Skip to main content
Log in

Takens–Bogdanov Bifurcation for a Ratio-Dependent Predation Interaction Involving Prey-Competition and Predator-Age

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

A large number of articles have been devoted to the study of age-dependent predation interaction. Most of them concentrate on the existence of the solution and the non-trivial periodic solution. The strength of this text is that we mainly investigate the long-time behavior of the solution for a general ratio-dependent predation interaction involving prey-competition and predator-age in the form of an ODE and a PDE. Firstly, we prove that there are some variable values such that this ratio-dependent predation interaction has a unique positive equilibrium age profile with Takens–Bogdanov singularity. Secondly, under fit tiny perturbation, the ratio-dependent predation interaction generates the Takens–Bogdanov bifurcation in a small domain of this positive equilibrium age profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this paper because no datasets were generated or analysed during the current article.

References

  1. Freedman, H.I.: Deterministic mathematical models in population ecology. Biometrics 22(7), 219–236 (1980)

    MATH  Google Scholar 

  2. Hairston, N.G., Smith, F.E., Slobodkin, L.B.: Community structure, population control, and competition. Am. Nat. 94(879), 421–425 (1960)

    Google Scholar 

  3. Rosenzweig, M.L.: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171(3969), 385–387 (1971)

    Google Scholar 

  4. Luck, R.F.: Evaluation of natural enemies for biological control: a behavioral approach. Trends Ecol. Evol. 5(6), 196–199 (1990)

    Google Scholar 

  5. Akcakaya, H.R., Arditi, R., Ginzburg, L.R.: Ratio-dependent prediction: an abstraction that works. Ecology 76(3), 995–1004 (1995)

    Google Scholar 

  6. Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Ecology 56(1), 65–75 (1999)

    MATH  Google Scholar 

  7. Arditi, R., Ginzburg, L.R.: Coupling in predator–prey dynamics: ratio-dependence. J. Theor. Biol. 139(3), 311–326 (1989)

    Google Scholar 

  8. Gutierrez, A.P.: The physiological basis of ratio-dependent predator–prey theory: a metabolic pool model of Nicholson’s blowflies as an example. Ecology 73(5), 1552–1563 (1992)

    Google Scholar 

  9. Akcakaya, H.R.: Population cycles of mammals: evidence for a ratio-dependent predation hypothesis. Ecol. Monogr. 62(1), 119–142 (1992)

    Google Scholar 

  10. Bazykin, A.D.: Nonlinear Dynamics of Interacting Populations. World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, vol. 11. World Scientific Publishing Co., Inc., River Edge (1998)

    Google Scholar 

  11. Jost, C., Arino, O., Arditi, R.: About deterministic extinction in ratio-dependent predator–prey models. Bull. Math. Biol. 61(1), 19–32 (1999)

    MATH  Google Scholar 

  12. Hsu, S.B., Hwang, T.W., Kuang, Y.: Global analysis of the Michaelis–Menten-type ratio-dependent predator–prey system. J. Math. Biol. 42(6), 489–506 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Li, B.T., Kuang, Y.: Heteroclinic bifurcation in the Michaelis–Menten-type ratio-dependent predator–prey system. SIAM J. Appl. Math. 67(5), 1453–1464 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Ruan, S.G., Tang, Y.L., Zhang, W.N.: Versal unfoldings of predator–prey systems with ratio-dependent functional response. J. Differ. Equ. 249(6), 1410–1435 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Jiang, X., She, Z.K., Feng, Z.S., Zheng, X.L.: Bifurcation analysis of a predator-prey system with ratio-dependent functional response. Int. J. Bifurc. Chaos 27(14), 1750222 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Jiang, X., She, Z.K., Ruan, S.G.: Global dynamics of a predator–prey system with density-dependent mortality and ratio-dependent functional response. Discrete Contin. Dyn. Syst.-Ser. B 26(4), 1967–1990 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Merchant, S.M., Nagata, W.: Selection and stability of wave trains behind predator invasions in a model with non-local prey competition. IMA J. Appl. Math. 80(4), 1155–1177 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Abernethy, G.M., McCartney, M., Glass, D.H.: The interaction between predator strategy and prey competition in a pair of multi-predator multi-prey lattices. Commun. Nonlinear Sci. Numer. Simul. 56, 9–33 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Chen, S.S., Yu, J.S.: Stability and bifurcation on predator–prey systems with nonlocal prey competition. Discrete Contin. Dyn. Syst. 38(1), 43–62 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Wu, S.H., Song, Y.L.: Stability and spatiotemporal dynamics in a diffusive predator-prey model with nonlocal prey competition. Nonlinear Anal. Real World Appl. 48, 12–39 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Cao, X., Jiang, W.H.: Double zero singularity and spatiotemporal patterns in a diffusive predator–prey model with nonlocal prey competition. Discrete Contin. Dyn. Syst.-Ser. B 25(9), 3461–3489 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Liu, Z.H., Magal, P., Xiao, D.M.: Bogdanov–Takens bifurcation in a predator–prey model. Z. Angew. Math. Phys. 67(6), 137 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Zhang, X.M., Liu, Z.H.: Periodic oscillations in age-structured ratio-dependent predator–prey model with Michaelis–Menten type functional response. Physica D 389, 51–63 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Yang, P.: Hopf bifurcation of an age-structured prey–predator model with Holling type II functional response incorporating a prey refuge. Nonlinear Anal. Real World Appl. 49, 368–385 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Yang, P., Wang, Y.S.: Hopf bifurcation of an infection-age structured eco-epidemiological model with saturation incidence. J. Math. Anal. Appl. 477, 398–419 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Liu, Z.H., Yuan, R.: Takens–bogdanov singularity for age structured models. Discrete Contin. Dyn. Syst.-Ser. B 25(6), 2041–2056 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Yang, P., Wang, Y.S.: Periodic solutions of a delayed eco-epidemiological model with infection-age structure and Holling type II functional response. Int. J. Bifurc. Chaos 30(1), 2050011 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Yang, P., Wang, Y.S.: Existence and properties of Hopf bifurcation in an age-dependent predation system with prey harvesting. Commun. Nonlinear Sci. Numer. Simul. 91, 105395 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Yang, P., Wang, Y.S.: Hopf–Zero bifurcation in an age-dependent predator–prey system with Monod–Haldane functional response comprising strong Allee effect. J. Differ. Equ. 269(11), 9583–9618 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Liu, Z.H., Magal, P.: Bogdanov–Takens bifurcation in a predator-prey model with age structure. Z. Angew. Math. Phys. 72(4), 4 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Iannelli, M.: Mathematical Theory of Age-Structured Population Dynamics. Applied Mathematics Monographs, vol. 7. Giardini editori e stampatori, Pisa (1995)

