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Primariness of some spaces of continuous
functions

LECH DREWNOWSKI

ABSTRACT. J. Roberts and the author have recently shown that, under the Continuum Hypoth-
esis, the Banach space [_/c, is primary. Since this space is isometrically isomorphic to the space
Clw*) of continuous scafar functions on ©* = pw — , it is quite natural to consider the question
of primariness also for the spaces of continuous vector functions on w*. The present paper con-
tains some partial results in that direction. In particular, from our results it follows that Clew*, C(K))
is primary for any infinite metrizable compact space X (without assuming the CH).

A Banach space X is said to be primary if, whenever we have a (topologi-
cal) direct sum decomposition X=E®F, then either £ or F is isomorphic to
X. Many Banach spaces are known to be primary; among them are the spaces
C(K) of continuous scalar functions on infinite metrizable compact spaces K
{[3LI1]). In a recent paper [2], answering a question posed by Leonard and
Whitfield. James Roberts and the author have shown that, under the Con-
tinuum Hypothesis (CH), also the Banach space [ _/c, which is isometrically iso-
morphic to C(w*), is primary. (Throughout this paper, ©* denotes the remain-
der Bo — @ of the Stone-Cech compactification of © ={ 1,2,...}). The present pa-
per originated from an attempt, not very successful so far, to generalize this
result to the spaces C{w*,X), where X is a Banach space.

For the purpose of this paper let us agree to say that a Banach space X is
nice if for every (continuous linear) operator T:X—.X there exists a subspace
Y of X which is isomorphic to X and which is mapped isomorphically by one
of the operators T or id,— T onto a complemented subspace of X. Clearly, if
X is nice and X= E®F, then either E or F contains a complemented isomorph
of X.

The approach in [2] is essentially standard and consists in showing that
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(i) the space C=C(w"*) is nice;

(ii) (under the CH) the /_—sum of (infinitely many isometric copies of)
C !l (OCr=(CHC B ...),w, is isomorphic to C;

and then proving that € is primary by an application of Pelczynski’s decom-
position method.

In the present paper we first give an alternative proof of (i), and then ob-
tain a vector analogue of (i) if X is separable and nice, then also C(0*X) is
nice. We also have a vector analogue of (ii), but with a suitable modification
of the /_-sums used in (ii). Unfortunately, one of the crucial properties of the
/_-sums that makes the Pelczynski method work in [2], viz., [(E®F) =
L(EY®L, (F), does not seem to hold for our modification. In consequence, we
were unabie to show that if X is nice (or primary?), then C{®w*,X) is primary,
a result which is (more or less) what one tends to expect. Nevertheless, there
is something positive we can prove: If X is a separable nice Banach space
which is isomorphic to its c-sum, c(X), then C(w*,X) is primary (without as-
suming the CH!). In particular, for every infinite metrizable compact X, the
space C(0*,C(K))=C (0*xK) is primary.

Let us introduce some notation and recall some facts about ©*. (Referen-
ces can be found in [2].) We denote by -7 the algebra of clopen subsets of w*;
{=.{—{8}. If A .7, then 1, denotes the characteristic function of 4 relative
10 0*,./(A)={Be.<:B c A4}, and -{(4)=-{(A)-{o}. We recall that ./is a base
for the topology of w*, and that if 4 €./, then 4 is homeomorphic to ®*
hence, for every Banach space X, ((4,X)=C(w* X). In what follows we often
identify C(4,X) with the subspace {f: 1,f=/f | of C(w* X). We also recall that
the algebra ¢ has the following property (sometimes called Canfor separabil-
ity): For every decreasing sequence (A4,) in .7, there exists 4 € -7, which is con-
tained in all 4. Finally, there is a result of Negrepontis that, under the CH,
if A4 is an open F-subset of w*, then its closure A4 is a retract of w*.

1. Lemma ([2]). Let h:-{—R be a nondecreasing set function. Then for
every A e« there exist Be«{(A) and B R such that

ME)= for all E e -{(B).

2. Theorem ([2]). If T:Clw*)—>C(w*) is an operator, then for every A€,
there exists a B e-7(A4) and a scalar y such that

(TN y=f for all f € C(B)

As in [2], it will be convenient to prove this theorem in its equivalent form
stated below. The proof presented here is somewhat different from that in {2],
and we first give some explanations.
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We recall that there is a one-to-one correspondence between the operators
T:C(w*)—»C(w*) and the bounded finitely additive vector measures
u :.~C(w*), If T is given, then the corresponding (representing) measure p is
defined by w(E)=T(1,); if p is given, then the corresponding operator T is de-
fined by Tf =[fdu.

Now suppose that 7 and p are related to each other in the above manner,
and consider the conjugate operator T*M(w*)»M(w*), where M(w*) is the
space of regular Borel measures on ©* (identified with the dual of C(w*)). For
each p e @* let u,= T3, where §, is the Dirac measure at p. Then it is readily
seen that

WEYp)=p,(E) forall Ee .7 and pew* .

