimension and Slow–Fast Polynomial Liénard Equations Near Infinity

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In planar slow–fast systems, fractal analysis of (bounded) sequences in \({\mathbb {R}}\) has proved important for detection of the first non-zero Lyapunov quantity in singular Hopf bifurcations, determination of the maximum number of limit cycles produced by slow–fast cycles, defined in the finite plane, etc. One uses the notion of Minkowski dimension of sequences generated by slow relation function. Following a similar approach, together with Poincaré–Lyapunov compactification, in this paper we focus on a fractal analysis near infinity of the slow–fast generalized Liénard equations \(\dot{x}=y-\sum _{k=0}^{n+1} B_kx^k,\ \dot{y}=-\epsilon \sum _{k=0}^{m}A_kx^k\). We extend the definition of the Minkowski dimension to unbounded sequences. This helps us better understand the fractal nature of slow–fast cycles that are detected inside the slow–fast Liénard equations and contain a part at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Benoit, É.: Équations différentielles: relation entrée-sortie. C. R. Acad. Sci. Paris Sér. I. Math. 293(5), 293–296 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Burrell, S.A., Falconer, K.J., Fraser, J.M.: The fractal structure of elliptical polynomial spirals. Monatsh. Math. 199(1), 1–22 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. De Maesschalck, P., Dumortier, F.: Time analysis and entry-exit relation near planar turning points. J. Differ. Equ. 215(2), 225–267 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. De Maesschalck, P., Dumortier, F., and Roussarie, R.: Canard cycles—from birth to transition, volume 73 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Cham, [2021] (2021)

  5. De Maesschalck, P., Huzak, R., Janssens, A., Radunović, G.: Fractal codimension of nilpotent contact points in two-dimensional slow-fast systems. J. Differ. Equ. 355, 162–192 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dumortier, F., Herssens, C.: Polynomial Liénard equations near infinity. J. Differ. Equ. 153(1), 1–29 (1999)

    Article  MATH  Google Scholar 

  7. Elezović, N., Županović, V., Žubrinić, D.: Box dimension of trajectories of some discrete dynamical systems. Chaos Solitons Fractals 34(2), 244–252 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Falconer, K.: Fractal Geometry. John Wiley and Sons Ltd, Chichester (1990)

    MATH  Google Scholar 

  9. Horvat Dmitrović, L., Huzak, R., Vlah, D., Županović, V.: Fractal analysis of planar nilpotent singularities and numerical applications. J. Differ. Equ. 293, 1–22 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huzak, R.: Box dimension and cyclicity of canard cycles. Qual. Theory Dyn. Syst. 17(2), 475–493 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huzak, R.: Quartic Liénard equations with linear damping. Qual. Theory Dyn. Syst. 18(2), 603–614 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huzak, R., Crnković, V., Vlah, D.: Fractal dimensions and two-dimensional slow-fast systems. J. Math. Anal. Appl. 501(2), 21 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huzak, R., De Maesschalck, P.: Slow divergence integrals in generalized Liénard equations near centers. Electron. J. Qual. Theory Differ. Equ. 2014, 10 (2014)

    MATH  Google Scholar 

  14. Huzak, R., Vlah, D.: Fractal analysis of canard cycles with two breaking parameters and applications. Commun. Pure Appl. Anal. 18(2), 959–975 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huzak, R., Vlah, D., Žubrinić, D., Županović, V.: Fractal analysis of degenerate spiral trajectories of a class of ordinary differential equations. Appl. Math. Comput. 438, 127569 (2023)

    MathSciNet  MATH  Google Scholar 

  16. Lapidus, M.L., Radunović, G., Žubrinić, D.: Fractal zeta functions and fractal drums. Springer Monographs in Mathematics, Springer, Cham (2017)

  17. Mardešić, P., Resman, M., Županović, V.: Multiplicity of fixed points and growth of \(\varepsilon \)-neighborhoods of orbits. J. Differ. Equ. 253(8), 2493–2514 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Radunović, G., Žubrinić, D., Županović, V.: Fractal analysis of Hopf bifurcation at infinity. Int. J. Bifurcation Chaos Appl. Sci. Eng. 22(12), 15 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tricot, C.: Curves and fractal dimension. Springer-Verlag, New York. With a foreword by Michel Mendès France, Translated from the 1993 French original (1995)

