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Structure ofmeasures on topological spaces

JOSE L. de MARIA and BALTASAR RODRíGUEZ-SALINAS

ABSTRACT. The Radon spaces of type (), le., topological spaces for which every finite Borel
measure on 0 is t-additive and -regular are characterized. Ihe class ofthese spaces is veo’ wide
and iii panicular it contalos the Radon spaces. Wcextead the results of Marczewski and Sikorski
to the c-metrizable spaces aud lo the subsets of the Banach spaces endowed with Ihe weak topo-
logy. Finally, the completely additive families of measurable subsets related with the works of
1-lanselí, Koumoullis atad Fremilta are studied.

1. INTRODUCTION

The rnodern Measure Tbeory starts with the construction of the ford
measures on the a-algebra of the Borel seis of fi. Two important facts are to
be noted: 1) The measures are defined on a a-algebra. 2) They are countably
additive.

The study of ihe measures on fi is the origin for later study of measures
on metrie spaces started by Caratheodory and also the study of measures on
locally compact spaces witb the brillianí construction of the Haar measure.

Sorne authors, Bourbaki among otbers, thought the frame of locally com-
pact spaces wide enought for a satisfactory measure theory. Rut the 60-70’s re-
present such a radical change in the way of thinking about measure theory in
topological spaces, thai even Bourbaki publishes in 1969 a volume about
measures defined on non locally eompact spaces. This differení poiní of view
15 due to Ihe new relationship between mathernaticai analysis and probability
calculus, in which measure theory had an important development sorne years
before, by virtue ofthe papers of P.J. Daniel, H. Steinhaus, fi. Jessen, P. Lévy,
N. Wiener, Ju. y. Prokhorov, L. de Carn, R. A. Minios, etc. This aboye rnen-
tioned book of Bourbaki generated tbe general measure theory on topological
spaces.
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One cf the mest distinguished measure theery is due te L. Scbwartz, wbo
gaye a lecture in 1964, in tbe Gulbenkian Institute of Lisbon, abeul tbe Ra-
don measure theory en nen-Iocally compact spaces. In 1965 he gaye another
lecture in the Tata Institute in Bombay where he developed the theory. Fi-
nally in 1973 appears the desired bock “Radon Measures en Arbitrary Topo-
logical Spaces and Cylindrical Measures” which centain almost ah of Beurba-
ki’s Chapter IX en integratien. At dic same time, in 1964, we gaye a cern-
munication abeut the measure theery en topolegical spaces at the V Reunión
de Matemáticos Españoles. Rodríguez-Salinas gaye the main lecture in the Pri-
meras Jornadas Luso-Españolas in ¡972 precisely en tbe same subject and alse
in ibe Gulbenkian Institute. Afterwards he continued working and publishing
papers en the sarne subject.

The re¡ationship between tepology and measure tbeory is described in term
of the regularity properties and in panicular the “outher” and “inner” regu-
Iarity. A measure ~¡ defined en the c,-algebra of the Berel sets of a tepelogical
space is said te be outer regular if the measure of each Borel set is the infi-
mum of tbe measures cf ah epen sets containing it. A measure ¡.¡ in the same
cenditions is said te be inner regular if the measure of each Borel set is the
supremum of tbe measures of ah dic compact sets contained in it.

Ameng the first contributions en tbe regularity ef measures, we must peint
out the papen of A. D. Alexandroff(1940-1950), P. R. Halmos and 1. von Neu-
mann (1950), E. Marczewski (1953), C. Ryll Nardzewski (1953), B. V. Gne-
denkc and A. N. Kelmogcrov (1954), and D. B¡ackwell (1955). Alexandroff
emphasizes inner regularity and preves that the measures en a Pelish space
are inner regular. This result was later found again by Prokhorov in 1956.

Radon measures en topological spaces can be defined in different ways.
The Schwartz’s methed is ene of them. In panicular Radon measures en cern-
pletelyregular spaces have been studied, apan from Schwartz, by A.D. Alexan-
droff, y. S. Varadarajan and K. Zizi. P. A. Meyer has defined Radon
measures en Hausderff spaces by use of the concept of compacte¡ogy ef A.
Weil.

