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On some convexity properties of Orlicz
spaces of vector valued functions

H. HUDZIK

ABSTRACT. A “stability” theorem that is a generalization of Th. 6 in {2] for the modulus of con-
vexity of Banach spaces is given. Necessary and sufficient conditions for §,4a)>0, where
ae(0,2], in Orticz spaces L™y, X) of vector valued functions are given. The convexity coefficient
£, (L®n, X)) is computed for these spaces. The equality e (L%, X)) =€, (X) for Orlicz-Bochner
spaces generated by uniformly convex Orlicz functions satisfying the A,-condition is showed.

INTRODUCTION

Throughout this paper (7,3,u) denotes a non-atomic, infinite and comple-
te measure space and X denotes a Banach space. A function ®:X—[0, + co] is
said to be an Orlicz function if it is convex, even, lower semicontinuous, van-
ishing and continuous at zero, and ®=*0. K(T,X) stands for the space of all
equivalence classes of strongly S-measurable functions from T into X.

Given an Orlicz function ¢, we define the Orlicz space L%(u, X) as the set
of all functions fe F(T,X) such that

IS )={ OOANNMU < + 00
for some A > 0 depending on f. This space equipped with the Luxemburg norm
f ly=inffA> 0:I,(A-'f) < 1}

is a normed space (see [11-13]), and it is a Banach space if and only if ® is
uniformly large at infinity, i.e.

lim inf{®(x):[|x/| = k}= + oo (see [15]).

k—s + 00
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We say an Orlicz function @ satisfies the A,condition if there is a con-
stant K> 0 such that ®(2x) < KP(x) for all xe X.

The modulus of convexity of a normed space (X,Il ) is the function
8. % (0,2]—[0,1] defined by

8e)=inf {1 —|[1720c+ W:xll < 1Llyll £ 1,hx—yll= e}.
The convexity coeffcient of a normed space (X,]| ||} is defined by
&{X)=suple € [0,2}:5,(e)=0}(sup o o).
(see [2]).
RESULTS

To prove the first theorem we shall need the following

Lemma 1. If §(a)>0 for a number ac(0,2), then there is a number
v> l/a such that ay(1-5(1/y)= L.

Proof. By the assumptions and by the continuity of 3, it follows that there
is a number o> 1/a such that §,(1/a)>0. So, af(1-8,{1/a))<1 for a certain
B> 1/a. Taking o,=min{a,B), we have aa,(1—6,(1/a,))<1.

A function A: (1/2,+c0)—>R, defined by A(A)=ar({l -3, (1/A)) is con-
tinuous and A(A)— + oo as A— +co. Since A(a,) < 1, the Darboux property of A
yields A(y)=ay(1-8,(1/Y))=1 for a certain y> l/a which finishes the proof.

Now, we are able to generalize Th. 6 in [2]. The proof is almost the same
but we shall give it for the sake of completness.

Theorem 2. Let X be a Banach space with (X} in the interval [0,a),
where 0<a<2. Let y> 1/a be such that ay(1-8,(1/v))= 1. If Y is a Banach space
with Banach-Mazur distance d(X,Y)<ay, then e(Y)<a.

Proof. Without loss of generality we may assume that U is an isomorp-
hism between X and Y such that ||I/-|=1 and d(X,Y)<||U|| <aby, where
0<b<l.Lety, y,€ S, (=the unit sphere of Y), ly,— y,l| = 1Ull/y and x,= U-'y,,
x,=U-'y,. Then |lxI<1,lxlls1 and Ul/y<lly, —yl=
| U, —x,) |l < || Ux, — x, |, whence [lx,—x,)l = 1/y. Since ay> 1, by the equal-
ity ay(1-6,{1/y)) =1, it follows that 8,{1/y)> 0. Therefore

N0+ w720 = 1UC 7 2(x, + DI < WD 1/206, + x Il <aby(t =8, (/) =0,

This means that 8 (||U]| /y)=1—58>0. Thus, eV <|UVll/ y<a.
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In the fixed point theory the notion of the convexity coefficient is useful
(see [2]). We shall give now a basic theorem to compute ¢ (L%{u,X}).

