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Projective generators and resolutions of
identity in Banach spaces

J. ORIHUELA and M. VALDIVIA!

ABSTRACT. We introduce the notion of projective generator on a given Banach space. Weakly
countably determined and dual spaces with the Radon Nikodym property have projective gen-
erators. If a Banach space has projective generator, then it admits a projective resolution of the
identity. When a Banach space and its dual both have a projective generator then the space admits a
shrinking resotution of the identity. These results include previous ones of Amir and Lindens-
trauss, John and Zizler, Gul'ko, Vadak, Tacon, Fabian and Godefroy; and they show how to deal
with the general problem of constructing projections and ordering them into a long sequence in
a unified way.

1. INTRODUCTION AND NOTATION

An important and widely open question in the geometry of Banach spaces is
that of the existence of non trivial linear continuous operator on a given Ba-
nach space. Among such mapping, norm one projections play an important
role. In large classes of spaces the projections do exist, and moreover, they can
be organized into a “long sequence™ with nice properties, something simi-
far to a transfinite Schauder decomposition, called a projectional resolution of
identity (P.R.1.). In that way, a powerful tool for studying the structure of the
space is provided. Among the applications are: embedding and re-
norming theorems, results in the theory of Markusevi¢ basis, and properties
of compactness in the weak and the w*-topologies.

The first non trivial P.R.1. was constructed by Lindenstrauss [L] for re-
flexive Banach spaces and by Amir and Lindenstrauss [AL] for weakly com-
pactly generated (W.C.G.) spaces. They applied their results to the topological
and geometrical structure of weakly compact sets of Banach spaces, now
called Eberlein compact spaces. Later Vagdk dealt with the P.R.I. for weakly
countably determined (W.C.D.) spaces. Independently, Gul’ko, [G], intro-
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duced a topological device to obtain the same results in a very clear and short
way, proving at the same time the Corson compactness of the unit ball of the
dual of a W.C.D. Banach space, with the weak* topology. The paper of Na-
mioka and Wheeler [NW] gives a precise description of Gul’ko ideas for the
weakly compactly generated case. Interesting surveys of these facts can be
found in [P] and [N]. The paper of Talagrand [TA] also studies topological prop-
erties, and Orihuela [O] deals with the angelic properties in full generality.
Very recently, Mercourakis [M] studied applications of Gul’ko method,
Stegall [S2] gave his own version of Vaddk resuits —a relatively simple self-
contained proof- and Valdivia showed how 1o deal with the construction of
a P.R.I. in a very simple way that can be also applied to Fréchet spaces, as
well as to more general Banach spaces [V1-V4],

Whenever we have a projectional resolution of identity in a given Banach
space X, the adjoint projections give something similar for the weak* topo-
logy in X*. John and Zizler were the first to study (in a sequence of papers
{JZ1-5]) how to deal with the problem of getting a P.R.1. on the dual too, and
they applied their methods to obtain renorming theorems as well as shrinking
Markusevi¢ basis, see also [S). The essentially work for W.C.G. Banach
spaces with some smoothness property or with a W.C.G. dual space. These re-
sults are also treated by Vas$ak [V] for W.C.D. Banach spaces. Finally, Fabian
[F2] has recently dealt with W.C.D. Asplund spaces, and he has shown that
they are W.C.G. and admit a Fréchet differentiable norm.

Sometimes it is possible to construct a P.R.I. in the dual X* fo a given Ba-
nach space formed by projections which are not necessarily the adjoint of any
projection on X. The first results in that direction was obtained by Tacon [T]
for every very smooth Banach space, and by John and Zizler [JZ5] when X
admits a continuously Fréchet differentiable map with bounded non empty
support. Both results are included in a general resuit by Fabian [F1], used as
a main tool by Fabian and Godefroy [FG] to prove that every dual Banach
space with the Radon Nikodym property admits a P.R.I.