Radon measure theory is based en inner regularity, i.e. by use of tbe inner
approxirnation of the measure by means of the measures of the compact sets.
The first preb¡em tbat it appears is that it is only possible te induce measures
in measurable subsets. Hence it is necessary te substitute this inner regularity
by an inner regularity with respect te a class QO of closed sets.This class could
be the c¡ass (y) of ahí closed sets er sorne particular class such as tbe class (~3~)
ef ah dic metrizable compact sets. In this plurahity rests the usefulness of the
Radon mesaures of type (YO. But the compactenes must be substituted by
something which plays a similar role, tbis is the concept of g-ccmpactness in-
troduced by us in 1964.The Radon measuresof type (4É) ahlew te describe the
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structure of rneasures en the most irnportant topological spaees. In this lec-
ture we are going te discuss tbis cuestien.

2. BASIC CONCEPT

Let ‘r be a real function, defined en the chass 3(Q) of a topological space
Q. rnenotene and such that r(o)=0. A subset A cf O is said te be -r-cotnpact
if, fer every epen cover C0 cfA and for every s>O, tbere exists (O O,,) cG0
such that

t(A\uGk)Cs.

Obvioushy every cempact set is t-compact and if 4e) = O and «A) = 1 fer
every A * 0, we have that eacb r-compact is compact.

Analogously the notion of ji-compact set is alse introduced when ~i is
measure defined en dic a-algebra of Berel sets of a topolegical space.

Let Y’ be a chass of chesed sets in a topelegical space O. Then a Bore¡
measure ji en z4(a-algebra of Berel in O) is said te be a Radon rneasure of
type (-F) if

1) Every He fl is wcornpact and WH) is finite.

2) g(B)= sup (gH):BnHe~Y¡), for every Be ~h
(z4can be substituted by a class >1 DS)

In particuhar, if O is a Hausdorff space and Xis the chass of compacts of
O, tbe Radon measures of type (Y) are tbe usual Radon measures. (Seme-
times it is required that the Raden measures are ¡ecahhy finite in erder te as-
sure that the measure of the compact sets is finite). Other important classes,
as we have remarked already, are 2/= -~ the chass of the metrizable compact
subsets and Y = g the class of ahí chesed sets. Every finite Radon measure of
type (s) is a Raden measure of type (iJ.

Jf jj~ is the outer measure asseciated te a hocally finite Raden rneasure of
type (~Y4, then a set A is g*~cempact ifand enhy if g*(A) is finite.

From new on we assume that ah measures we consider are finite and that
O is a topological space.

A Banach ineasure en O is a measure ji # O en 3(0) such that p{ú) = O for
every w cO.
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An U/am measure en LI is a Banacb rneasure en O with values in 10,11.

A cardinal a is real-measurable ifdiere exists a Banach measure en sorne
space O of cardinahity a.

A cardinah a is 2-measurab/e if diere exists an 131am measure en sorne
space O cf cardinality a.

The non 2-measurabie cardinahs are called non-measurable and the non
real-measurabie cardinais are cahied cardinais of measure zero.

The cardinal c = 2% is nen-mesurable and with the Centinuum Hypeth-
esis, it is of measure zero. Mereever there exist axioms of Set Theery con-
sistent with ZFC which assure diat every cardinah is of measure zero. Sucb an
example is given by the Gódeh Constmctibily Axicm. Uham preved in 1930
tbat every real-measurable cardinal is eidier = Yo er ehse measurable (but net
botb).

In 1984 Marczewski and Sikorski [23] have preved that the existence of a
dense set with cardinality of measure zero in a rnetric space is equivalent te
the existence, for every finite Berel measure s en O, of a separabie closed sub-
set E such that g(O\F)=0. Tbey also preved that this last preperty is equiv-
alent te the fact that every Berel measure en O has a preper support. Ihese re-
suhts can be cempleted in this way: Every Borel measure on a metric space O
is a Radon measure oftype (Y) ifand on/y ¿f ihe weight of~ is a cardinal of
measure zero. Ihe weiglu of a tepelogical space O is the smallest cardinal of
the dense subsets of O.

