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Primariness of sorne spaces ofcontinuous
functions

LECH DREwNOwsKI

ABSTRACT. J. Roberts and the author have recently shown that, under the Centinuurn Hypoth-
esis, the Banach space 4,/c« is primary. Since this space is isometrically isomorphic te the space
C(e9) of continuous scalar fuuctiens en = — co, it is quite natural lo consider Use question
of prin’ariness also for the spaces of continuous vector functions en co. The presení paper con-
íains sorne partial results in that direction. In panicular, frorn our results it fellows that qw,cxAo>
is primary for any infinite metrizable corupact space K (without assuming the CH).

A Banach space Xis said te be primary if, whenever we have a (tepologi-
cal) direct sum decempesition X=ESF, then either E er Fis isornorphic te
X. Many Banacb spaces are known te be prirnary; among them are the spaces
C(K) of centinuous scahar functions en infinite metrizable compact spaces
([3],[l]). In a recent paper [2], answering a question posed by Leonard and
Whitfield. James Roberts and the auther have shewn that, under the Con-
tinuum Hypothesis (CH), also te Banach space lJc,. which is isornetrically isa-
morphic te C(w*), is primary. (Throughout this paper, m~ denotes the remain-
der jiú—ú of the Stene-Úech cempactification of Ú={ 1,2,..». The present pa-
per eriginated from an attempt, not very successful se far, te genera¡ize this
result te the spaces C(w*,X), where X is a Banach space.

For the purpose of this paper ¡et us agree te say that a Banacb space Xis
nice if fer every (centinuous linear) operater T.•X—*X there exists a subspace
Y of X whicb is isornorphic te Xand which is mapped isornorphically by one
of the operaters T er id~ — T ente a cornplemented subspace of X. C¡early, if
Xis nice and X=ESF, then either E or Fcontains acomplernented isomorpb
of X.

Ihe approach in [2] is essentially standard and consists in sbowing tbat
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(i) the space C= C(o?) is nice;

(ji) (under the CH) ibe 4,,,— sum of (infinite¡y many isemetrie copies of)
C, IJC):=(CSC ~ ...), , is isemorphic te tú;
and then proving tbat tú is prirnary by an app¡ication of Pe¡czynski’s decem-
position metbod.

In the present paper we first give an altemative preef of (i), and then ob-
tain a vector analogue of (i): ¡fX Ls separable and nice, titen also CYjO*,X) is
mce. We alse have a vector analegue of (ji), bul with a suitable modificatien
of the l«,,-surns used in (u). Unfortunately, ene of the crucia¡ properties of the
l<,,,-surns that makes the Pelczynski method werk in [2], viz., IJE@F) =
lc,,(F)@ln (E]>, dees net seem te held fer our modification. In censequence, we
were unable te shew that if Xis nice (er primary?), then C(o*,X) is prirnary,
a resu¡t whicb is (more or less) what ene tends te expect. Nevertheless, there
is sornething positive we can preve: If X is a separable nice fianacit space
whicit is isomorpitic to its c0-sum, c,(X), titen C(út,X) is primary (without as-
surning the CH!). In panicular, for every infinite metrizable compact Al the
space CQ~o*,C(A9)~C «o*xJ<) is prirnary.

Let us introduce sorne netation and recalí sorne facts about o?. (Referen-
ces can be feund in [2].) We denote by <--/ the algebra of dopen subsets of o?;
--4=-J—{o>. If A eÁ~ then 14 denotes tbe characteristic functien of A relative
te o?,4A)=tBe~l:fi cA>, and J,~A)=ÁA)—{e1. We reca¡¡ that -/is a base
for the topo¡ogy of o?, and that ifA cd,, tben A is bomeemorphic te 0*;
hence, for every Banach space X, C(A,X) C«n*,X). In what foilews we often
identify C(A,X) with the subspace $f: 1f=f } of C(o?,X). We also recal¡ that
tbe a¡gebra ~./ has tbe follewing property (sornetirnes called Cantor separabil-
ity» For every decreasing sequence (A,,) in 2, there existsA e --z~ which is con-
tained in ahí A,,. Finally, there is a result of Negrepontis that, under the CH,
if A is an open F,-subset of o?, then its c¡esure A is a retract of o?.

