Analytic Functions on c_{0}

Richard M. Aron and Josip Globevnik

Abstract

Let F be a space of continuous complex valued functions on a subset of c_{0} which contains the standard unit vector basis $\left\{e_{n}\right\}$. Let $R ; F \rightarrow C^{N}$ be the restriction map, given by $R(f)=\left(f\left(e_{1}\right), \ldots, f\left(e_{n}\right), \ldots\right)$. We characterize the ranges $R(F)$ for various "nice" spaces F. For example, if $\left.F=P^{n} c_{0}\right)$, then $R(F)=l_{1}$, and if $F=A^{\infty}\left(B\left(\mathcal{c}_{0}\right)\right)$, then $R(F)=l_{\infty}$,

Let c_{0} be the Banach space of complex null sequences $\vec{x}=\left(x_{n}\right)$, with the normal sup-norm and usual basis vectors $\vec{e}_{n}=(0, \ldots, 0,1,0, \ldots)$, and let F be a space of continuous complex-valued functions on some subset of c_{0} which contains the standard basis of c_{0}. Let $R: F \rightarrow C^{N}$ be the mapping which assigns to each function $f \in F$ the sequence $\left(f\left(e_{1}\right), \ldots f\left(e_{n}\right), \ldots\right)$. Our attention in this article will be focussed on characterizing the range of R for various spaces F of interest. For example, if $F=C\left(c_{o}\right)$, the space of all continuous complex valued functions on c_{0}, then a trivial application of the Tietze extension theorem shows that $R(F)=C^{N}$. On the other hand, c_{0} is weakly normal (Corson [6], see also Fe rrera [9]). Since $\{0\} \cup\left\{e_{n} \cdot n \in N\right\}$ is weakly compact, we see that $R(F)=c$, the space of convergent sequences, if we take F to be the subspace of $C\left(c_{0}\right)$ consisting of weakly continuous functions. Recently Jaramillo [11] has examined the relationship between reflexivity of the space F and the range of R, for certain spaces of real valued infinitely differentiable functions and polynomials on a Banach space E with unconditional basis $\left\{e_{n} ; n \in N\right\}$.

We concentrate here on analogous spaces of complex valued functions on c_{0}. After a review of relevant notation and definitions, we show in Section 1 that $R(F)=l_{\text {, }}$ when $F=P\left(c_{0}\right), n \in N$. As a consequence, we prove that if $F=\left\{f \in H_{b}\left(B_{R}\left(c_{0}\right)\right): f(0)=0\right\}$, then $R(F)=l_{\text {r }}$. Taking $n=2$ in the above result, we see that every 2 -homogeneous polynomial P on c_{0} satisfies $\sum_{j=1}^{\infty}|P(e)|<\infty$. This result is reminiscent of classical work of Littlewood [13], who proved that every continuous bilinear form A on $c_{0} \times c_{0}$ satisfies $\left(A\left(e_{p} e_{k}\right)_{j, k=1}^{\infty} \in I_{4 \beta 3}\right.$. Littlewood's work was extended by Davie [7], who showed
that every continuous n-linear form $A: c_{0} \times \ldots \times c_{0} \rightarrow C$ satisfies $\left(A\left(e_{\mathrm{a}}, \ldots,, ., e_{\mathrm{a}}\right)\right) \in l_{2 \mathrm{n} / \mathrm{a}+\mathrm{t}}$. In Section 2, we prove that $R\left(A^{\infty}\left(B\left(c_{0}\right)\right)\right)=l_{\infty}$, and as a corollary of the proof of this result we show $R\left(A_{U}\left(B\left(c_{0}\right)\right)\right)=l_{1}$.

