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ABSTRACT. The aim of this survey article it to show cersain questions concerning nuclear spa-
ces and linear operators in norated spaces lead to questions from geometry of numbers.

In papers [4], [5] and [6], tite autitor considered additiye subgroups of nu-
clear spaces. Certain results obtained titere, witen applied to subgroups of fi-
nite dimensional spaces and transíated into the language of lattices, appear,
quite unexpectedly, to be very close to tite results of Hastad [II] and Lagarias,
Lenstra and Scitnorr [15].Titese matters are discussed more titorougitly in see-
tion 1 of tite present paper; it wears a survey complexion.

In sections 2 and 3 we show how tite tecitnique developed for subgroups
of nuciear spaces allows to prove “elipsoidal” analogues oftite inequalities es-
tablisited in [15]. Tite results given itere are new.

Motivations for studying subgroups of locally convex spaces come from
funetional analysis and abstract itarmonic anlysis. Titey will be explained in
monograpit [7f. Witereas tite investigation ofconnections between alattice and
xts polar lattice is motivated by certain problems in geometry of numbers and,
recently, in integer programming; see tite introductions to [11] and [15].

Tite autitor wisites to titank H.W. Lenstra, Jr. and the referee for titeir re-
marks witich contributed to an essential improvement of tite paper.

O. NOTATION ÁND TERMINOLOGY

Tite open unit bali, tite euclidean norm and tite sealar product in Pi’ are
denoted by 8.,, # #and < , ), respectively. Tite distance of a point u to a set
A is denoted by d<u,A). Tite linear subspace spanned over A is denoted by
spanA. It is convenient to set span 0 =<O~. Titus, for a given system
U,,U»..., UmE Di”, tite symbol span U4<. for k= 1 sbould be read as O>. Through-
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out the paper, D is an open n-dimensional ellipsoid in Pi” witit centre at zero
and principal semiaxes ~ ... ~

A latiice in Pi” is an additive subgroup of Pi” generated by n linearly mdc-
pendent vectors. Any system of freee generators of a lattice L is called a basis
of L. The family of alí latices in Pi” will be denoted by A.,.

Let L be a lattice in Di”. Tite set

{uEIR’:(u,w)GZ foralí WEL}

isa lattice, too. We calI it titepolar laiticeand denote by L*. We have (L*)* — L

For eacb ¡=1 n, we define the ¡-th succesive min¡nium of L witit respect
to Das the infimum of alí r>O sucb that dim span (LnrD)~i; we denote titis
quantity by XXL,D). The cover¡ng radius of L with respect to D is the infimum
of ah r> O such that L+ rD= IR”; it is denoted by g(L,D). We sitalí write XXL)
and I4L) instead of ?4L,R.,) and ¡4L,B.,), respectively.

1. ADDITIVE SUBGROUPS OF NUCLEAR SPACES

It was proved in [5] tbat closed subgroups of nuclear spaces are weakly
closed. This result is a direct consequence of tite weak compactness of closed
balís in Hilbert spaces and tite following fact:

(LI) Lemma. Let K be an arb¡trary subgroup ofDi”. Leí w E Pi” be such 1/mt
Kn(w+D)=0. Suppose thai Ikf;’~1. Tiren Mere exisis a linear functional
fon Pi” w¡M flK)c 71, ftw) E [i/43/4]-i-Z and #f// ~6.

Titis is Lemrna 7 of [5].A modification of tite proof allows one to replace
the constant 6 by, say, 1+—~— e”2 -<3.241.2

Let (x 1 denote the distance of a real number ir to tite nearest integer. For
each n= 1,2 let a., denote tite infimum of alí r> O witicit satisfy the fol-
Iowing condition: given LcA., and W E Di”, diere ex sts sorne v~ LS{ 01 such that
¡Iv¡¡.d(u,L)~r{(w,v)}. Putting ~ in (1.1), we obtain a.,C12n(n+1). A
somewhat better estimate a~ C 6n’ + 1 was obtained by Hastad [II]. An estirnate
from below

(l+o(1)) as n—*oo
2,re

is a direct consequence of tite following result:
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L,EA., w¡thL*~L_ such thai

X<L,Y> n (1+o(1)) as n—*cc.