  20. Žubrinić, D., Županović, V.: Fractal analysis of spiral trajectories of some vector fields in \({\mathbb{R} }^{3}\). C. R. Math. Acad. Sci. Paris 342(12), 959–963 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu, H., Li, W.: Isochronous properties in fractal analysis of some planar vector fields. Bull. Sci. Math. 134(8), 857–873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Žubrinić, D., Županović, V.: Poincaré map in fractal analysis of spiral trajectories of planar vector fields. Bull. Belg. Math. Soc. Simon Stevin 15, 947–960 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The research of R. Huzak and G. Radunović was supported by: Croatian Science Foundation (HRZZ) grant PZS-2019-02-3055 from “Research Cooperability” program funded by the European Social Fund. Additionally, the research of G. Radunović was partially supported by the HRZZ grant UIP-2017-05-1020.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived of the presented idea, developed the theory, performed the computations and contributed to the final manuscript.

Corresponding author

Correspondence to Ansfried Janssens.

Ethics declarations

Ethical Approval

Not applicable.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Family Blow-Up Near Infinity for \(m>2n+1\)

A Family Blow-Up Near Infinity for \(m>2n+1\)

m is odd. To desingularize (23), we use the family blow-up (24) at the origin in \((r,{\bar{y}},\epsilon )\)-space. We use different charts. In the family chart \(\{{\tilde{\epsilon }}=1\}\) we have

$$\begin{aligned} (r,{\bar{y}},\epsilon )=(v{\tilde{r}},v^{\frac{m+1}{2}-n-1}{\tilde{y}},v^{m-2n-1}) \end{aligned}$$

where \(({\tilde{r}},{\tilde{y}})\) is kept in a large compact set. System (23) changes, after division by \(v^{\frac{m+1}{2}-n-1}\) and \(v\rightarrow 0\), into

$$\begin{aligned} \left\{ \begin{array}{rcl} \dot{{\tilde{r}}} &{}=&{} -{\tilde{r}}\left( {\tilde{y}}-\tilde{r}^{\frac{m+1}{2}-n-1}\right) \\ \dot{{\tilde{y}}} &{}=&{}-A-\frac{m+1}{2}{\tilde{y}} \left( {\tilde{y}}-\tilde{r}^{\frac{m+1}{2}-n-1}\right) . \end{array}\right. \end{aligned}$$
(76)

When \(A=1\), system (76) has no singularities. When \(A=-1\), (76) has an attracting node at \(({\tilde{r}},{\tilde{y}})=(0, \sqrt{\frac{2}{m+1}})\) with eigenvalues \((-\sqrt{\frac{2}{m+1}},-\sqrt{2(m+1)})\) and a repelling node at \(({\tilde{r}},{\tilde{y}})=(0, -\sqrt{\frac{2}{m+1}})\) with eigenvalues \((\sqrt{\frac{2}{m+1}},\sqrt{2(m+1)})\).

In the phase directional chart \(\{{\tilde{y}}=1\}\) we have

$$\begin{aligned} (r,{\bar{y}},\epsilon )=(v{\tilde{r}},v^{\frac{m+1}{2}-n-1},v^{m-2n-1}{\tilde{\epsilon }}). \end{aligned}$$

System (23) changes, after dividing by \(v^{\frac{m+1}{2}-n-1}\), into

$$\begin{aligned} \left\{ \begin{array}{rcl} \dot{{\tilde{r}}} &{}=&{} \frac{2}{m-2n-1}{\tilde{r}} \left( {\tilde{\epsilon }} A+O({\tilde{r}} v {\tilde{\epsilon }})\right) +\frac{2(n+1)}{m-2n-1}\tilde{r} \Psi ({\tilde{r}},v) \\ \dot{v} &{}=&{}-\frac{2}{m-2n-1}v\left( \tilde{\epsilon }A+O({\tilde{r}} v {\tilde{\epsilon }})+\frac{m+1}{2}\Psi (\tilde{r},v)\right) \\ \dot{{\tilde{\epsilon }}} &{}=&{}2{\tilde{\epsilon }}\left( \tilde{\epsilon }A+O({\tilde{r}} v {\tilde{\epsilon }})+\frac{m+1}{2}\Psi (\tilde{r},v)\right) , \end{array}\right. \end{aligned}$$
(77)