For every Berel measure ji en a metrie space O, ene has

ji(B)=sup ~ji(fl:fiDFeJ}

fer every Boreh set B. So it is obvieus that a Berel measure pi is Raden of type
(2) ifand only if O is pi-cempact.

A topolegical space O is called a Radon space of type (Y) if every Berel
measure en O isa Radon measure of type (Y). In particular, Raden spaces of
type (~i%9 coincide with the Radon spaces.

A subset A of O is said universal/y fiorel measurable (resp. universa//y Ra-
don measurable oftype (ij) if, for every Berel measure (resp. Raden measure
of type (Y» ji en O, there exist twe Borel subsets fi, fi’ such that BcA cfi’
and pi(B’\B)=0

O is said universal/y measurable ifevery Raden measure of type (1) en O
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is a Radon measure. Tbis definitien ceincides with tbe usual ene wben O is
a completely regular space. (See [36] 1.21 1430] Lemrna 8). Complete rnetric
spaces are universally measurable ([29] Corohhary 5). So they are Radon
spaces if and only if their weight is cf measure zero. Hence we bave a gen-
eralizatien of the similar property cf Pohisb spaces.

A a-algebra 2 of subsets of O is se/f-generaúve if a set A belongs te >/ if
and only if for every X E A, tbereexists aneighborbood V(x) such that A n V(x)
e <1 The smallest self-generative G-ahgebra 6 wbich contains open sets Is
called the Spanish a-algehra, the elernents ef6 are cafled the Spanikh sets. In par-
ticular, ifO is stronghy Lindelóf then 6 =

3. RADON SPACES OF TYPE (¿*)

New we are going te study the structure of the Radon spaces of type (1)
in relation with tbe self-generative character of its a-algebra of the measurabhe
sets, and with a property, inspired frorn a Lernrna of D. Montgomery [25].Wc
have called Fheck spaces, the spaces which own this preperty. We also use the
concept of L-weight which is rehated witb the weight of a tepelogicah space
and the preperty of Lindelóf.

1. Propos¡tion.If (G,)~ is a well-ordered family of open sets in O, and
11= G0\uG~ and E,,cH0 is a Spanish set, then Me union E=UE, of each

0-co oeA
subfami/y of (E,)0 is a Spanish set.

Proof. Let Q= u G~. By transfinite induction we wifl prove that En G’,
isa Spanisb set. Indeed, h) EnG’=0. 2) IfEnGlc6 then

EnG’04 ,= (En

with Et=E, erE’,= 0. 3) Ifa isa limit ordinal and we suppese thai En G’0 e 6
for every ~-ca then every xeEnGi, has a neighborheod V(x)=G’0 with 3<a
such that

(En O ‘~) n V(x) = EnO ‘~ ~ 6

so, EnG’,e6 and E=EnuO,e6.

2. Corollary. Under Me hypothesis of Proposition 1, every union u H0 of
a subfamily of(H,)« is a Spanish set. ocA

3. Definition. 0 is called a F/ock space ~ffor every well-orderedfamily
(O,),, of open subsets of O and setting H0=O,,\u 00, Me union u H,, of any

Oca <ocAsubfamily of(H~J,, is a universally fiore/ measurable set.
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If O a rnetrizable space, frorn Lernma 2 [25], weget that every unien u H0
004

isa E0 set, seO isa Rock space. Also, every stronghy Lindelófspace isa Rock
space.

Frem Theerern 2.12.6 [28] and Ceroflary 47 [20] it fohhews that the measur-
able sets with respect te a Radon measure of type (-2) censtitute a self-gener-
ative u-ahgebra which contains~. so every elernent of 6 is universahhy Berel
measurable of type (5<).

Let us preve that the a-algebra of the measurable sets fer a Radon measure pi
of type (¿7) is self-generative. Fer every X EA there exists a neighberheod V(x)
such that An V(x) is measurable, as 0= u V’(x) is p-cernpact there exist a se-
quence (x,,) cA such that

ji(G\uV(x,j) = 0,

so A\ur(x,,) is rneasurable, hence

A = u(An V’(xj)u(A\uV<o(xj)

is also measurabie since An r(xj= (An V(x»))n V(x,3.

