Skip to main content
Log in

Interaction Behaviors Between Solitons, Breathers and Their Hybrid Forms for a Short Pulse Equation

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this article, we investigate the dynamical interaction behavior of a short pulse equation in optical fibers with fast-varying packets. We systematically unearth the interaction dynamics between solitons, breathers, and their hybrid forms. Using the bilinear method, we explicitly calculate the first- to fourth-order solutions. We categorize the solutions into three classes based on their dispersion coefficients: stripe-loop-like soliton, breather, and their hybrid form. We observe the existence of bright and dark solitons. Additionally, a breather may consist of periodical peak-trough waves and periodical kink-loop-like waves. As the order of the solutions increases, there are abundant and complicated interaction behaviors for the solitons, breathers, and their hybrid forms due to these rich patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data sharing does not apply to this article as no data sets were generated or analyzed during the current study.

References

  1. Hennig, D., Tsironis, G.P.: Wave transmission in nonlinear lattices. Phys. Rep. Rev. Sect. Phys. Lett. 307, 333–432 (1999)

    MathSciNet  Google Scholar 

  2. Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N.N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010)

    Google Scholar 

  3. Baronio, F., Degasperis, A., Conforti, M., Wabnitz, S.: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109, 044102 (2012)

    Google Scholar 

  4. Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Oxford University Press (1995)

  5. Agrawal, G.P.: Nonlinear Fiber Optics. Academic, San Diego (2001)

    MATH  Google Scholar 

  6. Krausz, F., Ivanov, M.: Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009)

    Google Scholar 

  7. Popmintchev, T., Chen, M.C., Arpin, P., Murnane, M.M., Kapteyn, H.C.: The attosecond nonlinear optics of bright coherent X-ray generation. Nat. Photonics 4, 822–832 (2010)

    Google Scholar 

  8. Brabec, T., Krausz, F.: Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000)

    Google Scholar 

  9. Rothenberg, J.E.: Space-time focusing: breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses. Opt. Lett. 17, 1340–1342 (1992)

    Google Scholar 

  10. Amiranashvili, S., Vladimirov, A.G., Bandelow, U.: A model equation for ultrashort optical pulses around the zero dispersion frequency. Eur. Phys. J. D 58, 219–226 (2010)

    Google Scholar 

  11. Leblond, H., Mihalache, D.: Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. Rev. Sect. Phys. Lett. 523, 61–126 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Chung, Y., Jones, C.K.R.T., Schäfer, T., Wayne, C.E.: Ultra-short pulses in linear and nonlinear media. Nonlinearity 18, 1351 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Morrison, A.J., Parkes, E.J., Vakhnenko, V.O.: The N loop soliton solution of the Vakhnenko equation. Nonlinearity 12, 1427–1437 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Kraenkel, R.A., Manna, M.A., Merle, V.: Nonlinear short-wave propagation in ferrites. Phys. Rev. E 61, 976–979 (2000)

    Google Scholar 

  15. Vakhnenko, V.O., Parkes, E.J., Morrison, A.J.: A Backlund transformation and the inverse scattering transform method for the generalised Vakhnenko equation. Chaos Solitons Fractals 17, 683–692 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Vakhnenko, V.O., Parkes, E.J.: Periodic and solitary-wave solutions of the Degasperis–Procesi equation. Chaos Solitons Fractals 20, 1059–1073 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Liu, Y.P., Li, Z.B., Wang, K.C.: Symbolic computation of exact solutions for a nonlinear evolution equation. Chaos Solitons Fractals 31, 1173–1180 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Tchokouansi, H.T., Kuetche, V.K., Kofane, T.C.: On the propagation of solitons in ferrites: the inverse scattering approach. Chaos Solitons Fractals 86, 64–74 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Li, B.Q., Ma, Y.L.: Loop-like periodic waves and solitons to the Kraenkel–Manna–Merle system in ferrites. J. Electromagn. Waves Appl. 32, 1275–1286 (2018)

    Google Scholar 

  20. Li, B.Q., Ma, Y.L., Mo, L.P., Fu, Y.Y.: The N-loop soliton solutions for (2+1)-dimensional Vakhnenko equation. Comput. Math. Appl. 74, 504–512 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Li, B.Q.: Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising from high-frequency wave propagation in electromagnetic physics. Appl. Math. Lett. 112, 106822 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Li, B.Q., Ma, Y.L.: Interaction dynamics of hybrid solitons and breathers for extended generalization of Vakhnenko equation. Nonlinear Dyn. 102, 1787–1799 (2020)