Theorem 3. Let a be a number in (0,2). The following conditions are
equivalent:

1° 8,¢(a)>0.
2° (a) there is 6 (0,1) such that for every x,ve X satisfving the equality

B((x—y)/a)2(1-B)D((x +¥)/2), we have D((x+y)/2) 51—_;_§- {0+ D0,

(b) @ satisfies the Acondition.

Proof. 2°=1°. Assume that {[f1l,<1, llgll,<! and {[/—gll,>a.
Then I(f)<1, I(g)<1 and I ((f/— g)/a)= 1. Define

A={te T-O(H)—gt)/a)= (1 - DA +£(N)/2)}.
Then

1 L8 105 L8 fnd+ Uutannd) <1 -5

Consequently, I,( A ;g x.)=98. By the A,-condition, we get

I {28 1) s KL+ e},

where K is a constant depending only on 4 and ®. Hence,

1—I( f;g )2 (1720 L{f )+10<g)}—1°(i:;£)

> (1/2)f I,(mmo(gm}uf.,(igi %)

> (/2 L)+ Togr) | - 1;5 (1) +To(gn)}

=(8/2){ 1, I, 8
/2 L)+ Iolen)} 2 e
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Equivalently,

I(fr8y<1- &
2 2K

Applying the A,-condition, we get

-—--——--f+g Q—l_ 82 H
I - llo= p(zK)

where p is a function from (0,1) into itself (in the real case see [4] and [6]).

This yields §,%a) = p(_f_;(_po_

1° =2°, If ® does not satisfy the A,-condition, then L®u,X) contains an
isometric copy of /= (see [3] and [4]). Therefore, 8,%(a) <8cc(2)=0 for every
a<(0,2]. Assume now that condition 2°(g) is not satisfied, i.e. for every
8 e(0,1) there exist x,y € X such that
O(1/a(x—y)= (1 -8)P(x+)/2) and O((x+)/2)> 1/2(1 - D(x)+ P}
Let B.Ce>, BcC, be such that W(CO)=p(B\C) and (P(x)+PONHWB)=2.

Define
J=XAe VX 5o 8=Yhe + XU

We have I(f)=1I(g)=1, whence ||f |, =llgll, =1. Moreover,

L((f-8)/(1 - 8ya)z (1/(1 -8 W) P((x—y)/a)d

= (1/(1-8)P((x — y)/a)u(B) = (1/( 1-8) )CD(( X+ Y} 2D(B)

> (1/2{@(x)+ P uB)=1.

Therefore [[(f—g)/all,=(1—98). In an analogous way the inequality
(/+2)/2ll, =1—35 car be proved. Since & € (0,1) was arbitrary, this means that
8,4(a)=0. The theorera is proved.

To prove the next theorem, we will need the following

Proposition 4. Lt D be an Orlicz function satisfying the A,-condition.
Then the following ass2rtions are equivalent:
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(+) there is 8€(0,1) such that D((x+y)/2< (1~ 8Y2){D(x)+ D))
whenever x,y € X satisfy ®((x —y)/a)=(1 -8)yP(( x+)/2).

(++) there is oe(0,1) such that D(x+y)/2)< (1 -0)/2)P(x)+ D)}
whenever x,y € X satisfy ®((x— y)/a(l —a))=D((x+y)/2).

Proof. (++)=(+). Assume that ®({x—y)/a)=(l ~c)®((x+1)/2). Then
O((x—yYall —a N=(1/(1-o)D((x —»)/a)=P({(x+))/2). In view of condi-
tion (++), we have O((x +1)/2) <((1-06)/2)}{ P(x)+ D)}

Thus, it suffices to put =0.

(+)=(++). Assume that ®((x—y)/a(l — o))=D((x+¥)/2), where o, is a
constant in (0,1) satisfying ®(x/(1 -6 )< (1/(1 —3))P(x) for every xe X (by
the A,-condition such a constant exists) and 6 is the constant from condition
{+). Then

D((x—y)/a)1/(1 —8)ZD((x—y)/ all -0 )2 D((x+ y)/2).