1. Lemma ([2]). Let X:4—*fli be a nondecreasing set function. Titen for
every A e~ itere exisí fi e4(A) and ~3E R sucit thai

?4E)=I3 for aif Ee -i~(R).

2. Theorem ([2]). If T:C(w*)~~*C(o?) is an operator, titen for every A e —1,,
titere exists a fi e.c<4(A) and a scalar y such titat

(Tf)12=yffor allf e C(B>

As in [2], it wihi be convenient te prove this theorem in its equiva¡ent form
stated belew. The proof presented here is somewbat different from that in [2],
and we fírst give sorne explanations.
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We recalí that there is a ene-te-ene correspondence between the operators
T:C(o?)~~*C(co*) and tbe beunded fínitely additive vector measures
ji :J..*C(¿o*); If T is given, then tbe corresponding (representing) measure ji is
defrned by ji(E)= T(IE); if ji is given, then the corresponding eperater Tis de-
fined by Tf=ffdpi.

New suppose that T and pi are related te each other in the aboye rnanner,
and consider the conjugate eperator ThM(o?)~*M(w*), wbere M(o?) is the
space of regular Borel measures en o? (identified with tbe dual of C(co*)). For
eachpeo? ¡et pi0— P<5,, where 8~is the Dirac measure at p. Then it is readily
seen that

ji(E)(p)=ji,,(E) fer aH Ee -/ and pe w*

Let a rneasure ve M(o?) be real-valued, and let v~ be its positive pan.
Iben r is given fer every Borel set Eco? by

r(fl= supv(fi),
9

wbere tbe suprernurn is taken over ah Bere¡ subsets fi efE. New, using regu-
larity, it is easy te verify tbat

v~(E)=sup v(fl for ahí Ec-/
Fe f(E)

In panicular, for tbe real space C(w*). if ji:J~*C(w*) is a bounded
measure, tben

ji~(E)=sup ji/E) for aif Ee -/and p E
Fc 1(k)

Hence, fer every E eA, tbe functien p—*ji~(E) is lower semi-continuous en o?,
and the sarne is of course true of tbe negative-part functien p—*ít;(E)= (—ji);
(E). (The lower sernicontinuity of tbe functien p~~*(T*50)+(E) bolds in fact fer
every operator T:C(K)—*C(K) and every open set EcK)

Now we restate tbe aboye tbeorem in an equivaient form.

3. Theorem ([2]). Let ji:>1—>C(ot) be a boundedjiniíely additive vector
mensure. Titen for everyA ES,, titere exist a fi in —1/A) and a sca/ar y sucit that

ji(E)l2=yl~for alíE e-/(fi).

Proof. Wc rnay (and will) assume that C(o?) is real. We stan by defining
two nondecreasing set functions A~, X~/—*R+ by

X/E)=sup jitjE) and kÁE)=sup ji;(fl
PCE pcE
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(It is easy te veriG’, using the formula for v~(E), Ec-t given aboye, that these
two functiens coincide witb those used in [2].) LetA e-4 Applying Lemma 1
twice, we flndfie4(A) and aj3e R sucb that

X»(fl= j3 and X4E) = a fer ahí E e

Let E&=4(fi).If Fe>/,(E) and pe o?, then ji~(F)=ji~(E). Rut
sup~,~(fl=X~(11=~; so

sup ji$E)=13 for alt Fe =4(E)
PC F

From Uds and tbe lewer sernicontinuity of the functien p—*ji~(E) it fot¡ows
that for every I~’-I~ the set (peE:ji%(E)>~’} is open and dense in E. Hence
the set

12={pcE: ji~(E)=I3>
is a dense 08-subset efE.

Next, ifE=fi, then

P=k(~)~ jiJfl+ji;(fi—E)=~ (E)+~ fer ah pe(fi—E9

so that

ji;(E)= O for ahí ¡ie (fi—E) O

But, by the lower sernicentinuity again, the set {pe fi—E:ji$E)=0} is closed
in fi—E, and it centains the set (fi—E )0 which is dense in fi—E; therefore,
pi~,(E)=0feral¡pefi—E. Ihus

{ P fer peEn,ji~(E)=
for pe fi—E.

By a similar argument, the set

E«:={peE: ji;(E)=c4
is a dense 05-subset efE, and

a ferpeE,,

forpefi—E.
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Hence

f3—a=:yferpeE’nE<o,

Ofor p efi—E.