4. Definition.O Izas the a-property ofLindelóf where a is a transflnite car-
dinal, Wfor everyfamily (G0),<o, oforn subsers ofO, thereexists JcI, suciz that
card (J) ~ a, and

uO,=uG,.
~ Jc.~

Ifa base of the topelogy of O has cardinal a, then O has the a-property of
Lindehóf.

The smahhest cardinal a such that O has the a-property of Lindelóf is
called the L-weight of O.

5. Theorem. Let O be a Flock space whose L-weight is of measure zero
and (G.)~ be afamily of open sets in O, then

ji(uGJ= supji(uO«),
ocA 7 o.J

for every fiore/ meas ure ji where the supremum is taken over oíl finite subsets
J ofA.

Proof. By Zerme o theorem and as the L-weight of O is of measure zero,
we can suppose that A is wehh-ordered and its cardinal of measure zero. Let
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H*=OAuGr

pca

Since O is a Rock space, every union u II, is an universahly Borel
measurable. Then the set functien

ocs

is a finite measure defined over ah subsets ScA, where ji~ designates tbe
outer measure asseciated te ji. As the eardinality of A is of measure zero, diere
exists a ceuntable set ScA such tbat u<A)=u(S), i.e, ji*(uH,3 ji*(u H,3.

ocA ocs

New,
guo,) = ji(uH,) = guI4)=guo,3=supji(uO,3,

«<A ocA ocs ocs 1

hence ji(u 03= sup ji(u 0,3.
OeA 7 OEJ

6. Theorem. Let O be a regular space whose L-weight is ofmeasure zero.
Titen tite fo/lowing assertions are equivalent:

6.1. 0 is a Radon space oftype <-1).
6.2. Every subset ofO which is universal/y Radon measurable oftype (1)

is universa//y Borel measurable.
6.3. Every Spanish set of O is a universally fiorel measurable set.
6.4. 0 is a Flock svace.

Poof. 6.1 6.2. Obvieus.
6.2 6.3. It fohhows frorn the remark follewing definition 3.
6.3 6.4. From Corohlary 2.
6.4 6.1. Let O be a Rock space. Then we shahl prove that O is

ji-compact if ji isa Borel measure enO. Let (0,3, be an epen cover of O; frem
Tbeorem 5 it follows that

ji(O)=ji(u G0)=supji(u 0,3.
ocA oc)

Hence, for every c>-0, there exists a finite subset J of A such that
ji(O\ u 0,3 <s, 50 LI is ji-compact. In a similar way it is preved that eacb open

0<7O of O is ji-cornpact.

Qn the other hand, the chass 2 of the Borel sets fi such that

~fi) = sup {ji(fl: fi D

and

g(Bj = supj j4fl:fi’DFEJ}
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isa a-algebra whicb contains aH dxc open subsets of O. Indeed, if(F.DOEA is tbe
family of the closed sets F,<c O, tben O = u E’, since O is a regular space. So,

<cA

ji(G)=supji(uF’,3=supji(uF,3
7 «47 7 oc)

and Ge 2~ Then every Borel set fi belongs te 2 and O is a Radon space of
type (-4

Remark. If O is a Radon space of type (5<) then the L-weight of O is of
measure zero. If the L-weight is real-measurable, then there exists a wehl-or-
dered strictly increasing family (OJ,EA of epen sets such tbat card (A) is real-
mesurable. La u be a Banacb rneasure en A, select x«e O«~\O<o and set

ji(E)=u~a:x<oeE~ (EcO).

Then pi is a Borel measure but it is not a Raden measure of type (=2):If it
were a Raden measure of type (yj, proceeding as in Propesition 1, weuld
imphy that pi(O,3=0 fer every aeA, and u(A)=ji(u 0, )= O, and u would net

ocAbe a Banacb measure.

The chass of the Radon spaces of type (=7),which contains the metrizable
spaces whose weight is of measure zero and the strong Lindelófspaces, is very
wide as it is preved in the fohhowing stabihity theorem.

7. Theorem.

7.1. ¡fO isa Radon space of£ype (Sj, titen every subsez of O isa Radon
space of type (59.

7.2. IfO is a regular space whicit is tite union ofa countable sequence (E,,)
of Radon subspaces of type (59, titen O is a Radon space of type 47).