For the proof, see [16], Theorem 9.5. The actual order of magnitude of a.,
for large n remains unknown.

Let O be an abelian topological group. By a character of O we mean a 1w-
momorpitism of O into the multiplicative group (z e c :lzf = 1>. Tite set of alí
continuous characters of O is denoted by O. A subgroup H of O is said to be
dual/y embeded in O U’ eacit continuous cbaracter of H can be extended to a
continuous citaracter of O.

(1.3) Proposition. Leí E be a lopo/ogical vector space. Tiren tire fon u/a

exp[2izzXu)] =~(u) defines a bijection f-q of tire dual space E’ onto E.

Tbe proofcan be found e.g. in [13], (23.32)(a).

It was proved in [6] that additive subgroups of nuclear spaces are dually
embedded. The proof is based on tite following fact:

(1.4) Lemma. Leí Kbe a subgroup of Pi” with KnD=(O>. Fon each ~EK,
one can find a linear funct¡onal fon Pi” sucir thai exp[2itiftu)] = x(u) fon al!
uek, and

2

More precisely, froni (1.3), (1.4) and tite weak compactness of closed balís
in Hilbert spaces it follows immediately that discrete subgroups of nuclear spa-
ces are dually embedded. Tite extending of titis result to arbitrary subgroups
needs a certain additional argument.

Transíated into tite language of lattices, (1.4) says that

2

for eacb L E A.,; tite verification of titis simple fact is left to the reader.

For each n = 1,2 let b., be tite inflmum ofalí r> O with tite following prop-
erty: for eacit Le A., with X1(L)~ 1 and each x cf, Itere exisís a linear func-
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tional fon Pi” sucit titat //fft ~ r and exp [2itzftu)]= x<u) for alí u c L. It is not
itard to see titat

b.,= sup IX(L»4L*):LE A.,j <n= 1,2,...).

3
Putting ~, = ...= ?,.,= ¡ in (1.4), we obtain b.,~ n”’ for n ~ 5. From Theorem2

(2.14) of[15] it follows titat b < n”2 for alí n~ 1. On tite otiter itand, <1.2)

implies titat n____ (l±o(1)) asn—*co.45w

Tite actual order of magnitude of b., for large n is unknown.

(1.5) Remark. Tite main idea of tite proofs of( 1.1) and (¡.4) is very similar
to titat of Korkine-Zolotarev bases (cf. tite proof of (2.2) below). Since titose
bases are tite main tool in [II] and [15), titere is no hope to improve tite es-
timates on a., and b., obtained in [II) and [¡5] by modyfying tite proofs of< 1.1)
and (1.4). Witat is more, tite replacement ofballs by ellipsoids always leads to
tite worsening of tite constants occuring in tite estimates. Tite reasons are of
tecitnical nature; cf. tite proofof (2.7).

(1.6) Remark. A subgroup H of an abelian topological group O is said to
be dua/ly c/osed in O it to eacit gc O\H, titere corresponds sorne x ~ G with
x(Ih=~ 1$ and ~(g)# 1. It follows easily from <1.3) titat an additive subgroup
of a topological vector space is dually closed ifand only if it is weakly closed.
Titus we may say titat closed subgroups of nuclear spaces are dually closed
and dually embedded. Tite Pontryagin duality titeorem for LCA (locally com-
pact abelian) groups implies titat closed subgroups of LCA groups are dually
closed and dually embedded. Titese results admit tite following common
generalízation.

Let N be tite smallest class of abchan topological groups whicit contains
LCA groups and nuclear spaces and is closed witit respect to tite operations
of taking subgroups, Hausdorff quotients and arbitrary products. It turns out
titat closed subgroups of groups belonging to N are dually closed and dually
embedded. Tite proofs are based on (1.1) and (¡.4), respectively; titey will be
given in [7].

