Skip to main content
Log in

Stability and Hopf Bifurcation in the General Langford System

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper is concerned with the general Langford system under homogeneous Neumann boundary conditions. The stabilities of constant solutions are discussed for the general Langford ODE and PDE systems, respectively. Based on the stability results, for the Langford ODE system, the existence, bifurcation direction and stability of periodic solutions are established. Then for the Langford PDE system, by the center manifold theory and the normal form method, the direction of Hopf bifurcation and the stability of spatially homogeneous periodic solutions are investigated. Finally, numerical simulations are shown to support and supplement the results of theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yi, F.Q., Wei, J.J., Shi, J.P.: Diffusion-driven instability and bifurcation in the Lengyel-Epstein system. Nonlinear Anal. Real World Appl. 9, 1038–1051 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Du, L.L., Wang, M.X.: Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model. J. Math. Anal. Appl. 366, 473–485 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Merdan, H., Kayan, S.: Hopf bifurcations in Lengyel-Epstein reaction-diffusion model with discrete time delay. Nonlinear Dyn. 79, 1757–1770 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Guo, G.H., Wu, J.H., Ren, X.H.: Hopf bifurcation in general Brusselator system with diffusion. Appl. Math. Mech. (Engl. Ed.) 32, 1177–1186 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, Y.: Hopf bifurcations in general systems of Brusselator type. Nonlinear Anal. Real World Appl. 28, 32–47 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, Z.X., Song, Y.L., Wu, C.F.: Turing instability and Hopf bifurcation of a spatially discretized diffusive Brusselator model with zero-flux boundary conditions. Nonlinear Dyn. 111(1), 713–731 (2023)

    Article  Google Scholar 

  7. Furter, J.E., Eilbeck, J.C.: Analysis of bifurcations in reaction-diffusion systems with no-flux boundary conditions: the Sel’kov model. Proc. R. Soc. Edinb. Sect. A 125, 413–438 (1995)

    Article  MATH  Google Scholar 

  8. Han, W., Bao, Z.H.: Hopf bifurcation analysis of a reaction-diffusion Sel’kov system. J. Math. Anal. Appl. 356, 633–641 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, P., Gao, Y.B.: Turing instability of the periodic solutions for the diffusive Selkov model with saturation effect. Nonlinear Anal. Real World Appl. 63, 103417 (2022)

    Article  MATH  Google Scholar 

  10. Liu, P., Shi, J.P., Wang, Y.W., Feng, X.H.: Bifurcation analysis of reaction-diffusion Schnakenberg model. J. Math. Chem. 51(8), 2001–2019 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Saadi, F.A., Champneys, A., Gai, C., Kolokolnikov, T.: Spikes and localised patterns for a novel Schnakenberg model in the semi-strong interaction regime. Eur. J. Appl. Math. 33(1), 133–152 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, J.F., Wei, J.J., Shi, J.P.: Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems. J. Differ. Equ. 260(4), 3495–3523 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Terry, A.J.: Predator-prey models with component Allee effect for predator reproduction. J. Math. Biol. 71, 1325–1352 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, X.S., Pang, D.F., Wallhead, P., Bellerby, R.G.J.: Dynamics of an aquatic diffusive predator-prey model with double Allee effect and pH-dependent capture rate. Chaos Solitons Fractals 169, 113234 (2023)