73. Iffor every fiorel measure p andfor every s >0 Mere exists a Radon
subspace of type 47) E, <sO such titat pi*(O\E<) cs, where pi~ is Me outer
measure associated to ji. titen O is a Radon spaces oftype (0.

Proof. 7<1 and 7.3 are irnmediate. Te preve 7.2 it is sufficient te preve that
LI is ji-compact, as in 6.4 =>6.1. (See. Prepesition h5 [¡0]).

8. Definition. A topological space (resp. uniform space) O is a said s-
metrizable (resp. un~form s-metrizable) iffor every Borel measure ji on O andfor
every e>0 Mere exisis a metrizable set E<c O (resp. in tite induced unzformity)
sucit titat pi*(O\E,3<E where i0< is tité outer measure associated to ji.
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By Tbeorerns 6 and 7, every s-metrxzabhe space whose L-weight is of
measure zero, is a Raden space of type (-/). Hence Theerern 7 couhd be com-
píeted by means of the feflowing resuht: ¡f (E,,) is a sequence ofs-metrizab/e
spaces, titen tite topological product [¡E,,is a s-metrizable space.

Topological and uniferm a-metrizable spaces can be defined in a natural
way. Fer thern we can givean extensien ofa resuht of Marczewskiand Sikorski:

9, Theorem. Let ji be a fiore/ measure on a un¿form a-metrizab/e space
O. Titen tite following assertions are equiva/ent:

9.1. Titere exists a decomposition O=FIJN, witere E is a separable
ciosed set and ji(N) = O.

9.2. ji is a Radon measure of type (-~ ), witere -4 is tite class of a// tite
separable closed subsets ofO.

9.3. ji is a Radon measure of type (--7).

9.4. 0 is a ji-compact space.

9.5. ji itas a proper support, i.e, tite union of al/ negligible open set is a

negligibie set.
Proof. cf. Theorem 12 [8].

Ihe last tbeorem takes a more complete and stronger form ¡fE is a Ra-
nach space. In this case we can give new equivahent assertions.

In the fohhewing theorern, if O is a subset of a Banach space E, we will de-
note by (O, weak) the topelogicah space (O, G(E,E)\Q) and by (O, norm) the
tepohogical space (LI,II.II~).

10. Theorem. ff0 is a subset of tite fianacit space E, titen titefol/owing
assertions are equivalent:

101 - For every fiorel measure ji on (O, weak) titere exists a separable
ciosed set Esuch titat ji(O\fl = 0.

10.2 For every fiorel measure ji on (O, weak), tite completion ¡lis a Ra-
don measure of type (-//,3 on (O, norm), witere Y«, is tite class of tite traces
Kn O oftite compact sets K ofE.

10.3. Every Borel measure ji on (O, weak) is a Radon measure of type
(/1), witere y is tite class oftite separable and metrizab/e (¡br tite induced in-
formity) closed subsets of(LI, weak).

10.4, (0, weak) is a Radon space of type ~=fl.
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10.5. (0, weak) is an s-metrizable space witose L-weigitt is of measure

zero.

10.6. (O, weak) is a Flock space wiM L-weigitt of measure zero.

10.7. Every fiorel measure on (O, weak) itas a proper support E.

Proof. 10.1 — 10.2. Let ji be a (finite) Borel measure en (O, weak). As E
is nerm-separabhe, every Borel subset of (E, norm) is a Berel subset of (E.
weak), hence the meassure u defined en E by u(fi)=ji(finF) is a Radon
measure of type (59, so, it is a Radon measure because E is universafly measur-
able. Then, ji isa Radon rneasure of type (.24) since ji(O\F)=0.

10.2 ~. 10.3. It is sufficient te prove tbat each He -2415 metrizable, fer the
induced uniformity, and separable in (O, weak)

10.3 < 10.4. Obvieus.

hO.4 ~ 10.7. Clear.

hO.3 ~. hOS. Frem the remark fellowing Theerem 6 and from 10.4, the
L-weight of O is of measure zero. Then 10.5 folhews directly from 10.3.

hO.5 10.6. cf. Tbeorems 6 and 7.

hO.6 < 10.4. cf Theerem 6.

