REVISTA MATEMATICA de la Universidad Complutense de Madrid. Volumen 2, número suplementario, 1989. http://dx.doi.org/10.5209/rev_REMA.1989.v2.18084

Primariness of some spaces of continuous functions

LECH DREWNOWSKI

ABSTRACT. J. Roberts and the author have recently shown that, under the Continuum Hypothesis, the Banach space l_{ω}/c_o is primary. Since this space is isometrically isomorphic to the space $C(\omega^*)$ of continuous scalar functions on $\omega^* = \beta \omega - \omega$, it is quite natural to consider the question of primariness also for the spaces of continuous vector functions on ω^* . The present paper contains some partial results in that direction. In particular, from our results it follows that $C(\omega^*, C(K))$ is primary for any infinite metrizable compact space K (without assuming the CH).

A Banach space X is said to be *primary* if, whenever we have a (topological) direct sum decomposition $X = E \oplus F$, then either E or F is isomorphic to X. Many Banach spaces are known to be primary; among them are the spaces C(K) of continuous scalar functions on infinite metrizable compact spaces K ([3],[1]). In a recent paper [2], answering a question posed by Leonard and Whitfield. James Roberts and the author have shown that, under the Continuum Hypothesis (CH), also the Banach space l_{ω}/c_{σ} which is isometrically isomorphic to $C(\omega^*)$, is primary. (Throughout this paper, ω^* denotes the remainder $\beta \omega - \omega$ of the Stone-Čech compactification of $\omega = \{1, 2, ...\}$). The present paper originated from an attempt, not very successful so far, to generalize this result to the spaces $C(\omega^*, X)$, where X is a Banach space.

For the purpose of this paper let us agree to say that a Banach space X is *nice* if for every (continuous linear) operator $T:X \rightarrow X$ there exists a subspace Y of X which is isomorphic to X and which is mapped isomorphically by one of the operators T or $id_x - T$ onto a complemented subspace of X. Clearly, if X is nice and $X = E \oplus F$, then either E or F contains a complemented isomorph of X.

The approach in [2] is essentially standard and consists in showing that

¹⁹⁸⁰ Mathematics Subject Classification (1985 revision): 46E15, 46B25 Editorial de la Universidad Complutense. Madrid, 1989.

L. Drewnowski

(i) the space $C = C(\omega^*)$ is nice;

(ii) (under the CH) the l_{∞} -sum of (infinitely many isometric copies of) C, $l_{\infty}(C) := (C \oplus C \oplus ...)_{l_{\infty}}$, is isomorphic to C;

and then proving that C is primary by an application of Pelczynski's decomposition method.

In the present paper we first give an alternative proof of (i), and then obtain a vector analogue of (i): if X is separable and nice, then also $C(\omega^*, X)$ is nice. We also have a vector analogue of (ii), but with a suitable modification of the l_{∞} -sums used in (ii). Unfortunately, one of the crucial properties of the l_{∞} -sums that makes the Pelczynski method work in [2], viz., $l_{\infty}(E \oplus F) \approx$ $l_{\infty}(E) \oplus l_{\infty}(F)$, does not seem to hold for our modification. In consequence, we were unable to show that if X is nice (or primary?), then $C(\omega^*, X)$ is primary, a result which is (more or less) what one tends to expect. Nevertheless, there is something positive we can prove: If X is a separable nice Banach space which is isomorphic to its c_{σ} -sum, $c_{\sigma}(X)$, then $C(\omega^*, X)$ is primary (without assuming the CH!). In particular, for every infinite metrizable compact K, the space $C(\omega^*, C(K)) \cong C$ ($\omega^* \times K$) is primary.