where \(\Psi ({\tilde{r}},v)=1-{\tilde{r}}^{\frac{m+1}{2}-n-1}(1+O({\tilde{r}} v))\). When \(v={\tilde{\epsilon }}=0 \), (77) has a hyperbolic saddle at \({\tilde{r}}=0\) with eigenvalues \((\frac{2(n+1)}{m-2n-1},-\frac{m+1}{m-2n-1},m+1)\) and a semi-hyperbolic singularity at \({\tilde{r}}=1\) with the stable manifold \(\{v={\tilde{\epsilon }}=0 \}\) and a two-dimensional center manifold transverse to the stable manifold. Using asymptotic expansions in \({\tilde{\epsilon }}\) and the fact that the curve of singularities of (77) is \(\{\Psi (\tilde{r},v)=0,{\tilde{\epsilon }}=0\}\), the dynamics inside center manifolds is given by \(\{\dot{v}=v{\tilde{\epsilon }}\left( \frac{A}{n+1}+O(v,{\tilde{\epsilon }})\right) ,\dot{{\tilde{\epsilon }}}=-{\tilde{\epsilon }}^2\left( \frac{A(m-2n-1)}{n+1}+O(v,{\tilde{\epsilon }})\right) \}\).

In the phase directional chart \(\{{\tilde{y}}=-1\}\) we have

$$\begin{aligned} (r,{\bar{y}},\epsilon )=(v{\tilde{r}},-v^{\frac{m+1}{2}-n-1},v^{m-2n-1}{\tilde{\epsilon }}). \end{aligned}$$

System (23) changes, after dividing by \(v^{\frac{m+1}{2}-n-1}\), into

$$\begin{aligned} \left\{ \begin{array}{rcl} \dot{{\tilde{r}}} &{}=&{}- \frac{2}{m-2n-1}{\tilde{r}} \left( {\tilde{\epsilon }} A+O({\tilde{r}} v {\tilde{\epsilon }})\right) -\frac{2(n+1)}{m-2n-1}\tilde{r} \Psi ({\tilde{r}},v) \\ \dot{v} &{}=&{}\frac{2}{m-2n-1}v\left( {\tilde{\epsilon }} A+O({\tilde{r}} v {\tilde{\epsilon }})+\frac{m+1}{2}\Psi ({\tilde{r}},v)\right) \\ \dot{{\tilde{\epsilon }}} &{}=&{}-2{\tilde{\epsilon }}\left( {\tilde{\epsilon }} A+O({\tilde{r}} v {\tilde{\epsilon }})+\frac{m+1}{2}\Psi (\tilde{r},v)\right) , \end{array}\right. \end{aligned}$$
(78)

where \(\Psi ({\tilde{r}},v)=1+{\tilde{r}}^{\frac{m+1}{2}-n-1}(1+O({\tilde{r}} v))\). When \(v={\tilde{\epsilon }}=0 \), (78) has a hyperbolic saddle at \({\tilde{r}}=0\) with eigenvalues \((-\frac{2(n+1)}{m-2n-1},\frac{m+1}{m-2n-1},-(m+1))\).

We find one extra singularity in the phase directional chart \(\{{\tilde{r}}=1\}\)

$$\begin{aligned} (r,{\bar{y}},\epsilon )=(v,v^{\frac{m+1}{2}-n-1}\tilde{y},v^{m-2n-1}{\tilde{\epsilon }}). \end{aligned}$$

System (23) changes, after dividing by \(v^{\frac{m+1}{2}-n-1}\), into

$$\begin{aligned} \left\{ \begin{array}{rcl} \dot{{\tilde{y}}} &{}=&{}-{\tilde{\epsilon }} A+O( v {\tilde{\epsilon }}) -(n+1){\tilde{y}}\left( {\tilde{y}}-1+O(v)\right) \\ \dot{v} &{}=&{}-v\left( {\tilde{y}}-1+O(v)\right) \\ \dot{{\tilde{\epsilon }}} &{}=&{}(m-2n-1){\tilde{\epsilon }}\left( {\tilde{y}}-1+O(v)\right) . \end{array}\right. \end{aligned}$$
(79)

When \(v={\tilde{\epsilon }}=0 \), (79) has a hyperbolic saddle at \({\tilde{y}}=0\) with eigenvalues \((n+1,1,2n+1-m)\).