    MATH  Google Scholar 

  23. Ma, Y.L., Li, B.Q.: Kraenkel–Manna–Merle saturated ferromagnetic system: Darboux transformation and loop-like soliton excitations. Chaos Solitons Fractals 159, 112179 (2022)

    MathSciNet  MATH  Google Scholar 

  24. Parkes, E.J.: A note on loop-soliton solutions of the short-pulse equation. Phys. Lett. A 374, 4321–4323 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Sakovich, A., Sakovich, S.: Solitary wave solutions of the short pulse equation. J. Phys. A Math. Gen. 39, L361–L367 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Matsuno, Y.: Multiloop soliton and multibreather solutions of the short pulse model equation. J. Phys. Soc. Jpn. 76, 084003 (2007)

    Google Scholar 

  27. Fu, Z.T., Chen, Z., Zhang, L.N., Mao, J.Y., Liu, S.K.: Novel exact solutions to the short pulse equation. Appl. Math. Comput. 215, 3899–3905 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Pelinovsky, D., Sakovich, A.: Global well-posedness of the short-pulse and sine-Gordon equations in energy space. Commun. Partial Differ. Equ. 35, 613–629 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Feng, B.F., Maruno, K., Ohta, Y.: Integrable discretizations of the short pulse equation. J. Phys. A Math. Theor. 43, 085203 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Feng, B.F., Inoguchi, J., Kajiwara, K., Maruno, K., Ohta, Y.: Discrete integrable systems and hodograph transformations arising from motions of discrete plane curves. J. Phys. A Math. Theor. 44, 395201 (2011)

    MATH  Google Scholar 

  31. Feng, B.F., Maruno, K., Ohta, Y.: Self-adaptive moving mesh schemes for short pulse type equations and their Lax pairs. Pac. J. Math. Ind. 6, 1–14 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Sato, S., Oguma, K., Matsuo, T., Feng, B.F.: A robust numerical integrator for the short pulse equation near criticality. J. Comput. Appl. Math. 361, 343–365 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Liu, S.Z., Wang, L.H., Liu, W., Qiu, D.Q., He, J.S.: The determinant representation of an N-fold Darboux transformation for the short pulse equation. J. Nonlinear Math. Phys. 24, 183–194 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Li, B.Q., Ma, Y.L.: Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation. Appl. Math. Comput. 386, 125469 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Liu, Y.Q., Wen, X.Y., Wang, D.S.: Novel interaction phenomena of localized waves in the generalized (3+1)-dimensional KP equation. Comput. Math. Appl 78, 1–19 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Tan, W.: Evolution of breathers and interaction between high-order lump solutions and N-solitons (N-\(>\)infinity) for Breaking Soliton system. Phys. Lett. A 383, 125907 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Gai, L.T., Ma, W.X., Li, M.C.: Lump-type solution and breather lump-kink interaction phenomena to a (3+1)-dimensional GBK equation based on trilinear form. Nonlinear Dyn. 100, 2715–2727 (2020)

    MATH  Google Scholar 

  38. Li, B.Q.: Hybrid breather and rogue wave solution for a (2+1)-dimensional ferromagnetic spin chain system with variable coefficients. Int. J. Comput. Math. 99, 506–519 (2022)

    MathSciNet  MATH  Google Scholar 

  39. Ma, Y.L., Li, B.Q.: Hybrid rogue wave and breather solutions for a complex mKdV equation in few-cycle ultra-short pulse optics. Eur. Phys. J. Plus 137, 861 (2022)

    Google Scholar 

  40. Shen, Y., Tian, B., Cheng, C.D., Zhou, T.Y.: N-soliton, Mth-order breather, Hth-order lump, and hybrid solutions of an extended (3+1)-dimensional Kadomtsev–Petviashvili equation. Nonlinear Dyn. 111, 10407–10424 (2023)

    Google Scholar 

  41. Ma, Y.L., Li, B.Q.: Hybrid soliton and breather waves, solution molecules and breather molecules of a (3+1)-dimensional Geng equation. Phys. Lett. A 463, 128672 (2023)

    MATH  Google Scholar 

  42. Sun, Y.: Breather and interaction solutions for a (3+1)-dimensional generalized shallow water wave equation. Qual. Theor. Dyn. Syst. 22, 91 (2023)

    MathSciNet  MATH  Google Scholar 

  43. Feng, B.F.: An integrable coupled short pulse equation. J. Phys. A Math. Theor. 45, 085202 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, Y.S., Qiu, D.Q., Mihalache, D., He, J.S.: The loop rogue wave solutions for the Wadati–Konno–Ichikawa equation. Chaos 28, 103108 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Hirota, R.: Exact envelope soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805–810 (1973)