(1.7) Remarks. 5. Sidney [17] considered weakly dense subgroups of Ba-
nacit spaces. He proved titat ifa Banacit space 2< itas a separable infinite di-
mensional quotient space., titen 2< contains a weakly dense proper closed sub-
group. Problem 2 of [17] is very similar to our Lemma <1. 1). Tite answer to
titis problem is negative; titis follows from tite results of [2] and [3].
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Tite positive answer to Problem 1 of [17]was obtained in [3]. It was proved
titere titat each infinite dimensional normed space contains a discrete sub-
group whicit is weakly dense. Next, it was proved in [2] titat ifa metrizable
locally convex space is not nuclear, titen it contains a discrete subgroup witicit
is weakly dense in tite linear subspace spanned over it. An easy argument
sitows titat such a subgroup cannot be dually embedded.

The proofs of tite results obtained in [2] and [3] are also based on certain
inequalities for lattices in Pi~; in titis case, itowever, of tite Minkowski-Hlawka
type.

2. SUCCESIVE MíNIMA

Lagarias, Lenstra and Scitnorr proved in [15] titat, for each LE A., witb
n~ 7, one itas

(1) X{L)2..,+1(L*)~~?~~ n’ (¡=1 n)
6

Tite aim of titis section is to prove the following result:

(2.1) Theorem. Leí L be an arbiírary /att¡ce ¡n R”. Tiren

for¡=1 n.

Putting itere ~ = ...= ~.,= 1, we obtain inequalities (1) witit a worse con-
stant on tite right side.

We sitalí begin witit some lemmas.

<2.2) Lemma. Leí u,...,u, be a bosis of a latí¡ce LE A.,. Let w1,...,w., be tire

Orani-Scirmidt orthogonalizat¡on ofu1,..., u.,. Denote

(3) r=d#w1#’+...+//w,#
2)”’.

rThen p(L)~—. Moreover, diere ¡s a basis v,,...,v, ofL such thai //v~/I=rfor
2

k=1 n.

Proof. We may write
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u, = 1V,
u2 = c2, w, + W2,

for some coefficients c~. A simple inductive argument allows us to find inte-
gers p~ and coefficients c¿ e [—1/2,1/2] such that

= u, =

v2:=p,u, + u2= c 1V + IV,,

Hence, by (3),

=3

for k= 1,...,n. Consider tite rectangular parallelepiped

1 1
P=~tíWi+...+t.,Wr•~ 2 ~ 2

It is clear tbat the family P+ ¡tU E L> is a disjoint covering of Di”. From (3)
r rwe get Pc—A.,. Thus gL)~—. O
2 2

(2.3) Lemnia. Let vv ,W.,, be ihe Orani-Scirmidt oríirogonal¡zat¡on ofsorne
system u,,...,u,,,eR”. ¡fu, u,.,eD, tiren //w,#2+...+#wj2c~+...+~%

Tbe proof is standard.

(2.4) Lemnia. Leí L be a latt¡ce in Pi’. Denotes — (~2 + ... + ~2)l/2 Then Mere
is a subset A of LnsB., sucir thai al! non-zero coniponenis of tire closed sub-
group L + span A are disjoint frorn D.

Proof. IfLnD=1O>, we may take A=0. In tite other case, we can con-
struct inductively a linearly independent systern u,..., u e L sucb that

(4) u~eD±span {U>~<, (k=1 ni)

and alí non-zero components of tite closed subgroup L±Diu+...+Ru,.,are dis-
joint from D. Denote M= span {Uk>Lí. Titen Zuí+~.~.i=ZUm isa lattice in M.
Let w,...,w,., be the Gram-Schmidt ortitogonalization of u,,..., u,,,. It follows from
(4) that w,,...,w,., is, in fact, the ortitogonalization of sorne system of vectors be-
longing to D. Hence, by (2.3), we itave #w,//’+ ... + #Wm//’<S’~ Titus, accord-
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ing to (2.2), we can find a basis v1,...,v,,, of tite lattice Zu+...±Zu~sucb tbat
//vk#<sfork=1 ni. Now, we maytakeA=~vkh,. O

(2.5) Lemnia. IfLCk., andLnD=IOI, tiren X1(L1~n(~1...~,,)-’~

Titis is an easy consequence of tite fundamental theorem of Minkowski
<see e.g. [9], Titeorem l,p. 123). It follows from (1.2) titat (2.5) cannot be es-
sentially improved.