To desingularize (26), we use the family blow-up (24) at the origin in \((r,{\bar{y}},\epsilon )\)-space. As usual we work with different charts. In the family chart \(\{\tilde{\epsilon }=1\}\) system (26) changes, after division by \(v^{\frac{m+1}{2}-n-1}\) and \(v\rightarrow 0\), into

$$\begin{aligned} \left\{ \begin{array}{rcl} \dot{{\tilde{r}}} &{}=&{} {\tilde{r}}\left( {\tilde{y}}+(-1)^n\tilde{r}^{\frac{m+1}{2}-n-1}\right) \\ \dot{{\tilde{y}}} &{}=&{}A+\frac{m+1}{2}{\tilde{y}} \left( \tilde{y}+(-1)^n{\tilde{r}}^{\frac{m+1}{2}-n-1}\right) . \end{array}\right. \end{aligned}$$
(80)

When \(A=1\), system (80) has no singularities. When \(A=-1\), (80) has a repelling node at \(({\tilde{r}},{\tilde{y}})=(0, \sqrt{\frac{2}{m+1}})\) with the eigenvalues \(\sqrt{\frac{2}{m+1}}(1,m+1)\) and an attracting node at \(({\tilde{r}},{\tilde{y}})=(0, -\sqrt{\frac{2}{m+1}})\) with the eigenvalues \(-\sqrt{\frac{2}{m+1}}(1,m+1)\).

In the phase directional chart \(\{{\tilde{y}}=1\}\) system (26) changes, after dividing by \(v^{\frac{m+1}{2}-n-1}\), into

$$\begin{aligned} \left\{ \begin{array}{rcl} \dot{{\tilde{r}}} &{}=&{} -\frac{2}{m-2n-1}{\tilde{r}} \left( {\tilde{\epsilon }} A+O({\tilde{r}} v {\tilde{\epsilon }})\right) -\frac{2(n+1)}{m-2n-1}\tilde{r} \Psi ({\tilde{r}},v) \\ \dot{v} &{}=&{}\frac{2}{m-2n-1}v\left( {\tilde{\epsilon }} A+O({\tilde{r}} v {\tilde{\epsilon }})+\frac{m+1}{2}\Psi ({\tilde{r}},v)\right) \\ \dot{{\tilde{\epsilon }}} &{}=&{}-2{\tilde{\epsilon }}\left( {\tilde{\epsilon }} A+O({\tilde{r}} v {\tilde{\epsilon }})+\frac{m+1}{2}\Psi (\tilde{r},v)\right) , \end{array}\right. \end{aligned}$$
(81)

where \(\Psi ({\tilde{r}},v)=1+\tilde{r}^{\frac{m+1}{2}-n-1}((-1)^n+O({\tilde{r}} v))\). When \(v={\tilde{\epsilon }}=0 \), (81) has a hyperbolic saddle at \({\tilde{r}}=0\) with eigenvalues \((-\frac{2(n+1)}{m-2n-1},\frac{m+1}{m-2n-1},-(m+1))\) and, if n is odd, a semi-hyperbolic singularity at \({\tilde{r}}=1\) with the unstable manifold \(\{v={\tilde{\epsilon }}=0 \}\) and a two-dimensional center manifold transverse to the unstable manifold. The dynamics inside center manifolds is given by \(\{\dot{v}=v{\tilde{\epsilon }}\left( -\frac{A}{n+1}+O(v,{\tilde{\epsilon }})\right) ,\dot{{\tilde{\epsilon }}}={\tilde{\epsilon }}^2\left( \frac{A(m-2n-1)}{n+1}+O(v,{\tilde{\epsilon }})\right) \}\).

In the phase directional chart \(\{{\tilde{y}}=-1\}\) system (26) changes, after dividing by \(v^{\frac{m+1}{2}-n-1}\), into

$$\begin{aligned} \left\{ \begin{array}{rcl} \dot{{\tilde{r}}} &{}=&{} \frac{2}{m-2n-1}{\tilde{r}} \left( {\tilde{\epsilon }} A+O({\tilde{r}} v {\tilde{\epsilon }})\right) +\frac{2(n+1)}{m-2n-1}\tilde{r} \Psi ({\tilde{r}},v) \\ \dot{v} &{}=&{}-\frac{2}{m-2n-1}v\left( {\tilde{\epsilon }} A+O({\tilde{r}} v {\tilde{\epsilon }})+\frac{m+1}{2}\Psi ({\tilde{r}},v)\right) \\ \dot{{\tilde{\epsilon }}} &{}=&{}2{\tilde{\epsilon }}\left( {\tilde{\epsilon }} A+O({\tilde{r}} v {\tilde{\epsilon }})+\frac{m+1}{2}\Psi (\tilde{r},v)\right) , \end{array}\right. \end{aligned}$$
(82)