    MathSciNet  MATH  Google Scholar 

  46. Hirota, R.: A New Form of Bäcklund transformations and its relation to the inverse scattering problem. Progr. Theor. Phys. 52, 1498–1512 (1974)

    MATH  Google Scholar 

  47. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 104, 1581–1594 (2021)

    Google Scholar 

  48. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: A new (3+1)-dimensional Kadomtsev–Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves. Math. Comput. Simul. 187, 505–519 (2021)

    MathSciNet  MATH  Google Scholar 

  49. Comte, J.C., Marquie, P., Remoissenet, M.: Dissipative lattice model with exact traveling discrete kink-soliton solutions: discrete breather generation and reaction diffusion regime. Phys. Rev. E 60, 7484–7489 (1999)

    Google Scholar 

  50. Panayotaros, P.: Breather solutions in the diffraction managed NLS equation. Physica D 206, 213–231 (2005)

    MathSciNet  MATH  Google Scholar 

  51. Guo, R., Hao, H.Q., Zhang, L.L.: Dynamic behaviors of the breather solutions for the AB system in fluid mechanics. Nonlinear Dyn. 74, 701–709 (2013)

    MathSciNet  Google Scholar 

  52. Yin, H.M., Chow, K.W.: Breathers, cascading instabilities and Fermi–Pasta–Ulam–Tsingou recurrence of the derivative nonlinear Schrodinger equation: effects of ‘self-steepening’ nonlinearity. Physica D 428, 133033 (2021)

    MathSciNet  MATH  Google Scholar 

  53. Ma, Y.L., Li, B.Q.: Bifurcation solitons and breathers for the nonlocal Boussinesq equations. Appl. Math. Lett. 124, 107677 (2022)

    MathSciNet  MATH  Google Scholar 

  54. Li, B.Q., Ma, Y.L.: Interaction properties between rogue wave and breathers to the Manakov system arising from stationary self-focusing electromagnetic systems. Chaos Soliton Fractals 156, 111832 (2022)

    MathSciNet  MATH  Google Scholar 

  55. Li, B.Q., Ma, Y.L.: Soliton resonances and soliton molecules of pump wave and Stokes wave for a transient stimulated Raman scattering system in optics. Eur. Phys. J. Plus 137, 1227 (2022)

    Google Scholar 

  56. Ma, Y.L., Li, B.Q.: Soliton resonances for a transient stimulated Raman scattering system. Nonlinear Dyn. 111, 2631–2640 (2023)

    Google Scholar 

  57. Li, B.Q., Ma, Y.L.: Optical soliton resonances and soliton molecules for the Lakshmanan–Porsezian–Daniel system in nonlinear optics. Nonlinear Dyn. 111, 6689–6699 (2023)

    Google Scholar 

  58. Dysthe, K.B., Trulsen, K.: Note on breather type solutions of the NLS as models for freak-waves. Phys. Scr. T82, 48–52 (1999)

    Google Scholar 

  59. Grinevich, P.G., Santini, P.M.: The exact rogue wave recurrence in the NLS periodic setting via matched asymptotic expansions, for 1 and 2 unstable modes. Phys. Lett. A 382, 973–979 (2018)

    MathSciNet  MATH  Google Scholar 

  60. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Google Scholar 

  61. Yin, H.M., Pan, Q., Chow, K.W.: Four-wave mixing and coherently coupled Schrodinger equations: cascading processes and Fermi–Pasta–Ulam–Tsingou recurrence. Chaos 31, 083117 (2021)

    MathSciNet  Google Scholar 

  62. Yin, H.M., Pan, Q., Chow, K.W.: Modeling “crossing sea state’’ wave patterns in layered and stratified fluids. Phys. Rev. Fluids 8, 014802 (2023)

    Google Scholar 

  63. Yin, H.M., Pan, Q., Chow, K.W.: The Fermi–Pasta–Ulam–Tsingou recurrence for discrete systems: cascading mechanism and machine learning for the Ablowitz–Ladik equation. Commun. Nonlinear Sci. Numer. Simul. 114, 106664 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B-QL: Data check, visualization, software, writing—reviewing and editing. Y-LM: Conceptualization, methodology, writing—original draft preparation, corresponding author.

Corresponding author

Correspondence to Bang-Qing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, YL., Li, BQ. Interaction Behaviors Between Solitons, Breathers and Their Hybrid Forms for a Short Pulse Equation. Qual. Theory Dyn. Syst. 22, 146 (2023). https://doi.org/10.1007/s12346-023-00844-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00844-6

Keywords

Navigation