    Article  Google Scholar 

  15. Yi, F.Q., Wei, J.J., Shi, J.P.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. J. Differ. Equ. 246, 1944–1977 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, M.X.: Stability and Hopf bifurcation for a prey-predator model with prey-stage structure and diffusion. Math. Biosci. 212(2), 149–160 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, J.F., Li, W.T., Yan, X.P.: Hopf bifurcation and Turing instability in spatial homogeneous and inhomogeneous predator-prey models. Appl. Math. Comput. 218(5), 1883–1893 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Guo, G.H., Li, B.F., Lin, X.L.: Hopf bifurcation in spatially homogeneous and inhomogeneous autocatalysis models. Comput. Math. Appl. 67(1), 151–163 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yi, F.Q., Liu, J.X., Wei, J.J.: Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model. Nonlinear Anal. Real World Appl. 11(5), 3770–3781 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wei, M.H., He, Y.N., Azam, M.: Spatiotemporal patterns and bifurcations with degeneration in a symmetry glycolysis model. Commun. Nonlinear Sci. Numer. Simul. 114, 106644 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, R.Z., Nie, C.X., Jin, D.: Spatiotemporal dynamics induced by nonlocal competition in a diffusive predator-prey system with habitat complexity. Nonlinear Dyn. 110(1), 879–900 (2022)

    Article  Google Scholar 

  22. Yang, R.Z., Wang, F.T., Jin, D.: Spatially inhomogeneous bifurcating periodic solutions induced by nonlocal competition in a predator-prey system with additional food. Math. Methods Appl. Sci. 45(16), 9967–9978 (2022)

    Article  MathSciNet  Google Scholar 

  23. Hopf, E.: A mathematical example displaying features of turbulence. Commun. Pure Appl. Math. 1, 303–322 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Application of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  25. Nikolov, S., Bozhkov, B.: Bifurcations and chaotic behavior on the Lanford system. Chaos Solitons Fractals 21, 803–808 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Krishchenko, A.P., Starkov, K.E.: Localization of compact invariant sets of nonlinear systems with applications to the Lanford system. Int. J. Bifurc. Chaos 16(11), 3249–3256 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nikolov, S.G., Vassilev, V.M.: Completely integrable dynamical systems of Hopf-Langford type. Commun. Nonlinear Sci. Numer. Simul. 92, 105464 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nikolov, S.G., Vassilev, V.M.: Assessing the non-linear dynamics of a Hopf-Langford type system. Mathematics 9(18), 2340 (2021)

    Article  Google Scholar 

  29. Guo, G.H., Wang, X.N., Lin, X.L., Wei, M.H.: Steady-state and Hopf bifurcations in the Langford ODE and PDE systems. Nonlinear Anal. Real World Appl. 34, 343–362 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, S.H., Tang, J.S., Qin, J.Q., Yin, X.B.: Bifurcation analysis and control of periodic solutions changing into invariant tori in Langford system. Chin. Phys. B 17(5), 1691–1697 (2008)

    Article  Google Scholar 

  31. Cui, Y., Liu, S.H., Tang, J.S., Meng, Y.M.: Amplitude control of limit cycles in Langford system. Chaos Solitons Fractals 42, 335–340 (2009)

    Article  MATH  Google Scholar 

  32. Yang, Q.G., Yang, T.: Complex dynamics in a generalized Langford system. Nonlinear Dyn. 91, 2241–2270 (2018)

    Article  MATH  Google Scholar 

  33. Bashkirtseva, I., Ryashko, L.: Stochastic bifurcations, chaos and phantom attractors in the Langford system with tori. Int. J. Bifurc. Chaos 30(16), 2030051 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fu, Y.G., Li, J.B.: Bifurcations of invariant torus and knotted periodic orbits for the generalized Hopf-Langford system. Nonlinear Dyn. 106, 2097–2105 (2021)

    Article  Google Scholar 

  35. Musafirov, E., Grin, A., Pranevich, A.: Admissible perturbations of a generalized Langford system. Int. J. Bifurc. Chaos 32(03), 2250038 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GG and MW contributed to the conception of the study and wrote the main manuscript text. JW prepared figures. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Gaihui Guo or Meihua Wei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is supported by the National Natural Science Foundation of China (61872227, 12061081, 12126420).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, G., Wang, J. & Wei, M. Stability and Hopf Bifurcation in the General Langford System. Qual. Theory Dyn. Syst. 22, 144 (2023). https://doi.org/10.1007/s12346-023-00832-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00832-w

Keywords

Mathematics Subject Classification

Navigation