Let a measure v e M{®*) be real-valued, and let v+ be its positive part.
Then v+ is given for every Borel set Ecw* by

v+(E)}= supv(B),

where the supremum is taken over all Borel subsets B of E. Now, using regu-
larity, it is easy to verify that

v+(E)=sup v(F) for all Ec ¢

Fe HE)

In particular, for the real space C{®*), if L. Clw*) is a bounded
measure, then

Wi(E)=sup p(F) for all Ee-7and pc o*

Fe f1£)
Hence, for every F € 4, the function p—>p(E) is lower semi-continuous on w¥,
and the same is of course true of the negative-part function p—p - (E}= (—p);
(E). (The lower semicontinuity of the function p—(T *8))*(E) holds in fact for
every operator 7:C(K)—({(K) and every open set EcK)

Now we restate the above theorem in an equivalent form.

3. Theorem ([2]). Let p..—=C(w*) be a bounded finitely additive vector
measure. Then for every A € 4, there exist a B in -1{A) and a scalar y such that

WE ,,=v1; for all Ee {(B).

Proof. We may (and will) assume that C{w*) is real. We start by defining
two nondecreasing set functions A, A_,:./-R, by

A(E}=sup p(E) and A_(E)=sup p(E)

peE peE
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(It is easy to verify, using the formula for v+(E), E e:7, given above, that these
two functions coincide with those used in [2].) Let 4 €~4, Applying Lemma 1
twice, we find Be-{(4) and a,p € R such that

A(EY=P and A_(E)=q for all E<€_4(B).

Let Eecf(B). If Fe./(E) and pew* then pu'(F)<u’ (E). But
sup,. i F)=A(F)=B; so

sup pH(E)=P for all Fe {(E)

peF

From this and the lower semicontinuity of the function p—p*(E) it follows
that for every B’ <P the set {pe E:u*(E)> '} is open and dense in E. Hence
the set

EF:={pe E: n3(E)=p|
is a dense G,-subset of E.
Next, if E=B, then
B=A(B)2 i E)+p(B—E)=n", (E)+p for all pe(B—E)
so that
pi(E}= Oforall pe(B—E)°®
But, by the lower semicontinuity again, the set {p € B— E:ut(E}=0} is closed
in B—E, and it contains the set (B—E ¥ which is dense in B— E; therefore,
ni(E)=0 for all pe B—E. Thus
B for pe EF,
UHE) =
0 forpeB—E.
By a similar argument, the set
E;={peE: p;(E)=q|
is a dense (G,-subset of E, and
a forpekE,

RyE) =
Q0 forpeB-F,
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Hence
B—a=:y for pe E*nE,,
HAEY=uYE)—p(E) =
0 forpeB—-E.

But the function u(E).p—u(E) is continuous, and the set EPnE, is dense in
E, hence p(E)y=y forall pe E.

We have thus shown that for every Ee_4(B),

WEYP)=p(E)=71p) for all pe B,

which is precisely what was to be proved.o

4. Corollary. C(w*) is a nice Banach space.

Proof. See [2], Proof of Corollary 2.4, see also Proof of Corollary 6
below.o

Now we give an extension of Theorem 3 to the case of vector valued
functions.

5. Theorem. Let X be a separable Banach space, Y a Banach space
whose dual Y* is weak* separable, and let

T:Clw*, X)-»Clo*, Y)

be an operator. Then for every A € {, there exist Be {(A) and ue L(X,Y) such
that

(T ,=uef for all f e C(B,X).

Proof. Let (x,) be a sequence dense in X, and () a sequence in Y* sep-
arating the points of Y.

Given xe X and y*e Y*, consider the bounded finitely additive measure
B = C(0* ); A—y* T(1 x)

Then, by Theorem 3, for every A & .4 there exists a Be .Z{4) and a scalar y
such that

W, {E) ;= vl for all E€ #(B).
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Applying this inductively when y*=3*n=1,2...) and x is held fixed, and then

making use of the Cantor separability of.7, we see that for every x€ X and

Ae.{, there exists a Be=#{(4) and a sequence of scalars (y,) such that
pn,,;(E) l,=vy,1 forall Ee.{B)and ne N,

Since the sequence (3*) is total on Y, it follows that there exists a (unique)
y € Y such that

T(1.x)1,= 1.y for all Ee=+(B).
Now, applying this inductively when x=x, (m=1,2,...) and then using the Can-
tor separability of .7again, we find that for every 4 & .7, there exists a B € .{{A4)
and a sequence (y,) in Y such that

T(lpx )= 1., for all Ee .#(B) and meN.

If xe X and (x, }is a subsequence of (x,) converging to x, then by the con-
tinuity of T there 15 a y=u(x) € Y such that the sequence (yk,,.) converges to y

(and this y does not depend on a particular choice of (x, })). Thus
T(1p)1,=1,u(x) forall Ec .7/(B) and xe X.
Clearly, the mapping u:X—Y is linear, and

Nl =M (0l < T L < /I Nlx]| for all xe X
so that we L(X,Y) (and ||l <] T
It follows that
(TN=uf

for every.¢-simple function f in ((B,X); since such functions are dense in
C(B,X), the last equality holds for all f in C(B,X).0

6. Corollary. If is a separable nice Banach space, then also the space
Clo*, X) is nice.

Proof. Let 7 denote the identity operator in C(w*X) and i the identity
operator in X. Let Te L{C(w* X)). By Theorem 5, we can find Be=~{, and
u € L{X) such that.