Our aim in this paper is to show how the method to construct projections
used by Valdivia in a sequence of papers [V1-V4} can be adapted to describe
a unified way of obtaining all the former results. Indeed, we are going to in-
troduce the notion of a projective generator on a given Banach space, and to show
that W.C.D. and dual spaces with the Radon Nikodym property have a pro-
Jjective generator. If a Banach space has a projective generator, then it admits
a P.R.1 Finally, when for a Banach space X, and its dual .X* both have a pro-

jective generator, then a P.R.I. exists on X such that the adjoint maps are a
P.R.1I. on X*

The key for our exposition lies in the notion of norming pair. In Section
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2 we describe their basic properties and relate this notion with the one used
by Gul'ko [G]. In Section 3 we see how to get norm one projections from nor-
ming pairs and the notion of projective generator comes nat-
urally. In Section 4 we describe the P.R.I. associated with a projective gen-
erator and in the last section we see when it can be constructed in such a way
that the adjoints are a P.R.I. on the dual space.

We are grateful to G. Godefroy and J.E. Jayne for converstions on some
aspects of the content of this paper.

We have been using the classical notation which can be found for instance
in [D1-D2]. The closed unit ball of a Banach space X is denoted by B(X). The
vector spaces we shall use here are defined over the field K of real or complex
numbers. If K is the real field, # denotes the field of the rational numbers, if
K is the complex field, H denotes the field of numbers {a+iba,b are ra-
tionals}. Given a Banach space X and x in X, we write £ to denote the same el-
ement as a continuous function on X*[¢(X* X)). The density character of a to-
pological space is the smallest cardinality of a dense subset. For a Banach
space X we write X* to denote the weak* dual X*o(X™ X)].

2. NORMING PAIRS

Let X be a Banach space. If 4 is a subset of X and B a subset of X*, the
pair (A,B) is called a preconjugate pair if

(i) {4 g:ae A} is pointwise dense in {%| pix € X}
and
(ii) {l;| 4°be B} is pointwise dense in {)} 4y € X*}

This notion was introduced by S. Gul’ko in the setting of paired topologi-
cal spaces to deal with a general version of the theorems of Amir and Lin-
denstrauss, [AL], [G],[N]. Among other interesting results, Gul’ko constructs
non trivial preconjugate pairs in any given Banach space X. We are interested

here in a particular kind of preconjugate pair:

Definition 1. A preconjugate pair (A,B) in the Banach space X is called a
norming pair if A and B are H-linear subspaces that verify:

() ‘danB(X‘):a & An B(X)| is pontwise dense in "EIBmB(X*)-'xE B(X)}

(i) {big~BLx)yD € BOB(X) is pointwise dense in {4 ~ Bxyy € BIX*)
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Using the terminology of Gul’ko we could say that a preconjugate pair of
H-linear subspaces (4, B) is a norming pair when the pair

(AN B(X),B~B(X*)

is also a preconjugate pair of the pairing formed by B(X) and B(X*) endowed
with the weak and the weak* topology, respectively, with the duality mapping
<xf>=fx), x in X and fin X*[G].

Our motivation for this name is made clear in the following result. It shows
that a norming pair is nothing other than a pair of H-linear subspaces 4 of X
and B of X* such that 4 is a norming set for B, and B is a norming set for A.
Indeed, in what follows we could think of this property as the definition of a
norming pair and we could go straight to proposition 2. Nevertheless, we pre-
fer to give proposition 1 to show the link between Gul'ko ideas and our con-
structions. In that way a question of M. Fabian is answered
[F1, pp. 366].

Proposition 1.Ler X be a Banach space, and let Ac X and B< X* be H-linear
subspaces. The following conditions are equivalent:

(i) (A,B) is a norming pair,

(if) The following two conditions hold
i) If x € 4, then ||xli = sup{l < x,f>|.fe B(X® B}
i,) If fe B, then ||f | =sup{l<xf>l:x e B(X)nA)

(iiiy If A and B are the closures of A and B in the norm topologies, then
they also verify conditions (ii,) and (ii,) above.

Proof. i)=ii) Let x be an element of A~ B(X). The density condition (ii) tells
us that (ii,} is verified for ||x||. In case |lxI|> 7, and x in 4, we take a rational
number r> @ with [|rx||< 1, then rx belongs to A~ B(X) and (ii,) is verified for
firxll. It follows that [lx|l also verifies it. The same argument
proves (if,) using (i"} instead of (ii").