(2.6) Proposition. Ifa,a ¡s a sequence ofnonnegaí¡ve numbers, nol a!!
equal lo zero, tiren

For tite proof, see e.g [10], 9.12.

(2.7) Lemnia. Leí L be a laitice in Pi” w¡íh LnD=z{OI. Denole

Pc— 3

Tiren gL*)C ~ Moreover, wecanfinda basis v»...,v.,ofL* w¡ih #v~#-ctfor
2

k=1 ti.

Proof. Let M be a k-dimensional subspace of Pi” and ~ c .. ~ - tite prin-
cipal semiaxes of tite k-dimensional ellipsoid DnM. Titen ~ br ¡=1 1<.
Applying titis standard fact and (2.5), WC sitalí find consecutively generators
u.,,u,,,...,u, of L* sucit that

d(u~. span Iu,~j~k(~í..tyí/Pc

for k= 1 n. Let w,..., w., be tite Gram-Scitmidt ortitogonalization of u,,..., u.,.

Applying (2.6) and tite inequality k!> k*e~, we get
1 iiw#’=1d«u~ span

Pc—, Pc—a Pc—i

¡2 k’
Pc.d

Tite result follows now from (2.2). 0

Proof of (2.1). Fix an arbitrary ¡=1 n. Wc itave to sitow titat (2) is
satisfied. Titerefore, wititout loss of generaliíy, we may assume titat

(5) ?.,(L,D)=1.

Titis implies titat
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(6) dim span (LrtD)ci.

Wc may assume titat

Denote r=Ik~; and nPc—(r-kQ”’ for k=1 n. Titen 2~¡r211;2= 1. Consider
Pc—

the ellipsoid
,x.,)EPin.mrzxf+...+11;2x>c1>

It follows from (2.4) titat titere is a subset A of LnD sucit titat alí non-zero
components of tite closed subgroup K:=L+ span A are disjoint frorn C. De-
noteN= spanA.

Let N’ be tite ortitogonal complernent of N in IR’ andir tite ortitogonal pro-
jection onto Nt Titen KnN1 isa lattice in N’ witit KnN’nir(C)= (01. De-
note /= dim N’ and let ~, ... ~~, be tite principal semiaxes of C. It is known
titat t,? fi, forj= 1 ¿ By (2.7), tite polar lattice (KnNI)* admits a basis v,...,v,
sucit titat

II iú// .c e”2(~k2Q’)’2 =e30(~ k~;’)’~ =

k—l

forj= 1 /. It is not difficult to see titat <KnN±)*is isometrie to L*ns N1. Con-
sequently, L*n(eJflrB.,) contains at least 1 linearly independent vectors. Titis
means that X,(L*,B.,)~e3flr Since AcLnD, we itave Nc span (LnD),
whence, by (6),

1= dim Nt=n— dim N>n—L

Consequently, X.,,.,(LSB.,y~XXL*,B.,)~e~/2r. In view ob(S), titis proves (2). 5

Titeorem (2.1) is a new result titough alí tools needed in its proof can be
found in [4], [5]and [6].Tite proof of(2.2) follows on tite linesof titat of Lern-
ma 4 in [4]. The same idea occurs in [8]; it is very similar to tite idea of Kor-
kine-Zolotarev bases <cf. (1.5)).

Lemma (2.3) is anotiter form of Lemma 1.2 of [6]. Tite proof of (2.4) is
essentially the same as that of Lemma 4 in [5]. Finally, tite argurnent used in
the proof of (2.7) can be found in tite proof of Lemma 3 in [4]; tite idea of ap-
plying (2.6) comes brom [5].