Let us introduce some notation and recall some facts about ω^* . (References can be found in [2].) We denote by \mathcal{A} the algebra of clopen subsets of ω^* ; $\mathcal{A}_{\sigma} = \mathcal{A} - \{\emptyset\}$. If $A \in \mathcal{A}$, then 1_A denotes the characteristic function of A relative to ω^* , $\mathcal{A}(A) = \{B \in \mathcal{A}: B \subset A\}$, and $\mathcal{A}_{\sigma}(A) = \mathcal{A}(A) - \{\emptyset\}$. We recall that \mathcal{A} is a base for the topology of ω^* , and that if $A \in \mathcal{A}_{\sigma}$ then A is homeomorphic to ω^* ; hence, for every Banach space X, $C(A,X) \equiv C(\omega^*,X)$. In what follows we often identify C(A,X) with the subspace $\{f: 1_A f = f\}$ of $C(\omega^*,X)$. We also recall that the algebra \mathcal{A} has the following property (sometimes called *Cantor separability)*: For every decreasing sequence (A_n) in \mathcal{A}_{σ} there exists $A \in \mathcal{A}_{\sigma}$ which is contained in all A_n . Finally, there is a result of Negrepontis that, under the CH, if A is an open F_{σ} -subset of ω^* , then its closure \overline{A} is a retract of ω^* .

1. Lemma ([2]). Let $\lambda: \neg \downarrow \rightarrow \mathbb{R}$ be a nondecreasing set function. Then for every $A \in \neg \neg \downarrow$ there exist $B \in \neg \neg \downarrow (A)$ and $\beta \in \mathbb{R}$ such that

$$\lambda(E) = \beta$$
 for all $E \in \mathcal{A}_{\delta}(B)$.

2. Theorem ([2]). If $T:C(\omega^*) \rightarrow C(\omega^*)$ is an operator, then for every $A \in \mathcal{A}_o$ there exists a $B \in \mathcal{A}(A)$ and a scalar γ such that

$$(Tf)1_B = \gamma f \text{ for all } f \in C(B)$$

As in [2], it will be convenient to prove this theorem in its equivalent form stated below. The proof presented here is somewhat different from that in [2], and we first give some explanations.

We recall that there is a one-to-one correspondence between the operators $T:C(\omega^*) \rightarrow C(\omega^*)$ and the bounded finitely additive vector measures $\mu: \mathcal{A} \rightarrow C(\omega^*)$; If T is given, then the corresponding (representing) measure μ is defined by $\mu(E) = T(1_E)$; if μ is given, then the corresponding operator T is defined by $Tf = \int f d\mu$.

Now suppose that T and μ are related to each other in the above manner, and consider the conjugate operator $T^*:M(\omega^*) \rightarrow M(\omega^*)$, where $M(\omega^*)$ is the space of regular Borel measures on ω^* (identified with the dual of $C(\omega^*)$). For each $p \in \omega^*$ let $\mu_p = T^*\delta_p$, where δ_p is the Dirac measure at p. Then it is readily seen that

$$\mu(E)(p) = \mu_p(E)$$
 for all $E \in \mathcal{A}$ and $p \in W^*$.

Let a measure $v \in M(\omega^*)$ be real-valued, and let v^+ be its positive part. Then v^+ is given for every Borel set $E \subset \omega^*$ by

$$v^+(E) = \sup_{B} v(B),$$

where the supremum is taken over all Borel subsets B of E. Now, using regularity, it is easy to verify that

$$v^+(E) = \sup_{F \in \mathcal{F}(E)} v(F) \text{ for all } E \in \mathcal{F}$$

In particular, for the *real* space $C(\omega^*)$, if $\mu: \leftrightarrow C(\omega^*)$ is a bounded measure, then

$$\mu_p^+(E) = \sup_{F \in \mathcal{A}(E)} \mu_p(F) \text{ for all } E \in \mathcal{A} \text{ and } p \in \omega^*$$

Hence, for every $E \in A$, the function $p \rightarrow \mu_p^*(E)$ is lower semi-continuous on ω^* , and the same is of course true of the negative-part function $p \rightarrow \mu_p^-(E) = (-\mu)_p^+$ (E). (The lower semicontinuity of the function $p \rightarrow (T^*\delta_p)^+(E)$ holds in fact for every operator $T:C(K) \rightarrow C(K)$ and every open set $E \subset K$)

Now we restate the above theorem in an equivalent form.