if)=>iii) Let x be an element of 4 and e>0. There is some a in A with
llx—all <&. We have

lxll < Ilx—all + llall <€+ supf{l < af> if e BXM B} <
<e+supll<a—xf>|fe B(X¥)nB}+
+supl<x,f>|.fe B(X*)nB}<
<e+|lx—all + sup{l < xf>I:f e B(X*~ B)
<2+ supli<xf>lfe BX®NB}<2e+||xll

from which i) follows letting & tend to zero.
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The same argument proves ii,) for the closure of B,
iif)=1i) Let R, be the restriction mapping from X* onto A* Condition ii,)
says that R, gives an isometry from B into 4*, and condition i,) together with
the Hahn-Banach theorem says that R(B) is o(4*4)-dense in 4*. Therefore,
R (B) is a(A4* A)-dense in A* Analogously, we obtain for the restriction map-
ping R, from X** onto B* that R,(4) is o(B* B)-dense in B* In other words,
we have proved that (4,B) is a preconjugate pair in X. To finish the proof we
need to show that the conditions of definition 1 are also verified. We see that
R (BN B(X*®) is o(A* A)-dense in B(A*) =R (B(X*) because of condition ii,)
and the Hahn-Banach separation theorem. It follows that R (BnB(X") is
c(A* A)-dense in R (B(X™). Dealing with ii,) we obtain, in the same way that
RAANB(X)) is o(B*B)-dense in R(B(X)). Indeed, we have proved that
(AN B(X),Bn B(X™) is a preconjugate pair in (B(X),B(X™).
Q.E.D.

Corollary 1.1. If (4,B) is a norming pair in the Banach space X, then the norm
closures (A,B) form a norming pair of norm-closed subspaces of X and X*,
respectively.

The next proposition shows how to build up non-trivial norming pairs in
a given Banach space X. The general construction of Gul’ko in [G,lemma 3]
could be applied here with some minor modifications. Nevertheless, we shall
follow an argument of Valdivia, [V1], based on an idea of Mazur, to de-
scribe this construction in the richer structure provided by the Banach space.

Proposition 2. Let X be a Banach space and (G,W) a norming pair in X. Let
A4,c G and B,c W be two infinite subsets with |A|<) and |BJ<)\. There is a
norming pair (A4,B) in X with
Ay,cAcG, B,cBc W, [d|<A, |B|<h
Proof. For every x € G let us denote by y{x) a countable subset of W such that
laxll = supll <xf>1:f € y(x)).
Analogously, for every fe W denote by ¢(f) a countable subsct of & such that
I | =supfl < x/>1:x € @(f )}
Now we are going to proceed by recurrence, let us suppose that for a given
non negative integer p, and every non negative integer m<p we have

obtained subsets

A,cG, B,cW, |4,|<), |B,|sA
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We write C,, and D,, for the H-linear hulls of 4 and B,, respectively. We define
B,,:=D,uly(x):xe C}, 4,.: =C,u{e(f}f e D,}.

If we take
A=ul{d,n=012..}and B=uU{B,:n =0.1,2,..}

then (4, B) is a norming pair in X with

A,cAc G, B,cBc W and 4I<A, IBI<A
Q.ED

Proposition 3. Let (4,B) be a norming pair in the Banach space X. Then

a) If xe A and ye B*, then || x| <||x+yll.
b) Iffe A~ and ge B, then gl <llg+/ .

Proof. a) x| =sup{l<x/>1fe BLX¥HnB}=
=supll<x+ypS>Ife B(X*)NB|<
<supll<x+yS>fe BXH}=x+yl

b) The same argument works in this case.
Q.ED.

We can summarize in the following;

Proposition 4. Let X be a Banach space, and A,c X and B,c X* infinite subsets
with |A)<A and |B|<)\. Then there exist norm closed subspaces E of X and F
af X* such that

a) If x€ E, {|x||=sup{l < x,f>):f e B(F)

b If fe F, |If |l=sup{l < xf>\:x € B(E)

c¢)If xe E and ye F*, then ||x|| <||x+yll

d)Iffe E* and g F, then gl <llg+f|l

¢) EoAd, dens E<);Fo B, dens F<.

Proof. E and F are the norm closure of the norming pair constructed in Prop-
osition 2.

Q.E.D.
3. FROM NORMING PAIRS TO LINEAR PROJECTIONS

We now describe when a given norming pair is already a conjugate pair
and how it gives a norm-one projection,
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Propositon 5. Let X be a Banach space and (E,F) a norming pair of norm
closed subspaces of X and X* respectively. The following conditions are
equivalent:

i) There is a norm one projection of X onto E along F* .

it} X is the norm closure of E+ F* .

iif) E*nPo={gl

iv) The restriction mapping R, from X onto the dual of Flo(X* X)] applies
E onto that dual space.

