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Some characterizations of Banach lattices
with the Schur property

WITOLD WNUK

ABSTRACT. This note contains a short proof of the equivalence of the Schur and Dunford-Pet-
tis properties in the class of discrete KB-spaces. We also present an operator characterization of
the Schur property (Theorem 2) and we notice that Banach lattices which are band hereditary /'
coincide with Banach lattices having the Schur property (this characterization is due to I. Popa
[10]). Moreover, the paper offers examples of Banach lattices with the positive Schur property
and without the Schur property and which are not isomorphic to any Al-space.

1. INTRODUCTION

The paper presents a few conditions which are equivalent to the Schur prop-
erty in the class of Banach lattices (the Schur property means that weakly and
norm convergent sequences coincide). These characterizations are due to Vars-
havskaya and Chuchaev {12] and Popa [10]. Unfortunately, the proof of the
characterization offered in [12] (and formulated for some locally convex
topologies) contains a mistake. We give another short proof of Varshavskaya-
Chuchaev characterization which points out the coincidence of Schur and
Dunford-Pettis properties in some class of Banach lattices (a Banach space £
has the Dunford-Pettis property if every weakly compact operator T-E—sc, is
a Dunford-Pettis operator, i.e., 7 maps relatively weakly compact sets into
relatively compact). Moreover, we shall show that it is possible to obtain two
characterizations of the Schur property indicated by Popa [10] under some-
what weaker assumptions (we present also slightly different proofs of these
characterizations).

The last part of this paper contains a few remarks concerning Banach lat-
tices having the so-called positive Schur property (i.e., 0<x,—0 weakly im-
plies x,—0 in norm, see [15]).
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All notions concerning Banach lattices and not explained here one can find
in [2) and [3]. We refer the reader interested in the Dunford-Pettis property
to [4] and [3].

Let us only recall the notion of a discrete Riesz space and KB-space which
are important in our considerations.

An element x belonging to a Riesz space E is called discrete, if x>0 and
W< x implies y=tx for some real number ¢ (the above definition, for Dede-
kind complete Riesz spaces, is equivalent to the following one: if x=x,+ X,
where x,, x, are positive and disjoint, then x,=0 or x,=0). If every order in-
terval [0,y] in E contains a discrete element, then E is said to be a discrete
Riesz space (equivalently: E contains a complete orthogonal system consisting
of discrete elements). Roughly speaking, every discrete Banach lattice is a
Riesz subspace of some space of sequences (i.e., of the product R*-see [2] The-
orem 2.17),

A Banach lattice (E,|| - |}) is said to be a KB-space if the norm is order con-
tinuous and every increasing norm bounded sequence of positive elements has
the supremum in E (equivalently: (E,| - [|) contains no copy of c,).

2. BANACH LATTICES WITH THE SCHUR PROPERTY

The following lemma, which will be useful in the proof of the first the-
orem, is a simple consequence of the famous Rosenthal’s theorem (see [3] The-
orem 14.24),

Lemma (see [11] Theorem 3) For a Banach space (E|-|) the following
statements are equivalent:

() The dual space E* has the Schur property.

(ity E has the Dunford-Pettis property and E does not contain an iso-
morphic copy of I.

The theorem mentioned below links Schur and Dunford-Petiis properties
in Banach lattices.

Theorem 1. If (E,|| - ||} is @ Banach lattice, then the following statements are
equivalent:

(i) E is a discrete KB-space with Dunford-Pettis property.
(i) E has the Schur property.
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Proof. (i)=(ii). Let (x,),., denote a complete orthogonal system in E con-
sisting of discrete elements and denote by (f,) the positive functionals gener-
ated by band projections onto bands {x,j# The functionals f, are discrete el-
ements in E* (because they are Riesz homomorphisms). Putting F=span {f.:
acAlc E* we have F* is Riesz isomorphic to E (we can prove this fact using
the same method as in a proof that every Banach space with a boundedly com-
plete basis is a dual space). Therefore F* is discrete which implies, together
with the Dedekind completeness of F (the space F is an ideal in E¥), that the
norm on F is order continuous (see [7] Theorem 2). Thus F does not contain
any copy of /' ([3) Theorem 12.24). Moreover, F has the Dunford-Pettis prop-
erty because F* has this property, and so using Lemma we obtain F* has the
Schur property and we are done because F* and E are isomorphic.

A proof of the implication (ii}=(i) is easy and well-known, but for the sake
of completeness we shall present it. It is clear that every Banach space with
the Schur property has the Dunford-Pettis property. Moreover, a Banach lat-
tice E with the Schur property cannot contain a copy of ¢, thus our Banach
lattice is a KB-space. In particular, the norm has to be order continuous and
therefore order intervals are weakly compact. The Schur property implies that
order intervals are compact. Hence the Banach lattice E is discrete ([2) Corol-

lary 21.13).