-- - - . ..

3. Theorem ([2]). Let $\mu: \leftrightarrow C(\omega^*)$ be a bounded finitely additive vector measure. Then for every $A \in \mathcal{A}$, there exist a B in $\mathcal{A}(A)$ and a scalar γ such that

$$\mu(E)1_B = \gamma 1_E \text{ for all } E \in \mathcal{A}(B).$$

Proof. We may (and will) assume that $C(\omega^*)$ is real. We start by defining two nondecreasing set functions $\lambda_{\mu}, \lambda_{-\mu} \rightarrow \mathbb{R}_+$ by

$$\lambda_{\mu}(E) = \sup_{p \in E} \mu_{p}^{+}(E) \text{ and } \lambda_{-\mu}(E) = \sup_{p \in E} \mu_{p}^{-}(E)$$

(It is easy to verify, using the formula for $v^+(E)$, $E \in \mathcal{A}$, given above, that these two functions coincide with those used in [2].) Let $A \in \mathcal{A}_o$. Applying Lemma 1 twice, we find $B \in \mathcal{A}_o(A)$ and $\alpha, \beta \in \mathbb{R}$ such that

$$\lambda_{\mu}(E) = \beta$$
 and $\lambda_{-\mu}(E) = \alpha$ for all $E \in \mathcal{A}_{o}(B)$.

Let $E \in \mathcal{A}_o(B)$. If $F \in \mathcal{A}_o(E)$ and $p \in \omega^*$, then $\mu_p^+(F) \le \mu_p^+(E)$. But $\sup_{p \in F} \mu_p^+(F) = \lambda_\mu(F) = \beta$; so

$$\sup_{p \in F} \mu_p^+(E) = \beta \text{ for all } F \in \mathcal{A}_o(E)$$

From this and the lower semicontinuity of the function $p \rightarrow \mu_{\rho}^{+}(E)$ it follows that for every $\beta' < \beta$ the set $\{p \in E: \mu_{\rho}^{+}(E) > \beta'\}$ is open and dense in E. Hence the set

$$E^{\mathfrak{p}}:=\left\{p\in E:\,\mu_{p}^{+}(E)=\beta\right\}$$

is a dense G_{δ} -subset of E.

Next, if E = B, then

$$\beta = \lambda_{\mu}(B) \ge \mu_{p}^{*}(E) + \mu_{p}^{*}(B - E) = \mu_{p}^{*}(E) + \beta \text{ for all } p \in (B - E)^{\beta}$$

so that

$$\mu_{\alpha}^{*}(E) = 0$$
 for all $p \in (B-E)^{\beta}$

But, by the lower semicontinuity again, the set $\{p \in B - E: \mu_{\rho}^{+}(E) = 0\}$ is closed in B-E, and it contains the set $(B-E)^{\rho}$ which is dense in B-E; therefore, $\mu_{\rho}^{+}(E) = 0$ for all $p \in B-E$. Thus

$$\mu_p^+(E) = \begin{cases} \beta & \text{for } p \in E^{\mathfrak{g}}, \\ 0 & \text{for } p \in B - E. \end{cases}$$

By a similar argument, the set

$$E_a := \{ p \in E : \mu_p(E) = \alpha \}$$

is a dense G_b -subset of E, and

$$\mu_p(E) = \begin{cases} \alpha & \text{for } p \in E_{\alpha}, \\ \\ 0 & \text{for } p \in B - E. \end{cases}$$

Hence

$$\mu_{\rho}(E) = \mu_{\rho}^{*}(E) - \mu_{\rho}^{-}(E) = \begin{cases} \beta - \alpha = :\gamma \text{ for } p \in E^{\mathfrak{p}} \cap E_{\alpha}, \\ 0 \quad \text{for } p \in B - E. \end{cases}$$

But the function $\mu(E): p \to \mu_p(E)$ is continuous, and the set $E^p \cap E_a$ is dense in E, hence $\mu_p(E) = \gamma$ for all $p \in E$.