Proof, i)=-ii) This is obvious.

ii}<>iii) By polarity

i)=iv) Let f be any element of the dual of Flo(X* X)). By the Hahn-
Banach theorem there is some ge X such that g.=f If g=g,+g,, with g, in
E and g, in F*, then g,=g,=f from where the conclusion follows.

iv)=1) Let £ be the restriction mapping from E onto the dual of Fio(X* X)],
E(x):=X%;, iv) means that £ is a bijection and therefore we can define

P(x):=E-(%,) for every x in X

It is clear that P is a norm one projection of X onto E
Q.E.D.

Definition 2. 4 norming pair satisfying the equivalent conditions of Proposi-
tion 5 is called a conjugate pair.

Indeed, it is not difficult to show that our definition 2 is almost a particular
case of the one given by Gul’ko,[G],in a topological setting.

Let us now show how to apply the former proposition in a concrete example:
Corollary 5.1, Let X be a reflexive Banach space. Then every norming pair of
norm closed subspaces (E,F) of X and X*, respectively, is already a conjugate
pair giving a norm one projection of X onto E along F-.

Proof. In this case we have

E'nfocto ErnF U E A F=(0),

if we bear in mind condition (b) of Propositon 3 for the norming pair (E, F).
Q.E.D.

So, in order to obtain Lindenstrauss theorem, [L], it is enough to apply Prop-
osition 4 together with Corollary 5.1:
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Corollary 5.2,[L]: If X is a reflexive Banach space and N is a closed subspace
of X, there is a closed subspace E containing N with dens E=dens N and a
norm one projection from X onto E.

In more general cases this result is not true. In order to be able to deal
with this problem it is necessary to involve more structure of X in the con-
struction of the norming pair. To be more precise we shall need the following
definition in an arbitrary Banach space X.

Definition 3. Ler W be a norming subset of X* and ¢ a set valued map from
W into 2% verifying the following conditions:

(3.1) o(f) is a countable subset of X for every fe W.

(3.2 | | =supli < xf>1:x € o(f)}.

(3.3) For every norming pair (E.F) in X such that Fc W and ¢(F)cE the
pair of norm closures (E,F) is a conjugate pair in X.

Then o is called a projective generator on the Banach space X.

If (E,F) is a norming pair that verifies (3.3) above we say that the norm one
projection of X onto the closure of E along F* is based on (E.F).

We have the following:

Theorem 1. Let X be a Banach space with a projective generator ¢ defined on
a norming H-subspace W of X*. Let A, and B, be infinite subset of X and W,

respectively, with
U<k and  |BJ=A

Then there is a norm one projection P of X, based on a norming pair {A,B) with

A,cA, B,cB, |4|<} and |B|<iA
and, consequently,

A, K(X), dens (X)) S A, B,c PXX™), dens PH.X*), <A

Proof. (X, 1) is a norming pair and we can construct a norming pair (4,B) in
X such that:

AjcAc X, BjcBc W, l4l<) and |BI<)

and ¢(B)c A4 as we have done in Proposition 2. Let us remark that we are work-

ir'xg here w1th our particular generator ¢ instead of an arbitrary norming map-
ping. Condition (3.3) says that the projection based on (4, 8) has the required
properties.

Q.E.D.
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Example. In every weakly countably determined Banach space X there is a pro-
Jective generator defined on all of X*.

Proof. There is a sequence (B,) of closed unit balls around the origin that de-
termine X in X*o(X** X™)],[V],[V3]. That means

x=U{ (Y B da)eNm |

where some of the intersections used could be void. For every fin X* we
take ¢(f) verifying conditions (3.1), (3.2) and such that

supjl<xf>\xe B |=supll<xf>l:xe B,no(f)} n=12,..