Therefore, by condition (+), we get

D(x+y)/2) < ((1-8)/2){ B(x) + PO
It suffices to put o=min(s,, d).

Theorem 5. Let @ be a uniformly convex Orlicz function defined on the real
line, i.e. for every a(0,1) there exists &(a) € (0,1) such that for every ue R we
have D((u+au)/2)<(1/2X1 = & a){ D)+ D (aw)}, and let O satisfy the A-con-
dition and (X, ||) be a Banach space. Then 8,%€)>0 for the Orlicz-Bochner
space L*=L° (W, X) if and only if &, ()>0.

Proof. Since X can be isometrically embedded into L*(u,X), the condi-
tion 8 {e)=0 implies §,+(e)=0.

Now, in view of Proposition 4 assume that §,(g)> 0. It suffices to show
that there exists a constant o <(0,1) such that for every x,ye X, we have

|| Zo2 ||z g2l implies o 222 < o (@qiai + aiviny

Since 3{¢)>0 by the assumption, there exists 8 € (0,1) such that

(2) “ i"?-i “ <38 whenever x,y e B, (=the unit ball of X} and

|2 (=1 =52 |
& 1=l ==
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Assume that x,y € X and ” _%1_”_2 “1‘2"_3.’_ ” We can assume without loss

of generality that |lx||<|lyll. Then_X Y eB,and

™7~ Wi

l ésﬂyj;q ” > ” )251'];,]1" " Thus, in virtue of condition (2), we get

”x_ery ” <8|lyll. Now, we shall consider two cases.

1°. Byl <lixll. Then

| 222 || ssiyi=s I+ Il <5 ligBeinl <5+l
2 2 2

= JL_; (el + ).

Hence

| 252 = B {@dixl+ @y}

2°. |lxll < /8lly Il. By uniform convexity of &, we have

q,(H x-;y “)sd)( |lel42-||JI|| )< 1—;1(5) f(I|xID + D(llyll)}.

Therefore, for every x,y € X such that “ x{-l;y “ = " X -}—y “, we have

q,(” Xty ”)5 maX((l—211(5)),\/5) { () + P,

To prove condition (1) it suffices to put 6= max((l —n(8),./3).
Note. The thesis of Theorem 5 means that g,(L%(u, X)) =¢,(x). Itis a gen-

eralization of Theorem ¢ of Downing and Turett [2]. However, our method
of the proof is quite different than the method used there.

An Orlicz function ® is said to satisfy condition C, (a € (0,2)) if there exists
a number o € (0,1) such that

D((x+1)/2) < (6/2{ P(x)+ D)),
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whenever x,y € X and ®((x— y)/ac)= D((x+ v)/2).
For any Orlicz func_tion ¢ we define the parameter
a(®)=inf{a e (0,2):® satisfies condition C,}.
We shall give now an inmediate consequence of Th. 3 and Prop. 4.

Corollary 6. Let O be an Orlicz function. Then € (L¥u,X)) =2 whenever
@ does not satisfy the &,-condition and s (L%, X)) = o(®) in the opposite case.

Note. Theorem 3 and Corollary 6 generalize the results of [6] to Orlicz
spaces of vector valued functions. Theorem 3 generalizes also some results of
{4], [5] and [7]. These results are also connected with the results of [8], [9] and
[10].

Corollary 7. Let ® be an Orlicz function defined on the real line R and
(Xl Il) be a Banach space. Then the Orlicz-Bochner space L. X) is uni-
Jormly rotund if and only if both spaces L¥u,R) and X are uniformly rotund,

Recall that L®(u,R) is uniformly rotund if and only if ¢ is uniformly con-
vex and satisifes the A,~condition (see [7]).

Problem. Is the equality g{ L%(u,X))=max(e (L}, R), £,(X)) true for
every Orlicz-Bochner space?

Added in proof. The problem has negative answer. We refer to the paper
of the author and T. Landes entitled “Characteristic of convexity of Kdthe func-
tion spaces” (preprint).
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