We have thus shown that for every $E \in \mathcal{A}_{\alpha}(B)$,

$$\mu(E)(p) = \mu_p(E) = \gamma 1_E(p) \text{ for all } p \in B_p$$

which is precisely what was to be proved.

4. Corollary. $C(\omega^*)$ is a nice Banach space.

Proof. See [2], Proof of Corollary 2.4; see also Proof of Corollary 6 below.□

Now we give an extension of Theorem 3 to the case of vector valued functions.

5. Theorem. Let X be a separable Banach space, Y a Banach space whose dual Y* is weak* separable, and let

$$T: C(\omega^*, X) \rightarrow C(\omega^*, Y)$$

be an operator. Then for every $A \in \mathcal{A}_o$ there exist $B \in \mathcal{A}_o(A)$ and $u \in L(X, Y)$ such that

$$(Tf)1_B = u \circ f \text{ for all } f \in C(B, X).$$

Proof. Let (x_m) be a sequence dense in X, and (y_n^*) a sequence in Y^* separating the points of Y.

Given $x \in X$ and $y^* \in Y^*$, consider the bounded finitely additive measure

$$\mu_{x,y^*} \to C(\omega^*); A \to y^*. T(1, x)$$

Then, by Theorem 3, for every $A \in \mathcal{A}_o$ there exists a $B \in \mathcal{A}_o(A)$ and a scalar γ such that

$$\mu_{x,y}(E)\mathbf{1}_{B} = \gamma \mathbf{1}_{E} \text{ for all } E \in \mathcal{A}(B).$$

L. Drewnowski

Applying this inductively when $y^* = y_n^*(n=1,2...)$ and x is held fixed, and then making use of the Cantor separability of \mathfrak{A} , we see that for every $x \in X$ and $A \in \mathfrak{A}_{q_n}$ there exists a $B \in \mathfrak{A}_q(A)$ and a sequence of scalars (γ_n) such that

$$\mu_{x,y_n^*}(E) \mathbf{1}_B = \gamma_n \mathbf{1}_E$$
 for all $E \in \mathcal{A}(B)$ and $n \in \mathbb{N}$.

Since the sequence (y_n^*) is total on Y, it follows that there exists a (unique) $y \in Y$ such that

$$T(1_E x) 1_B = 1_E y$$
 for all $E \in \mathcal{A}(B)$.

Now, applying this inductively when $x = x_m$ (m = 1, 2, ...) and then using the Cantor separability of Again, we find that for every $A \in \mathcal{A}_o$ there exists a $B \in \mathcal{A}_o(A)$ and a sequence (y_m) in Y such that

$$T(1_E x_m) 1_B = 1_E y_m$$
 for all $E \in \mathcal{A}(B)$ and $m \in \mathbb{N}$.

If $x \in X$ and (x_{k_m}) is a subsequence of (x_m) converging to x, then by the continuity of T there is a $y = u(x) \in Y$ such that the sequence (y_{k_m}) converges to y (and this y does not depend on a particular choice of (x_{k_m})). Thus

$$T(1_E x) 1_B = 1_E u(x)$$
 for all $E \in \mathcal{A}(B)$ and $x \in X$.

Clearly, the mapping $u: X \rightarrow Y$ is linear, and

$$||u(x)|| = ||1_{B}u(x)||_{\infty} \le ||T(1_{B}x)||_{\infty} \le ||T|| \cdot ||x||$$
 for all $x \in X$

so that $u \in L(X, Y)$ (and $||u|| \le ||T||$.)