    Google Scholar 

  32. Anita, S.: Analysis and Control of Age-Dependent Population Dynamics. Mathematical Modelling: Theory and Applications, vol. 11. Springer, Dordrecht (2000)

    MATH  Google Scholar 

  33. Cushing, J.M., Saleem, M.: A predator prey model with age structure. J. Math. Biol. 14(2), 231–250 (1982)

    MathSciNet  MATH  Google Scholar 

  34. Thiemea, H.R.: “Integrated semigroups’’ and integrated solutions to abstract Cauchy problems. J. Math. Anal. Appl. 152(2), 416–447 (1990)

    MathSciNet  Google Scholar 

  35. Liu, Z.H., Magal, P., Ruan, S.G.: Hopf bifurcation for non-densely defined Cauchy problems. Z. Angew. Math. Phys. 62(2), 191–222 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Magal, P., Ruan, S.G.: Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models. Mem. Am. Math. Soc. 202(951), 1–76 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Liu, Z.H., Magal, P., Ruan, S.G.: Normal forms for semilinear equations with non-dense domain with applications to age structured models. J. Differ. Equ. 257(4), 921–1011 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Chu, J.X., Liu, Z.H., Magal, P., Ruan, S.G.: Normal forms for an age structured model. J. Dyn. Differ. Equ. 28, 733–761 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Tang, H., Liu, Z.H.: Hopf bifurcation for a predator–prey model with age structure. Appl. Math. Model. 40, 726–737 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Yang, P., Wang, Y.S.: On oscillations to a 2D age-dependent predation equations characterizing Beddington–Deangelis type schemes. Discrete Contin. Dyn. Syst. Ser. B 27(7), 3845–3895 (2022)

    MathSciNet  MATH  Google Scholar 

  41. Thiemea, H.R.: Semiflows generated by Lipschitz perturbations of non-densely defined operators. Differ. Integral Equ. 3, 1035–1066 (1990)

    MathSciNet  MATH  Google Scholar 

  42. Liu, Z.H., Magal, P., Ruan, S.G.: Projectors on the generalized eigenspaces for functional differential equations using integrated semigroups. J. Differ. Equ. 244(7), 1784–1809 (2008)

    MathSciNet  MATH  Google Scholar 

  43. Ducrot, A., Liu, Z.H., Magal, P.: Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems. J. Math. Anal. Appl. 341(1), 501–518 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Thieme, H.R.: Quasi-compact semigroups via bounded perturbation. In: Arino, O., Axelrod, D., Kimmel, M. (eds.) Advances in Mathematical Population Dynamics–Molecules Cells & Man, pp. 691–711. World Scientific Publishing, River Edge (1997)

    Google Scholar 

  45. Chow, S.N., Li, C.Z., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to the editors and the anonymous reviewers for their very valuable comments and suggestions which led to a significant improvement of this study. This work was partially supported by the Doctoral Scientific Research Foundation of Northwest Normal University (202203101201), the Young Teachers’ Scientific Research Ability Promotion Project of Northwest Normal University (NWNU-LKQN2023-01).

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript.

Corresponding author

Correspondence to Peng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P. Takens–Bogdanov Bifurcation for a Ratio-Dependent Predation Interaction Involving Prey-Competition and Predator-Age. Qual. Theory Dyn. Syst. 22, 151 (2023). https://doi.org/10.1007/s12346-023-00845-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00845-5

Keywords

Mathematics Subject Classification

Navigation