Let us show now that ¢ is a projective generator; let (E,F) be a norming
pair with ¢{F)c E. We are going 1o show that E* ~F*"* ={o) and so (E,F) veri-
fies the equivalents conditions of Proposition 5 and is a conjugate pair. Let {'be
an element of E* ~ F " and suppose f 0. There is some x, € X with [{x,}=1,
and a net | fje D, 2} in Fthat converges to ffor the Mackey topology n(X* X).
There is a sequence n, <m,<..<n,<..

of positive integers such that if 4= (}B,”"" we have x,e4cX.
=1 7

Let 0<g<1/2 and j,e D such that
sup} U,'o(x) —Ax):xedl<e.
There is some positive integer /4 such that
supf| S = Ax)|x e B, |<e
and, in particularly, | jjo(xo) —flxy)| <€ from which it follows that | f,o(xo)[ >1—¢.

But if we look at the definition of ¢ we have some y, e B,,hmp(f,o) such that

VJ'O(yo)I >]—g.

Therefore

Iﬂyo)lZl.ﬂo(yo)l“lﬂyo)—ﬁo(yon:‘ I—e—e=1-2e>0.

So fy,)# 0 with y, € ¢(F)c E, which is a contradiction
Q.E.D.

If we have a norm-one projection P on X and P(X)=FE, tl?en the adjoint
mapping P* is a norm-one projection and the restriction mapping R, from X*
onto E* is an isometry from PHX™) onto E* Nevertheless, it could be that the
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conditions of Proposition 3 are not satisfied but we still have a norm one Pro-
jection on the dual X*. In such a case the projection is of course not weak*
continuous. The analogous result to Propostion 5 for the dual says as follows:

Proposition 6. Let X be a Banach space and (E,F) a norming pair of norm
closed subspaces of X and X*, repectively. The following conditions are equivalent:
(i) There is a norm one projection of X* onto F along E*
(ii) X* is the norm closure of F+ E*
(iii) F*nE*={0)
(iv) The restriction mapping R; from X* onto E* maps F onto E*

Proof. It is enough to apply Proposition 5 to the norming preconjugate pair
(F.E) in (X*X*).
Q.E.D.

It seems to be natural to ask for projective generator in X* defined on X.
We rewrite again our Definition 3 in that case:

Definition 4. Let ¥ be a set-valued map from X into 2% verifying:

(5.1) w(x) is countable for every x in X.

(5.2} llxll = supfl < x,y*> Ly* e w(x) ).

(5.3} For every norming preconjugate pair (E.F) in X such that y(E)cF,
then the pair of norm closure (E,F) verifies the equivalent conditions of Prop-
osition 6.

Then v is called a projective generator on X*.

We can read our theorem | for this case:

Teorem 2. Ler X be a Banach space with a projective generator on X* Let
A, X and B,c X* be infinite subset with

|4 <A and |BJ<h
Then there is a norm-one projection P of X* such that
P(X%> B, dens P(X®) <A, PHX*) > A4, dens PHX**) <]
Examples:

(A} Let X be a Banach space with a Gdteaux-differentiable norm ||.|| with
norm-weak derivative:

X\[0}>X*\[0}

X—>fe
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where f. is the only vector in the unit sphere of X* with <xfi> =lix|

If we define p(x)={/:} and ¢(0)={0}, then the mapping @ is a projective gen-
erator on X*

Proof. Take a norming pair (E,F) in X and suppose that ¢(E)c F. The norm-
weak continuity of the derivative implies that @(E)c F. Now, the Bishop-
Phelps theorem says that the restriction mapping R, from X* onto E* is an
onto mapping restricted to F, so condition (iv) of Propositon 6 holds and the
proof is finished.

Q.E.D.

The construction of projections in duals of Banach spaces with Gateaux-
differentiable norm having norm-weak derivative was done by Tacon, [T]. Ex-
tensions of his results was obtained by John and Zizler, [JZ4), Recently M. Fa-
bian has obtained a more general version of these results [F1] that we include
in the following example:

(B) Let X be a Banach space admitting a norm-weak continuous mapping
D defined on an open subset B of X onto X* such that

sp {Dx,.xe VAB}=W*
for every subspace V of X. Then X admits a projective generator on X*.
Proof. Indeed, for every xin X, take v, € By. with <x,v,> =||x||, and we define
{v.Dx}if xe B

o= {v} otherwhise

Then ¢ is a projective generator on X*. Take a norming pair {E,F) in X and
suppose that ¢(F)c F.

The norm-weak continuity of the mapping D ensures that
D(EnB)CF,

from-which it follows that the restriction mapping R, from X"‘ onto E*is an
onto map when restricted to F. Thus condition {(iv) of Proposition 6 holds and

the proof is complete.
Q.E.D.