But tbe function ji(E):p—*pi,,(E) is continuous, and the set EYn E<o is dense in
E, bence ji,(fl=y for aH peE.

We bave thus sbown that for every Ee -4(B),

pi(E)(p)=pi/E)=yl¿p) for ahí pefi,

whicb is precise¡y what was te be preved.ri

4. Corollary. C«n*) is a fice Banacit space.

Proof. See [2], Proof of Coro¡¡ary 2.4; see alse Proof of Core¡¡ary 6
below.o

New we give an extensien of Tbeoreni 3 te the case of vector valued
functions.

5. Theorem. Leí X be a separable Banacit space, Y a fianach space

whose dual Y* is weak* separable, and leí

T:C(cú*,Xy~*C(út, y)

be an operator Titen for every A e -/~ titere exisí fi E «A) and u e L(X, Y) sucit
titat

(Tf)l,=u«ffor a/lf E C(B,X).

Proof. Let (Xm) be a sequence dense in X, and (y~<) a sequence in Y~ sep-
arating tbe points of Y.

Given xc X and y*e Yt consider tbe beunded finite¡y additive measure

jix -/-*tú(o? ); A—*>#.TQx,)
Tben, by Theerern 3, Lar every A e -4 there exists a fi E 4(A) and a sca¡ar y
such tbat

ji~~E)¡ ,= y1~ Lar a¡¡ Ee I(fi).
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Applying tbis inductively when y*~yt(n= 1,2...) andxis he¡d fixed, and then
rnaking use of the Cantor separabihity of<4 we see tbat for every x e X and
A e=4.there exists a fi e=4(A)and a sequence of sca¡ars (~y’,,) such that

it;yIE) ¡,=7j~ for alt Ee-/(fi) and nc

Since tlie sequence (y~) is total en Y, it follows that there exists a (unique)
ye Ysuch that

T(l~x)19= lj for aif EeJ(fi).

New, applyingtbis inductively whenx=xjm= 1,2,...) and then using the Can-
tor separabitity of -¡again, we find tbat fer every A e.!, diere exists a fi e —.1/A)
and a sequence (y,,) in Y sud> that

T(t,x,j¡,= lj,, for ah Ee J(fi) and me

Ifxe Xand (x~ ) isa subsequence of(x,,) converging te x, then by tlie con-
tinuity of T tbere rs a y= u(x) e Y sucb that the sequence <y&) converges te y
(and this y does not depend en a panicular choice of (x,, )). Thus

T(t,x)l,= l~u(x) fer a¡¡ Ee -<(fi) and xe X.

C¡ear¡y, the mapping u:X—*Y is linear, and

IIu(x)II = II t~u (x)II~=117X1,x) IL=IITlblIxII for alí xc X

se that uEL(X,Y) (and IIuII=II711.)
It foltows that

(Tf)l»= uf

for every~<-simpIe functien f in C(B,X); since sucb functiens are dense in

C(B,X), tbe ¡ast equality holds fer alt f in C(B,X).o
6. Coro¡Iary. If is a separable nice Banach space, titen also tite space

ifl is nice.
Proof. Let 1 denote tbe identity operator in C(w*,X) and i the identity

operator in X. Let Te L<C«n*,X)). By Theorem 5, we can find fi e=4and
u e L(X) sucb that.

(Tf)¡»=u<of for allf e C(fi,X).
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It is then easily checked that

(J—T)f I,=(i —u>of forallfcC(fi.X).

Since X is nice, tbere exists a subspace Y of X whicb is isomorphic te X
and which is rnapped isemorpbical¡y by u or i — u ente a complemented sub-
space of X. Let’s assume this holds fer u se tbat u = ul Y is an isemorphic cm-
bedding and u(Y) =u(Y)=: Z is cemplernented in X. Let p be a prejection
frem X ente Z.