3. BIORTHOGONALITY

Tite titeory of nuclear groups, presented in [7] <see (1.6)), would undergo
a considerable simplification ib it were possible to prove tite bollowing fact:
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(31) Conjecture. Itere exist absolute constants c> O and m~ N satisfying
tite following conditions: ifLe A,, and ~Pc~ck’”for k= 1 n, titen titere exists
an n-dimensional o-symmetric ellipsoid C in Pi” with B.,c CaD, sucit that L
admits a basis whicit is ortitogonal witit respect to tite scalar product defined
by C.

Let p be tite Minkowski functional of D. It is not itard to see titat (3.1)
would follow from tite following assertion:

(3.2) Conjecture. There exist absolute constants c> O and m~ RJ satis~’-
ing tite following condition: ifLe A., and ~> dr bor k= 1 n, titen one can
find some u1,..., u.,eL and IVI,...,IV.,EL*Witit <u,,w,)=50 foralí 41=1 n, sucit
titat #u#.p(IV,)=rmbor ¡=1 n.

It is not known nowadays whetiter titese conjectures are true (cf. (3.5)).
Tite aim of titis section is to prove tite bollowing result, weaker titan (3.2):

(13) Theorem. Leí p be tire Minkowskifunctiona/ ofD. Tiren, for eacir
LEA.,, one canfind sorne ueL andweL* IVitir (uáv)=1 and

“—3

Proof. Wititout loss ob generality we may assume titat

(8) X(L,B.,)=1,

Let e,...,e., be tite unit vectors in IR”. We may write R”-’= span (e,...,e,,~>. By
<8), titere is some ueL with //u//=1. We may assume titat u=e,. In view of
(9), it is enougit to prove that titere is sorne IVELWItit (u,w)= ¡ and p(w»d.
Suppose tite contrary. Titen

(10) L*nDn(e.,±Pint)=0.

Let TI C..~T1., be tite principal semiaxes of tite (n—1)—dimensional el-

lipsoid DnPinl. It isa standard fact that
(11) ~=n~ (k=1 n—1)

Let us write h= sup (x.,.tx,...,xJeDI and let ~ be tite principal
semiaxes obtite (n—J)—dimensional ellipsoid C=Dn(e+Di”fl. It isclearthat
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(12) C*=(1—h’~)”~Pc (k=1 n—1).

Let it be tite ortitogonal projection onto Pi”-. It is not itard to see titat

K:=n(L) isa lattice in Dio-’ witit

<13) X(K,B,,,)~j~j
2

Next, it is clear that L*n Pi”- is tite polar lattice of K. Let s be tite centre of
C. From (10) it follows titat

(L*nRn=)+(C~.s)!=Rn=.

In view of(2.7), titis implies titat

Since ~ from (9) we get ir~3. Titus, by (14), (12), (11) and (9), we itave

8’

witich contradicts (13). Titis completes tite proof. O

(3.4) Remark. For eacit n = 1,2 let s,, be tite infimum ob alí s>-0 witicit
satisfy tite bollowing condition: for each LE A,,, one can find sorne u E L and
IVEL* with (u,w)=1 and //u#~//w#~s. From (3.3) we get ~A JTn’~. For
large n, a rnuch better estimate can be obtained. Let y,, ‘s be Hermite’s constants
(see [9],38.1). Denote

c= hm sup n-’y.,.

It was pointed out to tite autitor by H.W. Lenstra, Jr. titat Titeorem <2.14) of
[15] implies titat s, c (c/3 + o(1))n>~ as n —. oca. From tite result of Kabat’yanskií
and Leven~tein [14]it follows titat c<cO.872/Qre). Titus

s.,c40.034+o(1))n’0 as n-.oo.

(3.5) Remark. lor eacit n = 1,2 let z., be tite infimum ob alí z> O witit
tite following proper y: for eacit LE A.,, one can find some u,,..., u,, E L and
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W,..,W.,E L* with (u,jQ=8~ for alí 41=1 n and with #u//.#IV,#~z., for
¡=1 n.Babai [1], Titeorem 5.1, proved that z.,~(3/J2>” bor every n. Hastad
[II] proved that z,,~ exp (cn”’) for sorne constant c> O. It seems conceivable
titat z,, might actually be bounded by a polynomial in n. Titis would be an ar-
gument supporting Conjecture (3.1).
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