(THl,=u-f for all f e ((B,X).
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It is then easily checked that
(-7 1,=(i —u)f for all f e C(BX).

Since X is nice, there exists a subspace Y of X which is isomorphic to X
and which is mapped isomorphically by u or i—u onto a complemented sub-
space of X. Let’s assume this holds for « so that v=#Y is an isomorphic em-
bedding and v(Y) =w(Y)=: Z is complemented in X. Let p be a projection
from X onto Z.

If f e C(B,Y), then (T)1,=vef and so
ho=l-* U o < uef Nl < UTFN L s BTALIAIL

which shows that 71C(B,Y) is an isomorphic embedding of ({B,Y) into
C(0*,X). Define an operator P.C{w* X)»C(w *.X) by

Pg=T(v"'=p -glp)
Clearly, the range of P is contained in T{C(B,Y)]. If g TIC(B,Y)), i.e., g=Tf
for some fe C(BY), then gl,=(Tf)l,=vef and hence Pg=T(v-'opetof)=

T(v' «vef)=Tf =g Thus P is a projection from C(®w* X) onto its subspace
ITAB, V)= B Y)={(B X)~ ((w*.X)0

As easily seen, for every compact space K and every Banach space X, there

is a natural isometric isomorphism between the spaces C(K,c(X)) and
¢ (C(K, X)) so that

UK e (X)) =c(UK.X))

We use this fact in our next result.

7. Corollary. If X is a separable nice Banach space which is isomorphic
to its c-sum c(X), then the space C(w* X) is primary.

Proof. We first observe that

Clo* X)=C (0*c(X)=c, (Ce*X);

thus, denoting shorily C{w*, X}=:C, we have C=c,(C).

Now let C=E®F. By Corollary 6, one of the summands, E say, contains

a complemented subspace ¥ which is somorphic to C. Thus there is a sub-
space U in £ such that
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E=U®V, where V=C=c(C).
Applying Pelczynski’s decomposition method, we now get

E=U®c(C)=UBCO(C)~EB(EDF) = EDc(E)Dc(F)~Cc(E)Dc(F)~
c(E®F)~ ¢(C)~CO

In particular, we have the following

8. Corollary. For every infinite metrizable compact space K, the space
o*,CK))=C(w* x K) is primary.

Proof. This follows directly from the preceding corollary because such spa-
ces C(K) are known to be nice ([3], [1]) and isomorphic with their ¢-sums [4].0

9. Remark. Let X be an arbitrary Banach space. Define k(X) to be the Ba-
nach space of all relatively norm compact sequences (x,) in X, endowed with
the supremum norm. Then

k(X)X = C(o* X),

This can be verified precisely as in the scalar case, using the Stone-Cech
isometric isomorphism between k(X) and C(Bw,X), and the fact (surely well
known) that Tietze’s type extensions from o* to fw exist for continuous X-
valued functions. For the sake of completeness, we give a sketch of that fact:

Let ge C(w*,X). Then there exists a sequence (g,) of of-simple functions
in C(w*,X) converging uniformly to g. For each n choose a finite =7,-partition
oty ={A4..., A4,"} so that g, assumes constant (not necessarily distinct) values on
ecach of the sets 47 this can be done so that.v,,, is a refirement of =/, Then it
is easily seen that we can define a sequence of partitions of @,=4,={M3,.... ,M,")
consisting of infinite sets and such that-/, , is a refinement of:# and that A;=
(the closure of M in fw)— M. Let x* € x(X) be the sequence which takes the
constant value x; on the set M, where {x}}=g(47), i=1,....k, Finally, let f, be
the continuous extension of x* to fw. Then fjw*=g, and [|f,—f./l.. =llg.—&.Il..
for all m and » so that the sequence (f,) converges uniformly to a function

f e Cpw,X), fl o*=g, and Ifll.=llgl..

10. Remark. For a compact space K and a Banach space X, let {(C(K, X))
denote the Banach space consisting of all sequences (f,) such that f, € C(K X)
for each n and the joint range of the functions f, that is, u<_f(X), is a
relatively norm compact subset of X, with the norm defined by
Il¢F) = supll £.ll.. Then the same argument as in the proof of Proposition 3.2
in [2] shows that, under the CH (which enters here via the result of Negrepontis
mentioned before Lemma 1), I (C(w*,X)) is isometric to a complemented sub-
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space of C(w* X) from which, as a consequence, we have that /(C(w* X))=
C(0*.X). Unfortunately, we cannot apply this result to the primariness prob-
lem of the spaces C{w*,X) because we do not know if any analog of the fact
that / (E@F)=1_ (E}®!_(F) holds for our /-sums.
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