Indeed, we could say that the first projective generator on X* was i.mpli-
citely used by Fabian,[F1], in the way shown above. Nevertheless, he did not



190 J. Orithuela-M. Valdivia

know if Gul’ko’s approach could be adapted to obtain his result. By our con-
struction it seems to be clear how to do it.

' The }'esults of [F1] have beern used by Fabian and Godefroy in [FG] to ob-
tain projections in the dual of Asplund spaces. We shall sece now that Asplund
spaces are exactly the Banach spaces admitting a projective generator on X*

Recall the following result, which has its origin in the work of R.C. James,
[see 61-62].

If X is a real Banach space with separable dual and C is a closed convex
subset of B(X* such that for every x in X there is a point f, in C with
<xf.> =|xll, then C is a weak* compact subset of X*.

It is clear that for a complex Banach space the same is true, it is enough
to have a look on the real underlying structure.

Theorem 3. Let X be a Banach space. X is an Asplund space if and only if it
has a projective generator on X*.

Proof. First suppose that X admits a projective generator y on X*. Let N be
a separable subspace of X. By Theorem 2 we know that there is a separable
subspace E of X and norm one projection P of X* such that £ N and P(X™)
is separable and isometric with E* through the restriction map R,. So £* will
also be separable and the dual N* will also be separable too. Consequently, the
space X is an Asplund space, bearing in mind the result of Stegall [S1]

Reciprocally, if X an Asplund space and we consider the [iil-weak* usco
map defined by

@ X— 25
gx)y={ue B(X*:<xu> =[x}

If apply the selection theorem of Jayne and Rogers [JR], then ¢ has a first-
Baire class selector ffor the norm topologies, we mean fX—B(X*) is such that
Afix)e ¢(x), for every x in X, and there is a sequence of [i|| — ||| continuous maps

[ X—=B(X*
with

i~ fim £ =Ax)
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for every x in X.
If we denote by
yX—27
the map

W) = { A0S0, f(X),..}

we obtain a projective generator on X* Indeed, first consider a
norming preconjugate pair (E,#) in X with y(E)< F and the closures £ and £
separable subspaces of X and X™ respectively. It is clear that Ww(E)c F, there-
fore R{B(F)) verifies the conditions of Godefroy’s, theorem so it is a weak®
compact subset of B(E®. Thus it coincides with B(E*) because of the weak*
density condition we have for a norming pair. The general case easily follows
from a reduction argument to the separable case. Indeed, let (E,F) be a nor-
ming pair in X formed with non separable subspaces, let us take g in E*.
Denote by G the subspace R{F), by 4, a countable subset of B(E) that norms
& and by B, the countable subset of E* given by RAy(4,)), which is contained
in G because y(E)< F. We can now construct a norming pair (4,8) in £ such
that 4 and B are countable,

RAy(A)cBc G,
and A is a norming set of the linear maps in the set

{g—b:be BlcE*

Therefore, (4,(Rz)-'(B)) is a norming pair in X of separable subspaces with
Y(A)c(R,)-'(B). As the separable case has been proved above, there is some
5 belonging to the norm closure of (R,)-'(B) such that s coincides with g on
A. Moreover, for some sequence (s,) in (R,)-'(B) we have that (s,) converges
to s in X*. By the condition imposed on A is clear that (s,) converges to g in
E*. Therefore we have g=RJs) and the proof is finished.

Q.E.D.

Note that Fabian and Godefroy,[FG], show how the selector con-
structed above gives a map D verifying the conditions of Example (B)
above. Our argument only differs in the way used to reduce to the separable
case,

Finally, we note what happens if we have a projective generator on an As-
plund space X too:



192 J. Orihuela-M. Valdivia

Theorem 4. Let X be an Asplund space with a projective generator ¢ on X de-
fined on X*. Let A,c X and B,c X be infinite subsets with

A< and |B|<A
Then there is a norm one projection P in X based on a norming pair (4,B) with
A,c A, B,cB, [A|<h, |Bish

and such that P* is based on the norming pair (B.A) of X*.
Consequently

A,c P(X), B, P X" =B", densP(X )<}, densPX X% <A.

