Skip to main content
Log in

Quasi-periodic Solutions for a Generalized Higher-Order Boussinesq Equation

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper one-dimensional generalized eighth-order Boussinesq equation

$$\begin{aligned} u_{tt} - \partial _x^2 u + \beta \partial _x^4 u - \partial _x^6 u +\partial _x^8 u + ( u^3 )_{xx } =0,~~~ \beta =\pm 1 \end{aligned}$$

with the boundary conditions \( u(0,t)= u(\pi ,t)=u_{xx}(0,t)= u_{xx}(\pi ,t)=u_{xxxx}(0,t)= u_{xxxx}(\pi ,t)=0 \) is considered. It is proved that the above equation admits small-amplitude quasi-periodic solutions. The proof is based on an infinite dimensional KAM theorem and Birkhoff normal form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Annalen 359, 471–536 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baldi, P., Berti, M., Montalto, R.: KAM for autonomous quasi-linear perturbations of KdV. Ann. I. H. Poincaré Anal. Non Linéaire 33, 1589–1638 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bona, J., Sachs, R.: Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Commun. Math. Phys. 118, 15–29 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Int. Math. Res. Not. 11, 475–497 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J.: Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom. Funct. Anal. 5, 629–639 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math. 148, 363–439 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain, J., Green’s function estimates for lattice Schrödinger operators and applications. Annals of Mathematics Studies, vol. 158. Princeton Univ. Press (2005)

  8. Boussinesq, M.: Théorie générale des mouvements qui sout propagés dans un canal rectangularire horizontal. C. R. Acad. Sci. Paris 73, 256–260 (1871)

    MATH  Google Scholar 

  9. Boussinesq, M.: Théorie des ondes et des remous qui se propagent le long dún canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pure Appl. Sect. 17, 55–108 (1872)

    MathSciNet  MATH  Google Scholar 

  10. Boussinesq, M.J.: Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants á lÁcadémie des Sciences Inst. France 2, 1–680 (1877)

    Google Scholar 

  11. Chen, Y., Geng, J.: Linearly stable KAM tori for higher dimensional Kirchhoff equations. J. Differ. Equ. 315, 222–253 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chierchia, L., You, J.: KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Commun. Math. Phys. 211, 497–525 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Christov, C., Maugin, G., Velarde, M.: Well-posed Boussinesq paradigm with purely spatial higher-order derivatives. Phys. Rev. E 54, 3621–3638 (1996)

    Article  Google Scholar 

  14. Craig, W., Wayne, C.E.: Newton’s method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46, 1409–1498 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eliasson, L.H., Kuksin, S.B.: Four lectures on KAM for the non-linear Schrödinger equation. Hamilton. Dyn. Syst. Appl. series B, 179–212 (2008)

    Article  MATH  Google Scholar 

  16. Eliasson, L.H., Kuksin, S.B.: KAM for the nonlinear Schrödinger equation. Ann. Math. 172, 371–435 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Falk, F., Laedke, E., Spatschek, K.: Stability of solitary-wave pulses in shape-memory alloys. Phys. Rev. B 36, 3031–3041 (1987)

    Article  Google Scholar 

  18. Feng, Z.: Traveling solitary wave solutions to the generalized Boussinesq equation. Wave Motion 37, 17–23 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Feola, R., Procesi, M.: Quasi-periodic solutions for fully noninear forced reversible Schrödinger equations. J. Differ. Equ. 259, 3389–3447 (2015)

    Article  MATH  Google Scholar 

  20. Geng, J., You, J.: A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Commun. Math. Phys 262, 343–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuksin, S.: A KAM theorem for equations of the Korteweg-de Vries type. Rev. Math. Phys. 10, 1–64 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Kuksin, S.B.: Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional. Anal. i Prilozhen. 21, 22–37 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuksin, S.B.: Nearly Integrable Infinite-Dimensional Hamiltonian Systems. Lecture Notes in Mathematics, vol. 1556. Springer-Verlag, Berlin (1993)

    MATH  Google Scholar 

  24. Kuksin, S.B., Pöschel, J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. Math. 143, 149–179 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kuksin, S.B.: Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and Its Applications, vol. 19. Oxford University Press, Oxford (2000)

    Google Scholar 

  26. Li, S., Chen, Min, Zhang, B.: Wellposedness of the sixth order Boussinesq equation with non-homogeneous boundary values on a bounded domain. Physica D-Nonlinear Phenomena 389, 13–23 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, J., Yuan, X.: Spectrum for quantum Duffing oscillator and small divisor equation with large-varialbe coefficient. Commun. Pure Appl. Math. 63, 1145–1172 (2010)

    MATH  Google Scholar 

  28. Liu, J., Yuan, X.: A KAM theorem for Hamitonian partial differential equations with unbounded perturbations. Commun. Math. Phys. 307, 629–673 (2011)