10.7 ~. 101. Since cb~fx* .x*EE* IIx*II=h}isa cenvex set of measur-
able functiens wbicb is compact in the tepelegy ; of peintwise cenvergence,
and Hausderffin the topolegy tm of cenvergence in measure, from A. Bellow’s
Tbeerem ¡2.3.3 [36], it fellows that 0 is metrizable in t~= tm• Hence, (E, norm)
is separable.

Reniark. Ibe last theorem can be cempleted by tbe use of the fact that a
Raden space of type (5<) is a Radon space if and only if it is universally
measurable.

4. COMPLETELY ADDITIVE OF MEASURABLE SETS

We are going te study the case wben the unien of a farnihy (EJ,<4 of
measurable sets is measurable.

11. Definition. Afami/y (E«)«<oA ofsubseis ofO is said to be relatively dis-
crete if every point of u E« has a neighboritood witicit meets exactly one mem-

OcA

ber of tite family. Tite family wi// be said discrete in O zfeacit point of O itas
a neighboritood witich meets at most one member of titefamily.
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Let M be a set of cornphete Raden measures of type (1) (or t-additive) en
O. A family (E«)«~4 of subsets of O is said te have an a.e.a-discrete decempe-
sitien (a.e.a-d.d.)(resp. u-rehatively discrete, a.e.u-r.d.d.) with respect te M if,
for every measure ji E M, each

E« = u E,,,UZ«,

where every (EJ«,,, is discrete (resp. rehatively discrete) and ji(u Z,3= 0.
ocA

From now on alt measures wiII be Imite and complete Radon measures of
type (-1).

Preceding concepts ceincide as we preve in the feilewing

12. Proposition. Titefamily (E«).cA ofsuhsets ofO has a a.e.a-rd.d witit
respect to pi if and only ¡f titere exists a countab/e subset A«cA sucit titat
ji( UACE«J=0.

u E«UZO wbere every (EJ,,Á is relatively
nc N

ji( u Z,3= 0. Then, fer every a E A and n e N, tbere exists an open set 0,,, sud>
«cAthatE«,,cQ andE«.,, nQ=0 when «‘ta. Hence

ocA

fer each n E N, so there exists a ceuntable set A,,cA sucb that pi(EJ=O fer
each a e A. As every open is ji-compact and

(u E«)nG <o,,=

wben a E A~ it results that

r E«,,)n (uOj)=OocA, ocA,~

Let 4= u A,,, then A« is ceuntable andm,N

u El,) =~ ji( u E«,,) + pi( u Z,3 = O.
o,A0 ncN ocA,, ocA

The converse is immediate.

13. Definition. Afamily (E<3O,Á ofsubsets of O is said t-additive witit re-
spect to ji if for eveiy A ‘cA, titere exists a countable subset A,cA’ such Mat

pi(u E<o\u E,3=O
ocA ocA,
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Frem Propesition 12 it fellews that every family a.e.a-d.d. is t-additive.
It is chear the famihy c of ah the epen sets of O is r-additive with respect te
each Radon measure of type (5), (er -r-additive). If E isa Radon space of type
(f ), ‘Y Ihe topelogy en E, and JO -.*E a Borel pi-measurabhe functien, tben
{f-’ (¡>9: VeT> is a t-additive family witb respect te ji.

14. Proposition. Let (E<o)«,4 be a loca//y countablefamily of subsets ofO
and ji a measure on O titen (E«)«cÁis a.e.a-dd witit respect to pi. Hence, every
/ocally countablefamily is a-e.a-d.d.

Proof. In fact, for every X e u E«, there exists a neighborheod V(x) and a
ocA

ceuntable subsel A~cA such that V(x)nE«=o for every a ~ As ji is a Ra-
don measure of type (5) there exists a sequence (V(x,,)) such that

ji(u E,«\ u V(x,)) = O.
ocA noN

Lct A,= u 4, then 4 is ceuntable and
neN ‘

(u Vjn(u E,3=~
ncN 064,

so,

ji(u E,3=ji(uE«\uVJ=0
ocA~

and we cenclude that (E,)O,A is a.e.a-d.d. witb respect of ji.