Proof. Let y be the projective generator of X* constructed above. We can con-
struct the norming pair (4,B) in X such that

A,cAc X, B,cBc X* AI<A, IBI=A
and
¢BycA yl4)cB
as we have done in Proposition 2. Note that we are working here with our par-
ticular generators ¢ and vy instead of and arbitrary norming mapping. It is

quite clear that P* is nothing other than the projection of X* onto B".
QE.D.

4. PROJECTIONAL RESOLUTIONS OF IDENTITY

We have seen how to construct projections on a given Banach space with
a projective generator. In this section we shall see that they can be organized
into a “long sequence” with nice properties. In order to be more precise we
start with a classical definition:

Definition 5. Let X be a Banach space. A projective resolution of identity (P.R.I)
is a well ordered family

{Pio,<a<p]

of projections, where W is the first ordinal with \W=dens X, which satisfies the
Jollowing conditions:
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(D PJ=1 for every a
(ii) dens (P (X)) <Iul for every a
(iii) P.P,=P,P,=P, ifo,Spsasp

(iv) < Py (X ' =P(X) for every a
(v) P,=1,

In the above statement, lol denotes the cardinality of an ordinal a. We im-
mediately have the following.

Therorem 4. Let X be a Banach space with a projective generator ¢ based on
a norming subspace W of X* Then X admits a projectional resolution of the
identity {P:w,<a<p) where every P, is based on a norming pair {A,,B,} such
that

4| < o|Blsa for every a,
A,c A, and By,c B, if w,sp<axp,
uidgo,sB<al is equal to A, for every ordinal limit a,
and
uiByw,<B<al is equal 10 B, for every ordinal limit a.

Proof. Take a dense subset {x_:o<p} of X, where p is the first ordinal with
W =dens X.

Let 4, be equal to {x,;a<w,}, and B, be a countable subset of W norming
every element of 4,. An appeal to our Theorem 1 gives us a norm one pro-
jection P, based on a normmg pair 4,8, )4, DA, W2 B, ::Bo, with
4, |=18B, I_R A,, norm dense in P, (X) and ﬁw weak* dense in P*, (X™.

We shall proceed by transfinite induction to construct the other projec-
tions. Take w,<a<p and, suppose we have defined for every ordinal B,
w,< B <a, the projection P,, based on a norming pair (4, By), with

A,o{xa<Bl Byc W, 14, <IBl and B <Ipl

A, is norm dense subset of P, (X), and B, is weak* dense subset of P¥X*), and
A, c:A B,c B, if o, <n<p from where we have that

PP,=P =P/P, ifw,<n<p.

If a is not a limit ordinal, let y be the ordinal with Y+ I =a. Let 4, be now
equal to A,u{x,} and B, equal to B,
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Another application of Theorem | give us a projection P, based on a
norming pair (4,,B_), with

A, A, B,cB,cW IA)<ldl and IBJ<al

A, is norm dense subset of P,(X), and B, is weak* dense subset of PXX™),
from Wthh we have that

PP,=P=PP, ifw,<n=a
If o is a limit ordinal, we write

A,=v{dpw,sB<al

and B.=uU{Byw,<B<ajc W.

It is clear that (4,,B,) is a norming pair with ¢(B)cA, Therefore the
closed subspaces A4, and B, verify the equivalent conditions of Propesition 5,
which means the existence of a norm-one projection P, of X onto A, along B},

in other words P, is based on the norming pair (4,B). So we have

P(X)=4,= U{P(Xy0,5B<a]
dens P(X) <la), dens P* (X*), <lal, [P ||=1
PP =P=PP, 0,z
Finally, P, is the identity operator and it is clear that
{Pro,sa<pl

is the P.R.1. we are looking for.
Q.E.D.

Corollary 4.1. (Vagdk) Every weakly countably determined Barnach space ad-
mits a P.R.I.

Corollary 4.2. (Fabian and Godefroy) Every dual Banach space with the Ra-
don Nikodym property admits a P.R 1.
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5. SHRINKING RESOLUTIONS OF IDENTITY

We shall deal now with the study of Banach spaces X where the projec-
tions can be simultaneously constructed for X and X*. For instance, where
both X and X* are W.C.G. {JZ1,3,5], or more generally X and X* are W.C.D.
[V]. Note that a Banach space with a W.C.D. dual is an Asplund space, in-
deed it has a projective generator on its dual. So we shall also deal with As-
plund spaces which are W.C.D., [F2].