    Article  MATH  Google Scholar 

  29. Liu, Y.: Instability of solitary waves for generalized Boussinesq equations. J. Dynam. Differ. Equ. 5, 537–558 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, Y.: Instability and blow-up of solutions to a generalized Boussinesq equation. SIAM J. Math. Anal. 26, 1527–1546 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pöschel, J.: A KAM-theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23, 119–148 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Pöschel, J.: Quasi-periodic solutions for a nonlinear wave equation. Comment. Math. Helv. 71, 269–296 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shi, Y., Xu, J., Xu, X.: On quasi-periodic solutions for a generalized Boussinesq equation. Nonlinear Anal. 105, 50–61 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shi, Y., Xu, J., Xu, X.: On the quasi-periodic solutions for generalized Boussinesq equation with higher order nonlinearity. Appl. Anal. 94, 1977–1996 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shi, Y., Xu, J.: Quasi-periodic solutions for two dimensional modified Boussinesq equation. J. Dynam. Differ. Eqs. 33(2), 741–766 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wayne, C.E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127, 479–528 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zakharov, V.: On the stochastization of one dimensional chains of nonlinear oscillators. Sov. Phys. JETP 38, 108–110 (1974)

    Google Scholar 

  38. Zhang, Y., Si, W., Si, J.: Construction of quasi-periodic solutions for nonlinear forced perturbations of dissipative Boussinesq systems. Nonlinear Anal.-Real World Appl. 67, 103621 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their invaluable suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Yanling Shi wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yanling Shi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is partially supported by NSFC Grants (11801492, 61877052, 11701498) and NSFJS Grant (BK 20170472). The Junxiang Xu is supported by the NSFC Grant (11871146).

Appendix

Appendix

For \(w\in \Sigma \), we have

$$\begin{aligned} w= \sum \limits _{n\ge 1} r_n q_n \varphi _n + r_nq_{-n}\varphi _{-n}, \end{aligned}$$

where \(\{r_n \}\ ( n\ne 0) \) with \( r_n =r_{-n} \) are weights and on the bases \(\{\varphi _n, \varphi _{-n} \}_{n\ge 1},\) \(\{q_n,q_{-n}\}_{ n\ge 1}\) are the coordinates of w. In the coordinates \(\{q_n,q_{-n}\}_{n\ge 1},\) we want to compute the Poisson product \(\{ F,G\}.\) Especially, we choose suitable weights \(\{r_n \}\ ( n\ge 1) \) such that the Poisson product is a standard form.

Let

$$\begin{aligned} A_n{} & {} = \int _0^ \pi \langle \varphi _n, \varphi _n \rangle \, dx = \int _0^ \pi \langle \varphi _{-n}, \varphi _{-n} \rangle \, dx =\frac{\pi }{ 2 }(\alpha _n ^2-\beta _n^2) \\{} & {} = -\frac{ n^6+ n^4+ \beta n^2 }{ n^6+ n^4+ \beta n^2 +2}, ~~~\beta =\pm 1, \end{aligned}$$

where \(\langle \cdot , \cdot \rangle \) denotes the Euclidean inner product in \(R^2.\)

It follows easily that

$$\begin{aligned} \int _0^ \pi \langle \varphi _n, \varphi _{-n} \rangle \, dx=1,~~~ \int _0^ \pi \langle \varphi _n, \varphi _m \rangle \, dx= 0,~~~ n \pm m \ne 0. \end{aligned}$$

Then one has

$$\begin{aligned} \left\{ \begin{array}{lll} \int _0 ^\pi \langle w,\varphi _n \rangle \, dx &{}=&{} A_n r_n q_n+ r_n q_{-n}, \\ \int _0 ^\pi \langle w, \varphi _{-n} \rangle \, dx &{}=&{} r_n q_n + A_n r_n q_{-n}. \end{array}\right. \end{aligned}$$
(7.1)

By simple computation, one obtains

$$\begin{aligned} q_n = \frac{1}{r_n} \cdot \frac{1}{ 1-A_n^2 } \left( -A_n \int _0 ^\pi \langle w,\varphi _n \rangle \, dx + \int _0 ^\pi \langle w, \varphi _{-n} \rangle \, dx \right) ,\\ q_{-n} = \frac{1}{r_n} \cdot \frac{1}{ 1-A_n^2 } \left( -A_n \int _0 ^\pi \langle w, \varphi _{-n} \rangle \, dx + \int _0 ^\pi \langle w, \varphi _n \rangle \, dx \right) , \end{aligned}$$

where \( A_n=\ -\frac{ n^6+ n^4+ \beta n^2 }{ n^6+ n^4+ \beta n^2 +2},~\beta =\pm 1.\)