150 Theorem, If (E«)ocA is an a.e.cs-d.d. fami/y (witit respect to pi) of pi-
measurable sets, titen u E« is a pi-measurab/e set for every A ‘cA.

ocA

Proof. In fact, (Eo)oc4 is t-additive by Prepositien 12.

16. Theorem. Let ji be a Radon measure of type (=49and (E«)«64 afamily
of subsets of O sucit titat, for every A‘cA,uE« is ji-measurable. Titen, ¡f
(E,3 <o~ is not a.e.a-d.d., tIz ere exists a Cantor set Cc u E0 sucit Mat n d¡fferent

ocA
points belong to n d¡jferent E«.

Ihe proof is based en Theerern 2 [16] due Hanselí and can be feund in
Theerem 26 [10]. As a consequence

17. Corollary. If ji a Radon measure oftype (Q~) on O, titen one(and on/y
one) oftite fo//owing assertion is true:

(i) O is a.e.a-d.d., i.e., titere exists a a-discrete subset E, sucit titat
gO\E,3= 0.
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(u) O contains a subser itomeomorpitie to tite Cantor subset ¿md a/so con-
tains anotite? subset nor pi-mensurable.

This resuht is anahogeus te a well-know result ofAH. Stene and A.G. Eh’kin
[34] [11], and it can be preved as Hanselí does in [16].

Tbe complete additivity of a family of rneasurable sets can be studies by
means of the fohlewing:

18. Theorem. Let ji be aperfect measure on O and (E«)«c4 a disjointfami/y
of subsets of O sucit titat pi(E,3 =Ofor every a E A. Titen one and on/y one of
tite fo//owing cases is verified:

(i) For every AtA, tite union u E« is ji-measurable and Mere exists a
«cA

countable parririon (A,,) ofA sucit titat

(ji(u E,3:A’cA,,}={0,ji(u E<o)>
ocA

for every n.

(u) TIzere exists A ‘cA sucit titar u E<o is not ji-measurable.
ocA

Proof. Sirnihar te Tbeorem 2.5 [21] where it is supposed tbat ibe cardinal
ofA is net measurable.

Remark If jitO is a Radon measurable of type (2),then 18(i) is not ver-
ified. In fact, het us suppose 18(i) and

jji(u E,3:A’cA) ={o,h}.
ocA

Then, if we take X<o E E<o (when E, te) and we define

u(E)=ji(u~E«:x«e E»,

ji is a continuous Uham measure. As pi is t-additive, every X E O is a neigh-
berboed V(x) such that u( V(x)) =0, and it resuhts that u(O)= O and tbis isa cen-
tradiction with

u(O)=pi(uE<o)= 1.
ocA

19 Theorem. Let ji be a perfect Radon mensure of type (~i) on O. If
(E,3 is a disjoint family of ji-mensurable subsets of O, titen one and only
one oftitefo//owing cnses is true:

(i) (Ej,,,4 is a.e.a-d.d. witit respect to pi.
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(u) TIzere exists A ‘cA sucit titat u E<o is not ji-mensurable.
ocA

Proof. If folhews frem theorern ¡8 and the aboye rernark applied te the
family

{E<o:ji(EJ=0,a eA>.

For Radon measures, Fremhim has proven tbe fohhewing theerem:

20 Theorem (Fremlim, [13]). Let ji be a Radon measure on O and /et
(E,3 OEA be a point-finitefami/y of pi-measurable sets. Titen one and only one
oftitefollowing assertion in true:

(i)(E«j)«04 is r-additive with respect to pi.
(ji) Titere exists A ‘cA sucit that u E« is not ji-measurab/e.

ocA

With Martin’s Axiem, Fremhim preved in [13] that the cendition of peiní-
finiteness could be changed by point-countability.

21. Theoreni. Let ji be a Radon measure of type (2) on O and (EJ«~.
a loca//y countable family of pi-measurable subsets. Titen (E,jX,<o, is aea-d.d.
witit respect to ji and u E« is ji-mensurable for eacit A’cA.

OEA

Proof. cf. Prepositien 14.

Remark: The results of the present paper can be applied te study tbe Berel
measurable functionsfO —*E since, if ‘Fis the topelegy of E, the union of
every subfarnily of~f’(V):VcT} is measurable. (See, [10]).
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