1ff c C(fi,Y), then (Tf)h,=uof and so

IIw-’I¡--’ II IL=l!u«f¡¡«os IITfII <5 II71I.ItfIk

which shews that 71C(B, Y) is an isemorpbic embedding of C(fi, Y) into

C(w*4’). Define an eperator P:C(m*,X)~~C(o *,X) by

Clear¡y, tbe range of Fis contained in T[C(fi, Y)]. Ifgc 7¡C(fl, Y)], j.c., g= Tf
for some feC(B,Y), then gl~=(Tf)l,=uof and hence Pg=T(u-’opcuof)—
T(ir’ ouof)— Tf=g Thus P is a projection frem C(cn*,X) ente its subspace
flC(fi, Y)] C(fi, Y)— C(fi,X)

As easily seen, fer every cempact space K and every Banacb space X, tbere
is a natural isometrie isomerphism between the spaces C(K,c«(X)) and
c,(C(K,X)) so that

C(K,c«(X)) c,(C(K,X))

We use this fact in eur next result.

7. Corollary. Jf X is a separable nice fianacit space whicit is isomorphic
to iis c«-sum c«(X), titen tite space C(ú,*,X) is primary.

Proof. We first observe that

tbus, denoting short¡y C(co*,X)=:C. we bave Cas c«( C).

New let C=E@F. By Corellary 6, ene of tbe surnmands, E say, contains
a complernented subspace y which is semorphic te C. Thus there is a sub-
spaee U in E sucb that
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E=U@V, where V’~C~c,(C).

Applying Pelczynski’s decempesition rnetbod, we new get

Er« U@cSC)~z U@C@c,(q=Eec,(E@fl=Eec,(fl$c«(ñ~c,(E)@c,(Fh~
c,(E@fl= c,(Q=« Co

In panicular, we bave the fol¡owing

8. Corollary. For every infinite metrizable compací space K, tite space
C«n* C(K))= C(ot x 1<) is primary.

Proof. Ihis follews directly from the preceding corollary because such spa-
ces C(K> are known te be nice ([3], [1])and isomerphic with their c,-sums [4].o

9. Remark. Let Xbe an arbitrary Banacb space. Define ic(X) te be the Ra-
nach space of ahí relatively norm cempact sequences (x,,) in X, endowed with
the supremum nerm. Then

ic(X)/c0(X)~ CQn*,A9.

tbis can be verified precisely as in tbe scalar case, using tbe Stene-tecb
isemetric isomorpbism between ic(>3 and C(frn,X), and the fact (surely we¡¡
knewn) that Tietze’s type extensions frorn o? te ~o exist for continueus X-
valued functions. For the sake of cornp¡eteness, we give a sketch of that fact:

Let gc C(cú*,X). Then there exists a sequence (g,,) oft4-simphe functiens
in C(w*4’) converging uniformly te g Fer each n cheose a finite ~-partition

A;> so that g,, assumes censtant (not necessarily distinct) values en
eacb of tbe s¿ts A’; this can be done se that=~í,,~,isa refirernent of¿. Then it
is easi¡y seen thatwe can define a sequence ofpartitions of o$4 = { M’ Al;>
consisting of infinite sets and such that24~, isa refinement efd4 and that A<=
(the c¡osure of M~ in 13co) — M. Let r c K(AJ be the sequence which takes tite
constant value x~ en the set A~, where {x~}=g,,(A j, i= 1 k0. Finally, ¡etA be
the centinueus extensien ofr te ~o. Thenf,,Io?=g, and Itf,,~fmII~ = IIg,,—gjL
for ahí in and n so that the sequence (f,) converges uniformly te a function

10, Remark. Fer a compact space K and a Banach space X,, let 4(C(K,X))
denote tite Banach space consisting of alt sequences <f,) such that f,, E C(K,X)
for each n and the jeint range of the functions f,,, that is, u«~f,,(K), is a
relatively nerm compact subset of X, with tite norrn defined by
II(f,,) II = supil f,,j ¡«<o. Titen tite same argurnent as in the proofofPropositien 3.2
iii [2]sho~s that, under the CH (which enters itere via tite result of Negrepontis
mentiened before Lernrna t), 4 (tú(o?A9) is isemetric to acomp¡emented sub-
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space of C(m*,..Y) from which, as a censequenee, we have that 4(C(w*,.X))-cc
C(m*49. Unfonunately, we cannot apply this result te tite primariness prob-
1cm of tite spaces C(w*,A’) because we de not know ifany analeg of tite fact
titat 4«(E@h~l~ (E)@l,,}F) holds fer eur 4-surns.
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