Then the Frechet derivatives of \(q_n, q_{-n} \) with respect to w are

$$\begin{aligned} \frac{d q_n}{ d w} = \frac{1}{r_n} \cdot \frac{1}{ 1-A_n^2 } \left( -A_n \varphi _n + \varphi _{-n} \right) ,\\ \frac{d q_{-n}}{ d w} = \frac{1}{r_n} \cdot \frac{1}{ 1-A_n^2 } \left( -A_n \varphi _{-n} + \varphi _n \right) . \end{aligned}$$

For \(n \ge 1, m\ne 0,\) we have \(\int _0 ^\pi \langle \varphi _n, \mathbb {J} \varphi _m \rangle \, dx =\textrm{i}n\alpha _n \beta _n \pi ,\) if \(n+m=0;\) \(\int _0 ^\pi \langle \varphi _n, \mathbb {J} \varphi _m \rangle \, dx =0,\) otherwise. Then, one obtains

$$\begin{aligned} {} \int _0 ^\pi \left\langle \frac{ d q_n }{d w }, \mathbb {J} \frac{ d q_m}{ d w } \right\rangle \, dx = \left\{ \begin{array}{lll} -\textrm{i} \frac{1}{r_n^2} \frac{n}{ \pi \alpha _n \beta _n }, &{}&{} n+m=0 \\ 0,&{}&{} n+m\ne 0 \end{array}.\right. \end{aligned}$$
(7.2)

By choosing \( r_n=\sqrt{ \frac{n}{ \pi \alpha _n \beta _n } }, \) then

$$\begin{aligned} {} \int _0 ^\pi \left\langle \frac{ d q_n }{d w }, \mathbb {J} \frac{ d q_m}{ d w } \right\rangle \, dx = \left\{ \begin{array}{lll} -\textrm{i}, &{}&{} n+m=0 \\ 0, &{}&{} n+m\ne 0 \end{array}.\right. \end{aligned}$$
(7.3)

Since \(\mathbb {J}\) is anti-self-adjoint, and the gradient of F and G are \( \nabla F = \frac{dF}{ dw} = \sum \limits _{n\ge 1} \frac{\partial F }{\partial q_n} \frac{ d q_n }{ d w} +\frac{\partial F }{\partial q_{-n}} \frac{ d q_{-n}}{ d w}, \) and \( \ \nabla G = \frac{dG}{ dw}= \sum \limits _{n\ge 1} \frac{\partial G }{\partial q_n} \frac{ d q_n }{ d w} +\frac{\partial G }{\partial q_{-n}} \frac{ d q_{-n}}{ d w},\) then we have

$$\begin{aligned} \begin{array}{lll} \{ F,G\}&{}=&{} \int _0 ^\pi \nabla F^T \mathbb {J} \nabla Gdx= \int _0 ^\pi \left\langle \sum \limits _{n\ge 1} \frac{\partial F }{\partial q_n} \frac{ d q_n }{ d w} +\frac{\partial F }{\partial q_{-n}} \frac{ d q_{-n}}{ d w},\mathbb {J} \nabla G \right\rangle dx \\ &{}=&{} - \sum \limits _{n\ge 1} \int _0 ^\pi \frac{\partial F}{ \partial q_n} \left\langle \nabla G, \mathbb {J}\frac{ d q_n }{ d w} \rangle + \frac{\partial F}{ \partial q_{-n}} \langle \nabla G, \mathbb {J}\frac{ d q_{-n} }{ d w} \right\rangle dx \\ &{}=&{} - \sum \limits _{n,m\ge 1} \int _0 ^\pi \frac{\partial F}{ \partial q_n} \frac{\partial G }{\partial q_m} \left\langle \frac{ d q_m }{ d w}, \mathbb {J}\frac{ d q_n }{ d w} \rangle + \frac{\partial F}{ \partial q_n} \frac{\partial G }{\partial q_{-m}} \langle \frac{ d q_{-m}}{ d w}, \mathbb {J}\frac{ d q_n }{ d w} \right\rangle \\ &{} &{} + \frac{\partial F}{ \partial q_{-n}} \frac{\partial G }{\partial q_m} \left\langle \frac{ d q_m }{ d w}, \mathbb {J}\frac{ d q_{-n} }{ d w} \right\rangle + \frac{\partial F}{ \partial q_{-n}} \frac{\partial G }{\partial q_{-m}}\left\langle \frac{ d q_{-m}}{ d w}, \mathbb {J}\frac{ d q_{-n} }{ d w} \right\rangle dx \\ &{}=&{} \textrm{i}\sum \limits _{n\ge 1} \left( \frac{\partial F }{\partial q_{-n}} \frac{ \partial G}{ \partial q_n } - \frac{\partial F }{ \partial q_n } \frac{ \partial G}{\partial q_{-n}}\right) \end{array} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Xu, J. Quasi-periodic Solutions for a Generalized Higher-Order Boussinesq Equation. Qual. Theory Dyn. Syst. 22, 139 (2023). https://doi.org/10.1007/s12346-023-00840-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00840-w

Keywords

Mathematics Subject Classification

Navigation