It follows that

$$(Tf)1_{B} = u^{\circ}f$$

for every at-simple function f in C(B,X); since such functions are dense in C(B,X), the last equality holds for all f in C(B,X).

6. Corollary. If is a separable nice Banach space, then also the space $C(\omega^*, X)$ is nice.

Proof. Let I denote the identity operator in $C(\omega^*, X)$ and i the identity operator in X. Let $T \in L(C(\omega^*, X))$. By Theorem 5, we can find $B \in \mathcal{A}_o$ and $u \in L(X)$ such that.

$$(Tf)\mathbf{1}_{B} = u \circ f \text{ for all } f \in C(B, X).$$

It is then easily checked that

$$(I-T)f 1_B = (i - u) \circ f$$
 for all $f \in C(B, X)$.

Since X is nice, there exists a subspace Y of X which is isomorphic to X and which is mapped isomorphically by u or i-u onto a complemented subspace of X. Let's assume this holds for u so that v = u|Y is an isomorphic embedding and v(Y) = u(Y) =: Z is complemented in X. Let p be a projection from X onto Z.

If $f \in C(B, Y)$, then $(Tf)1_B = \upsilon \circ f$ and so

$$\|v^{-1}\|^{-1} \|f\|_{\infty} \le \|v \circ f\|_{\infty} \le \|Tf\|_{\infty} \le \|T\| \|f\|_{\infty}$$

which shows that T|C(B,Y) is an isomorphic embedding of C(B,Y) into $C(\omega^*,X)$. Define an operator $P:C(\omega^*,X) \rightarrow C(\omega^*,X)$ by

$$Pg = T(\upsilon^{-1} \cdot p \cdot g1_{B})$$

Clearly, the range of P is contained in T[C(B, Y)]. If $g \in T[C(B, Y)]$, i.e., g = Tf for some $f \in C(B, Y)$, then $gl_{B} = (Tf)l_{B} = \upsilon \circ f$ and hence $Pg = T(\upsilon^{-1} \circ p \circ \upsilon \circ f) = T(\upsilon^{-1} \circ \upsilon \circ f) = Tf = g$. Thus P is a projection from $C(\omega^*, X)$ onto its subspace $T[C(B, Y)] \approx C(B, Y) \approx C(B, X) \approx C(\omega^*, X)$.

As easily seen, for every compact space K and every Banach space X, there is a natural isometric isomorphism between the spaces $C(K,c_o(X))$ and $c_o(C(K,X))$ so that

$$C(K,c_o(X)) \cong c_o(C(K,X))$$

We use this fact in our next result.

7. Corollary. If X is a separable nice Banach space which is isomorphic to its c_o-sum $c_o(X)$, then the space $C(\omega^*, X)$ is primary.

Proof. We first observe that

$$C(\omega^*, X) \approx C(\omega^*, c_o(X)) \approx c_o(C(\omega^*, X));$$

thus, denoting shortly $C(\omega^*, X) = :C$, we have $C \approx c_o(C)$.

Now let $C=E\oplus F$. By Corollary 6, one of the summands, E say, contains a complemented subspace V which is somorphic to C. Thus there is a subspace U in E such that

$$E = U \oplus V$$
, where $V \approx C \approx c_o(C)$.

Applying Pelczynski's decomposition method, we now get

 $E \approx U \oplus c_o(C) \approx U \oplus C \oplus c_o(C) \approx E \oplus c_o(E \oplus F) \approx E \oplus c_o(E) \oplus c_o(F) \approx c_o(E) \oplus c_o(F) \approx C_o(F) \approx$

In particular, we have the following

8. Corollary. For every infinite metrizable compact space K, the space $C(\omega^*, C(K)) \cong C(\omega^* \times K)$ is primary.

Proof. This follows directly from the preceding corollary because such spaces C(K) are known to be nice ([3], [1]) and isomorphic with their c_o -sums [4].