where \(\Psi ({\tilde{r}},v)=1-\tilde{r}^{\frac{m+1}{2}-n-1}((-1)^n+O({\tilde{r}} v))\). When \(v={\tilde{\epsilon }}=0 \), (82) has a hyperbolic saddle at \({\tilde{r}}=0\) with eigenvalues \((\frac{2(n+1)}{m-2n-1},-\frac{m+1}{m-2n-1},m+1)\) and, if n is even, a semi-hyperbolic singularity at \({\tilde{r}}=1\) with the stable manifold \(\{v={\tilde{\epsilon }}=0 \}\) and a two-dimensional center manifold transverse to the stable manifold. The dynamics inside center manifolds is given by \(\{\dot{v}=v{\tilde{\epsilon }}\left( \frac{A}{n+1}+O(v,{\tilde{\epsilon }})\right) ,\dot{{\tilde{\epsilon }}}={\tilde{\epsilon }}^2\left( -\frac{A(m-2n-1)}{n+1}+O(v,{\tilde{\epsilon }})\right) \}\).

We find one extra singularity in the phase directional chart \(\{{\tilde{r}}=1\}\). System (26) changes, after dividing by \(v^{\frac{m+1}{2}-n-1}\), into

$$\begin{aligned} \left\{ \begin{array}{rcl} \dot{{\tilde{y}}} &{}=&{}{\tilde{\epsilon }} A+O( v {\tilde{\epsilon }}) +(n+1){\tilde{y}}\left( {\tilde{y}}+(-1)^n+O(v)\right) \\ \dot{v} &{}=&{}v\left( {\tilde{y}}+(-1)^n+O(v)\right) \\ \dot{{\tilde{\epsilon }}} &{}=&{}-(m-2n-1){\tilde{\epsilon }}\left( \tilde{y}+(-1)^n+O(v)\right) . \end{array}\right. \end{aligned}$$
(83)

When \(v={\tilde{\epsilon }}=0 \), (83) has a hyperbolic saddle at \({\tilde{y}}=0\) with eigenvalues \((-1)^n(n+1,1,2n+1-m)\).

m is even. To desingularize (28), we use the family blow-up (29) at the origin in \((r,{\bar{y}},\epsilon )\)-space. In the family chart \(\{{\tilde{\epsilon }}=1\}\) system (28) changes, after division by \(v^{m-2n-1}\) and \(v\rightarrow 0\), into

$$\begin{aligned} \left\{ \begin{array}{rcl} \dot{{\tilde{r}}} &{}=&{} -\frac{1}{2}{\tilde{r}}\left( {\tilde{y}}-\tilde{r}^{m-2n-1}\right) \\ \dot{{\tilde{y}}} &{}=&{}-A-\frac{m+1}{2}{\tilde{y}} \left( {\tilde{y}}-\tilde{r}^{m-2n-1}\right) . \end{array}\right. \end{aligned}$$
(84)

System (84) has no singularities because \(A=1\).

In the phase directional chart \(\{{\tilde{y}}=1\}\) (28) changes, after dividing by \(v^{m-2n-1}\), into

$$\begin{aligned} \left\{ \begin{array}{rcl} \dot{{\tilde{r}}} &{}=&{} \frac{1}{m-2n-1}{\tilde{r}} \left( {\tilde{\epsilon }} A+O({\tilde{r}} v {\tilde{\epsilon }})\right) +\frac{n+1}{m-2n-1}{\tilde{r}} \Psi ({\tilde{r}},v) \\ \dot{v} &{}=&{}-\frac{1}{m-2n-1}v\left( {\tilde{\epsilon }} A+O({\tilde{r}} v {\tilde{\epsilon }})+\frac{m+1}{2}\Psi ({\tilde{r}},v)\right) \\ \dot{{\tilde{\epsilon }}} &{}=&{}2{\tilde{\epsilon }}\left( {\tilde{\epsilon }} A+O({\tilde{r}} v {\tilde{\epsilon }})+\frac{m+1}{2}\Psi (\tilde{r},v)\right) , \end{array}\right. \end{aligned}$$
(85)