Recall the following definition:

Definition 6. A projectional resolution of identity
{Pro,<as<p)

on the Banach space X is called a shrinking resolution of identity if the family
of adjoint maps

{Pro,<a<p}
is also a P.R.I. on the dual Banach space X*

The P.R.I. construted above when X* has the Radon-Nikodym property
is formed by projections which are not (&* — @*) continuous in general. For in-
stance, if X= ({([0,®,}) X* has no P.R.I. consisting of {w* — w*) continuous pro-
jections; indeed, the existence of such a resolution would imply the existence
of a weak* to weak continuous injection into ¢(I') and this contradicts the fact
that [0,¢,] is not an Eberlein compact, [G2].

Note the following consequence of our construction;

Proposition 8. Let X be an Asplund space and | P w,<a<p) be the P.R.I con-
structed in corollary 4.2, The following conditions are equivalent:

(i) Every P, is weak® continuous.

(i} PLX*) is weak™ closed in X* for every a.

(iii) If P, is based on the norming pair (A_,B)), then

BHII = BG(X'.X)
(iv) {Prew,<a<p}isa PRI on X

Proof. i}=-11)P,(X™ is the orthogonal space P*%X)* and therefore it is weak®
closed.
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ii)=iii)P (X% =B which is weak* closed, therefore B = BZ ™"
iii)={(iv) For every norming pair (4_,B,} we have

A:n B ={0]

and Proposition 5 says there is a norm one projection from X onto A_i' atong
B:. It is clear that this projection coincides with the restriction of PF on X
and we obviously have all the conditions of a P.R.I because for a limit ordinal
a we have the identity

A,=ujd,0,<B<al.
Q.D.E.

Nevertheless, a more interesting result would be to know if we could
change the P.R.I. of X* in order to obtain weak* to weak* continuity. The natu-
ral situation is provided by a projective generator on X too:

Theorem 6. Let X be an Asplund space. If X has a projective generator defined
on X* then X has a shrinking P.R.1.

Proof. Let ¢p:X*—2% be a projective generator on X, and y:X—2* be the pro-
jective generator of X* as the dual of an Asplund space. If we proceed as we
have done in Theorem $§, but using Theorem 4 instead of Theorem 1 to con-
struct the projections, we obtain a projectional resolution of identity
{P:w,<a<u} on X, with every P, based on the norming pair (4, B,) with all
the properties of Theorem 5, and such that P* is based on the norming pair
(B,A,) for the projective generator . It is clear now that {P*:w,<a<p}is a
P.R.I. on X*

Q.ED.

We include the following result due to Fabian [F2]

Corollary 6.. Let X be a W.C.D, Banach space which is also Asplund. Then X
admits a shrinking P.R.I. and it is W.C.G.

Proof. We know that X verifies the conditions of Theorem 6, and so X has a
shrining P.R.L. The fact that X is also W.C.G. can now be obtained by an induc-
tion argument on the density character of X. Indeed, separable spaces are
W.C.G. Let us suppose the result is true for every space with density char-
acter strictly less than the density character of X. Let {P.0,<a<p} be the
shrinking P.R.I. constructed above. For every a, the space P(X) is W.C.D.
and Asplund with dens{P (X)) <'al <dens(X)=p. Therefore P (X) is a W.C.G.
Banach space. The result of Amir and Lindenstrauss give us a weak®-weak con-
tinuous linear injection [AL]
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ToPHXM (T, IT ] <1

It is straightforward now to construct an injective, weak*-weak continuous
linear injection T:X*—¢,(I") because [P::m05a<u} is a P.R.I. on X* There-
fore, B(X™*),[o(X* X)] is linearly-homeomorphic to a weakly compact subset of
the Banach space ¢(I'). A result of Lindenstrauss says that X must be then
W.C.G,, [R].

Q.E.D.

A topological interpretation of the last corollary is the following (see [N]
for definitions) result due to Alster [A].

Corollary 6.2. Let K be a Hausdorff compact space. Then if K is scattered and
Gul’ko compact then it is an Eberlein compact space.

Proof. ({X) is Asplund and W.C.D, Banach space, and so C(K)} is W.C.G. Thus
K is an Eberlein compact, [AL].
Q.E.D.

Related resuls can be found in the survey of Negrepontis [N], and the pa-
per of Valdivia [V4].
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