9. Remark. Let X be an arbitrary Banach space. Define $\kappa(X)$ to be the Banach space of all relatively norm compact sequences (x_n) in X, endowed with the supremum norm. Then

$$\kappa(X)/c_{\theta}(X) \cong C(\omega^*, X).$$

This can be verified precisely as in the scalar case, using the Stone-Cech isometric isomorphism between $\kappa(X)$ and $C(\beta\omega, X)$, and the fact (surely well known) that Tietze's type extensions from ω^* to $\beta\omega$ exist for continuous X-valued functions. For the sake of completeness, we give a sketch of that fact:

Let $g \in C(\omega^*, X)$. Then there exists a sequence (g_n) of \mathscr{A}_o -simple functions in $C(\omega^*, X)$ converging uniformly to g. For each n choose a finite \mathscr{A}_o -partition $\mathscr{A}_n = \{A_1^n, ..., A_k^n\}$ so that g_n assumes constant (not necessarily distinct) values on each of the sets A_i^n ; this can be done so that \mathscr{A}_{n+1} is a refirement of \mathscr{A}_n . Then it is easily seen that we can define a sequence of partitions of $\omega, \mathscr{A}_n = \{M_1^n, ..., M_k^n\}$ consisting of infinite sets and such that \mathscr{A}_{n+1}^n is a refinement of \mathscr{A}_n and that $A_i^n =$ (the closure of M_i^n in $\beta\omega$) – M_i^n . Let $x^n \in \kappa(X)$ be the sequence which takes the constant value x_i^n on the set M_i^n , where $\{x_i^n\} = g_n(A_i^n), i = 1, ..., k_n$. Finally, let f_n be the continuous extension of x^n to $\beta\omega$. Then $f_n|\omega^* = g_n$ and $||f_n - f_m||_{\infty} = ||g_n - g_m||_{\infty}$ for all m and n so that the sequence (f_n) converges uniformly to a function $f \in C(\beta\omega, X), f||\omega^* = g, \text{ and } ||f||_{\infty} = ||g||_{\infty}$.

10. Remark. For a compact space K and a Banach space X, let $l_{\mathbf{x}}(C(K,X))$ denote the Banach space consisting of all sequences (f_n) such that $f_n \in C(K,X)$ for each n and the joint range of the functions f_n , that is, $\bigcup_{n=1}^{\infty} f_n(K)$, is a relatively norm compact subset of X, with the norm defined by $\|(f_n)\| = \sup_{n=1}^{\infty} \|f_n\|_{\infty}$. Then the same argument as in the proof of Proposition 3.2 in [2] shows that, under the CH (which enters here via the result of Negrepontis mentioned before Lemma 1), $l_{\mathbf{x}}(C(\omega^*, X))$ is isometric to a complemented sub-

._____

space of $C(\omega^*, X)$ from which, as a consequence, we have that $l_{\kappa}(C(\omega^*, X)) \approx C(\omega^*, X)$. Unfortunately, we cannot apply this result to the primariness problem of the spaces $C(\omega^*, X)$ because we do not know if any analog of the fact that $l_{\omega}(E \oplus F) \approx l_{\omega}(E) \oplus l_{\omega}(F)$ holds for our l_{κ} -sums.

References

- [1] D. ALSPACH and Y. BENYAMINI, Primariness of spaces of continuous functions on ordinals, Israel J. Math. 27 (1977), 64-92.
- [2] L. DREWNOWSKI and J. W. ROBERTS, On the primariness of the Banach space l_{∞}/c_{σ} , Proc. Amer. Math. Soc. (to appear).
- [3] J. LINDENSTRAUSS and A. PELCZYNSKI, Contributions to the theory of the classical Banach spaces, J. Funct. Anal. 8 (1971), 225-249.
- [4] A. PELCZYNSKI, On C(S) subspaces of separable Banach spaces, Studia Math. 31 (1968), 513-522.

Institute of Mathematics A. Mickiewicz University Poznan, POLAND