where \(\Psi ({\tilde{r}},v)=1-{\tilde{r}}^{m-2n-1}(1+O({\tilde{r}} v))\). When \(v={\tilde{\epsilon }}=0 \), (85) has a hyperbolic saddle at \({\tilde{r}}=0\) with eigenvalues \((\frac{n+1}{m-2n-1},-\frac{m+1}{2(m-2n-1)},m+1)\) and a semi-hyperbolic singularity at \({\tilde{r}}=1\) with the stable manifold \(\{v={\tilde{\epsilon }}=0 \}\) and a two-dimensional center manifold transverse to the stable manifold. The dynamics inside center manifolds is given by \(\{\dot{v}=v{\tilde{\epsilon }}\left( \frac{A}{2(n+1)}+O(v,{\tilde{\epsilon }})\right) ,\dot{{\tilde{\epsilon }}}=-{\tilde{\epsilon }}^2\left( \frac{A(m-2n-1)}{n+1}+O(v,{\tilde{\epsilon }})\right) \}\).

Since \(m-2n-1\) is odd, we can cover the phase directional chart \(\{{\tilde{y}}=-1\}\) by applying \((t,{\tilde{r}},v)\mapsto (-t,-\tilde{r},-v)\) to (85). When \(v={\tilde{\epsilon }}=0 \), we find a hyperbolic saddle at \({\tilde{r}}=0\) with eigenvalues \((-\frac{n+1}{m-2n-1},\frac{m+1}{2(m-2n-1)},-(m+1))\).

We find one extra singularity in the phase directional chart \(\{{\tilde{r}}=1\}\) in which system (28) changes, after dividing by \(v^{m-2n-1}\), into

$$\begin{aligned} \left\{ \begin{array}{rcl} \dot{{\tilde{y}}} &{}=&{}-{\tilde{\epsilon }} A+O( v {\tilde{\epsilon }}) -(n+1){\tilde{y}}\left( {\tilde{y}}-1+O(v)\right) \\ \dot{v} &{}=&{}-\frac{1}{2}v\left( {\tilde{y}}-1+O(v)\right) \\ \dot{{\tilde{\epsilon }}} &{}=&{}(m-2n-1){\tilde{\epsilon }}\left( \tilde{y}-1+O(v)\right) . \end{array}\right. \end{aligned}$$
(86)

When \(v={\tilde{\epsilon }}=0 \), (86) has a hyperbolic saddle at \({\tilde{y}}=0\) with eigenvalues \((n+1,\frac{1}{2},2n+1-m)\).

To desingularize (30), we use the family blow-up (29) at the origin in \((r,\bar{y},\epsilon )\)-space. In the family chart \(\{{\tilde{\epsilon }}=1\}\) system (30) changes, after division by \(v^{m-2n-1}\) and \(v\rightarrow 0\), into

$$\begin{aligned} \left\{ \begin{array}{rcl} \dot{{\tilde{r}}} &{}=&{}\frac{1}{2} {\tilde{r}}\left( {\tilde{y}}+(-1)^n\tilde{r}^{m-2n-1}\right) \\ \dot{{\tilde{y}}} &{}=&{}-A+\frac{m+1}{2}{\tilde{y}} \left( \tilde{y}+(-1)^n{\tilde{r}}^{m-2n-1}\right) . \end{array}\right. \end{aligned}$$
(87)

Since \(A=1\), system (87) has a repelling node at \(({\tilde{r}},{\tilde{y}})=(0, \sqrt{\frac{2}{m+1}})\) with the eigenvalues \(\sqrt{\frac{2}{m+1}}(\frac{1}{2},m+1)\) and an attracting node at \(({\tilde{r}},{\tilde{y}})=(0, -\sqrt{\frac{2}{m+1}})\) with the eigenvalues \(-\sqrt{\frac{2}{m+1}}(\frac{1}{2},m+1)\).