Remark The proof of the Theorem presented in [12] is not correct (even
for the case of Banach lattices) because the authors claimed that the following
statement holds:

If H=5pan(x,:n € N}, where (x,) is a sequence of pairwise disjoint elements
in a KB-space (E, |l - ||) satisfying the condition x,—0 weakly and ||x,]I> 1, and
/. are biorthogonal functionals associated to the basic sequence (x,), then (f))
is not a null sequence in the topology o(F,F*), where F=3pani{f.ne Njc H *.

The above statement is false: we have exactly -0 in the topology c(F,F*).
Indeed, (f,) is an unconditional basis in F because f, are pairwise disjoint. The
basic sequence (x,) is boundedly complete (H does not contain a copy of c,)
Thus H has the Radon-Nikodym property ([5] p. 218). Moreover, H and F*
are isomorphic ([6] Proposition 1.b.4), and so F contains no copy of /([5] p.
219). Hence (f;) is a shrinking basis ([6] Proposition 1.c.9). Let G F* and de-
note K=sup||f||{K is finite because (f) is pointiwise convergent). We have

K"lG(f;, )|S|G(f,./“£." )|$“GIEV,,J,, +1,...|“n:.’,0,

but this means f—0 weakly.

Using Theorem 1 we are able to formulate the following operator charac-
terizations of the Schur property.
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Theorem 2. For a Banach lattice (E||-|) the following statements are
equivalent

() The norm ||- 1 is order continuous and every continuous finear oper-
ator T:E—c, is a Dunford-Pettis operator.

(i) E has the Schur property.

(iif) Every positive weakly compact operator T: P—E is compact.

(ivy Every weakly compact operator T: I' -E is compact.

Proof. (i)}=(i1). It is clear that E has the Dunford-Pettis property. More-
over, E is a KB-space. Indeed, if E were not a KB-space then E would contain
a complemented copy of ¢, (because the norm is assumed to be order con-
tinuous-see [8]). Let P:E—c, be the projection and let / denote the identity oper-
ator on ¢, Since the composition [*P:E—c, is not a Dunford-Pettis operator
we have a contradiction.,

According to Theorem 1 it is sufficient to show that E is discrete. The or-
der continuity of the norm implies the following fact (see [15] Lemma 1): every
Dunford-Pettis operator T-E—c, is a difference of two positive operators.
Therefore every continuous linear operator from E into ¢, is regular, and so E
has to be discrete ([14]).

The implication (ii}=(iii} is ocbvius.

(iii)=(iv). We claim that (E,|| - ||) is 2 KB-space. In the contrary case E con-
tains a copy of ¢, and the embedding operator I: l'»c,c E is a positive weakly
compact operator which is not compact. Therefore, if T:/'— E is weakly com-
pact then the modulus |71:'— E exists and it is weakly compact too {[3]) The-
orem 17.14). The assumption gives that positive operators |71+ T and {71 are
compact and thus T=(714 7)— |71 is compact.

(iv)=(i). Repeating the argument used in the proof of previous implica-
tion we obtain (E,|| - ||} si a KB-space. Moreover, for every continuous linear
operator T:E—c, and a weakly compact operator S:/'-F we have TS is com-
pact. Hence T is a Dunford-Pettis operator {[3]) Theorem 19.3).

Remarks. 1. The assumption about order continuity of the norm is essen-
tial in (i): every continuous linear operator from / into ¢, is weakly compact
and so it is a Dunford-Pettis operator (because / has the Dunford-Pettis prop-
erty) but /~ has not the Schur property.

Similary, the words “every continuous linear operator T:E-¢, is a Dun-
ford-Pettis operator” cannot be changed by the statement “every positive op-
erator T: E—c, is a Dunford-Pettis operator”, because L' has not the Schur prop-
erly and L' has the property mentioned-in the statement.
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2. In [10] one can find the following equivalence
(E.|l - 1) has the Schur property iff

(a) Every positive weakly compact operator T: I'-E is compact
and

(b) Every positive operator T: />— E is compact.

Theorem 2 shows that (a) implies (b). In other words (a) implies E is dis-
crete and f| - || is order continuous (compare [9] Theorem 3).

There are known examples of Banach spaces without the Schur property
which are hereditary /. In a class of Banach lattices a special kind of a her-
editary of /* characterizes the Schur property.

Theorem 3 (see [10]). For a Banach lattice (E,|| - ||) the following statements
are equivalent:

(1) E has the Schur property.

()  Every closed Banach sublattice contains a band order isomorphic to I\.

Proof. (i)=(ii). The space E is a discrete KB-space. Therefore every closed
Banach sublattice Fc E is discrete ([13] Theorem 4). Let () be a sequence of
norm one distinct discrete elements in F. According to Rosenthal’s theorem
we can find a subsequence (f ) equivalent to the unit vector basis in /.
Putting H/=span {f, -k < N} we dbtain a required band in F.