In the phase directional chart \(\{{\tilde{y}}=1\}\) system (30) changes, after dividing by \(v^{m-2n-1}\), into

$$\begin{aligned} \left\{ \begin{array}{rcl} \dot{{\tilde{r}}} &{}=&{} \frac{1}{m-2n-1}{\tilde{r}} \left( {\tilde{\epsilon }} A+O({\tilde{r}} v {\tilde{\epsilon }})\right) -\frac{n+1}{m-2n-1}{\tilde{r}} \Psi ({\tilde{r}},v) \\ \dot{v} &{}=&{}\frac{1}{m-2n-1}v\left( -{\tilde{\epsilon }} A+O({\tilde{r}} v {\tilde{\epsilon }})+\frac{m+1}{2}\Psi ({\tilde{r}},v)\right) \\ \dot{{\tilde{\epsilon }}} &{}=&{}-2{\tilde{\epsilon }}\left( -{\tilde{\epsilon }} A+O({\tilde{r}} v {\tilde{\epsilon }})+\frac{m+1}{2}\Psi (\tilde{r},v)\right) , \end{array}\right. \end{aligned}$$
(88)

where \(\Psi ({\tilde{r}},v)=1+{\tilde{r}}^{m-2n-1}((-1)^n+O({\tilde{r}} v))\). When \(v={\tilde{\epsilon }}=0 \), (88) has a hyperbolic saddle at \({\tilde{r}}=0\) with eigenvalues \((-\frac{n+1}{m-2n-1},\frac{m+1}{2(m-2n-1)},-(m+1))\) and, if n is odd, a semi-hyperbolic singularity at \({\tilde{r}}=1\) with the unstable manifold \(\{v={\tilde{\epsilon }}=0 \}\) and a two-dimensional center manifold transverse to the unstable manifold. The dynamics inside center manifolds is given by \(\{\dot{v}=v{\tilde{\epsilon }}\left( \frac{A}{2(n+1)}+O(v,{\tilde{\epsilon }})\right) ,\dot{{\tilde{\epsilon }}}=-{\tilde{\epsilon }}^2\left( \frac{A(m-2n-1)}{n+1}+O(v,{\tilde{\epsilon }})\right) \}\).

We cover the phase directional chart \(\{{\tilde{y}}=-1\}\) by applying \((t,{\tilde{r}},v)\mapsto (-t,-{\tilde{r}},-v)\) to (88). When \(v={\tilde{\epsilon }}=0 \), we find a hyperbolic saddle at \({\tilde{r}}=0\) with eigenvalues \((\frac{n+1}{m-2n-1},-\frac{m+1}{2(m-2n-1)},m+1)\) and, if n is even, a semi-hyperbolic singularity at \({\tilde{r}}=1\) with the stable manifold \(\{v={\tilde{\epsilon }}=0 \}\) and a two-dimensional center manifold transverse to the stable manifold. The dynamics inside center manifolds is given by \(\{\dot{v}=-v{\tilde{\epsilon }}\left( \frac{A}{2(n+1)}+O(v,{\tilde{\epsilon }})\right) ,\dot{{\tilde{\epsilon }}}={\tilde{\epsilon }}^2\left( \frac{A(m-2n-1)}{n+1}+O(v,{\tilde{\epsilon }})\right) \}\).

We find one extra singularity in the phase directional chart \(\{{\tilde{r}}=1\}\). System (30) changes, after dividing by \(v^{m-2n-1}\), into

$$\begin{aligned} \left\{ \begin{array}{rcl} \dot{{\tilde{y}}} &{}=&{}-{\tilde{\epsilon }} A+O( v {\tilde{\epsilon }}) +(n+1){\tilde{y}}\left( {\tilde{y}}+(-1)^n+O(v)\right) \\ \dot{v} &{}=&{}\frac{1}{2}v\left( {\tilde{y}}+(-1)^n+O(v)\right) \\ \dot{{\tilde{\epsilon }}} &{}=&{}-(m-2n-1){\tilde{\epsilon }}\left( {\tilde{y}}+(-1)^n+O(v)\right) . \end{array}\right. \end{aligned}$$
(89)

When \(v={\tilde{\epsilon }}=0 \), (89) has a hyperbolic saddle at \({\tilde{y}}=0\) with eigenvalues \((-1)^n(n+1,\frac{1}{2},2n+1-m)\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Maesschalck, P., Huzak, R., Janssens, A. et al. Minkowski Dimension and Slow–Fast Polynomial Liénard Equations Near Infinity. Qual. Theory Dyn. Syst. 22, 154 (2023). https://doi.org/10.1007/s12346-023-00854-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00854-4

Keywords

Mathematics Subject Classification

Navigation