(ii)=(i). It is clear that E is a KB-space because E cannot contain an order
copy of ¢, Moreover, E is discrete. Indeed, if 0<xeE and B={x}# then
B=H®H* where H is a band order isomorphic to /', Let P denote the band
projection of B onto H. We have Px>0 and so there is a discrete element p
in H such that 0 <y<Px<x. Since every discrete element in H is discrete in
E then we obtain that every order interval in E contains discrete element, i.e.,
E is discrete.

Let A be a relatively weakly compact subset of E. According to [3] The-
orem 13.8 the set sold, i.e, the solid hull of 4, is also relatively weakly com-
pact. We claim that

(*) llx,l—0 for an arbitrary sequence (x,) of pairwise disjoint elements be-
longing to solA.

Indeed, suppose c=inf|lx,[|> O for some sequence of disjoint elements

from solA. Since sold is relatively weakly compact, then there exists a subse-

quence (Ix,,kl) which is weakly null. Using [2] Theorem 21.14 we obtain that

(x,) is weakly null too. The sublattice Spafiflx, | :k € N} contains a band iso-

mdrphic to £, and so span | Lx,,k.I:i e N}is isomorphic to # for some subsequence

(x, D). Therefore [|x, -0 ard we have a contradiction because llx, I>c.
(3 ] ]
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According to [2] Theorem 21.15 the condition (*) implies relative compat-
ness of the sol4. Thus E has the Schur property.

Remark. In [10] the statement (ii) contains an additional assumption that
E is discrete.

3. REMARKS ON BANACH LATTICES WITH THE POSITIVE
SCHUR PROPERTY

Besides the Schur property one can consider a weaker property called the
positive Schur property ([15)), i.e., 0<x,~0 weakly implies x,—0 in norm. A
simple example of a Banach lattice with the positive Schur property and with-
out the Schur property is a space L'(n), where p is not purely atomic.

The following construction produces a family of Banach lattices with the
positive Schur property. Let A be an order dense ideal in the product R* with
the coordinatewise order. Suppose p is a norm on A such that (A,p) is a Ba-
nach lattice with the Schur property. If ML) ={(£,y< L', 1):(|f,}})=-, € 1}, then
the pair (A(L!),p) is a Banach lattice with the positive Schur property, where
FAMES-((FAD)

Indeed, an arbitrary sequence (a,) belonging to the Kothe dual of A deter-
mines a continuous linear functional & on A(L'):

® 1
G(fH=3 a,| fdt
0

n=1

Therefore, if (F,)cA(L") is a weakly null sequence with positive terms (ie.,
F,=(f (k))_,, and £,(k)=0 for all n,k), then G((F,))=3 allfi{ k)l—0 as n—>co.

This means that x,={(|[f,(o)|) , =0 weakly in A, and s0 p(x,) tends 1o zero. In
other words A(F)—-0. It is clear that A(L’) has not the Schur property.

It is worth to notice the following fact: if A is not isomorphic to /1, then
A(L") is not isomorphic to any L'(p). We claim that if A(L') were isomorphic
to L'(n) for some measure p, then it would be isomorphic to L'(0,1).

Indeed, since A(L") is separable, then u has to be separable and so o-finite,
in particular. Therefore A(L') is isomorphic to L'(v) for some probabilistic
measure v. The space L'(v) is isomorphic to Li(v), where v, is the atomless part
of v. According to the famous Caractheodory’s theorem L'(v,) is isomorphic
to L(0,1). Finally, L'(v) is isomorphic to L'(0,1). . The Banach lattice A(L') con-
tains no discrete elements, and so A(L') and L'(0,1) are order isomorphic in
virtue of Abramovit -Wojtaszezyk result {[1] Theorem 2). Since A is a sublat-
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tice of A(L') and A(L") is order isomorphic to L'(0,1), then A has to be iso-
morphic to ! —a contradiction.

We can also notice that using the above proof and another result of Abra-
movi¢ and Wojtaszczyk ([1], Theorem 5) we have that if E is a separable ¢-De-
dekind complete Banach lattice isomorphic to an AL-space, then E is order
isomorphic to an AL-space.

It is known that for discrete Banach lattices the positive Schur property
and the Schur property coincide (see [15]).

The positive Schur property has the following characterization

Theorem 4 (see [15]). For a Banach lattice (E,|| - ||) the following statements
are equivalent:

(1) E is o-Dedekind complete and it has the property
(*) An operator T:E—c, is a Dunford-Pettis operator iff T is a difference
of two positive operators from E into c,

(it) E has the positive Schur property.

One can easly verify that a Banach lattice has the positive Schur property
iff every sequence of norm one positive pairwise disjoint elements contains a
subsequence equivalent to the unit vectors in 7 (see [15]).
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