Our notation for analytic functions is standard and follows, for example, Dineen [8] and Mujica [14]. For a Banach space $E, B_{R}(E)$ denotes the open R-ball centered at 0 in E with $B_{1}(E)$ abbreviated to $B(E) . L\left({ }^{n} E\right)$ denotes the Banach space of continuous n-linear forms $A: E \times \ldots \times E \rightarrow C$, equipped with the norm $\|A\|=\sup \left\{\left|A\left(x_{1}, \ldots, x_{n}\right)\right|: x_{j} \in E,\left\|x_{j}\right\| \leq 1, j=1, \ldots, n\right\} . P\left({ }^{n} E\right)$ denotes the $\mathrm{Ba}-$ nach space of continuous n-homogeneous polynomials on E. Each such polynomial P is associated with a unique symmetric continuous n-linear form A, by $P(x)=A(x, \ldots, x)$, and $\|P\|$ is defined to be $\sup _{\| x| | s \mid}|P(x)|$. A function f from an open subset U of E to C is said to be holomorphic if f has a complex Fréchet derivative at each point of U. Equivalently, f is holomorphic if for all points $a \in U$, the Taylor series $f(x)=\sum_{n=0}^{\infty} P_{n}(x-a)$, converges uniformly for all x in some neighborhood of a, where each $P_{n} \in P\left({ }^{n} E\right)$.
$H_{b}\left(B_{R}(E)\right)$ is the space of all holomorphic functions on $B_{R}(E)$ which are bounded on $B_{r}(E)$ for every $r<R$. A useful characterization of $H_{b}\left(B_{R}(E)\right)$ is that it consists of all holomorphic functions f on $B_{R}(E)$ such that $\limsup _{n \rightarrow \infty}\left\|P_{n}\right\|^{1 / n} \leq 1 / R$, where $\left\{P_{n}: n \in N\right\}$ represents the Taylor polynomials of f at the origin. The spaces $A^{\infty}(B(E))$ and $A_{v}(B(E))$ have been studied by Cole and Gamelin [4,5], Globevnik [10] and others [1]. $A^{\infty}(B(E))=\{f: B(E) \rightarrow C: f$ is holomorphic on $\mathrm{B}(\mathrm{E})$ and continuous and bounded on $B(E)$ \}. Unless E is finite dimensional, this space is always strictly larger than $A_{v}(B(E))=$ $\{f: B(E) \rightarrow C: f$ is holomorphic and uniformly continuous on $B(E)\}$. Both of these spaces are natural infinite dimensional analogues of the disc algebra.

SECTION 1

We show here that for all $P \in P\left({ }^{n} c_{0}\right)$ and all $n \in N, \sum_{j=1}^{\infty}\left|P\left(e_{j}\right)\right| \leq\|P\|$. This has already been done by K. John [12], in the case $n=2$. In [13], Littlewood showed that for every $A \in L\left({ }^{n} c_{0}\right),\left(A\left(e_{j} e_{k}\right)\right)_{j, k=1}^{\infty} \in l_{4 \beta}$, and that $4 / 3$ is best possible; thus, Littlewood's $4 / 3$ result notwithstanding, John's result is that every $A \in L\left({ }^{n} c_{0}\right)$ has a trace. Our proof will make use of a generalization of the classical Rademacher functions, which seems to be well-known to probabilists (see, for example, Chatterji [3]).

Definition 1.1. Fix $n \in N, n \geq 2$, and let $\alpha_{1}=1, \alpha_{2}, \ldots, \alpha_{n}$ denote the $n^{\text {th }}$ roots of unity. Let $s_{t}:[0,1] \rightarrow C$ be the step function taking the value α_{j} on $(j-1 / n$, $j / n)$, for $j=1, \ldots, n$. Assuming that s_{k-1} has been defined, define s_{k} in the following natural way. Fix any of the n^{k-1} sub-intervals I of $[0,1]$ used in the deflnition of s_{k-1}. Divide I into n equal intervals I_{p}, \ldots, I_{n}, and set $s_{k}(t)=\alpha_{j}$ if $t \in I_{j}$
(The endpoints of the intervals are irrelevant for this construction and we may, for example, define s_{k} to be 1 on each endpoint.)

Of course, when $n=2$, Definition 1.1 gives us the classical Rademacher functions. The following lemma lists the basic properties of the functions s_{k} Its proof is similar to the usual, induction proof for the Rademacher functions, and is omitted.

Lemma 1.2. For each $n=2,3, \ldots$, the associated functions s_{k} satisfy the following properties:
(a). $\left|s_{k}(t)\right|=1$, for all $k \in N$ and all $t \in[0,1]$.
(b). For any choice of k_{p}, \ldots, k_{n},

$$
\int_{0}^{l} s_{k_{1}}(t) \ldots s_{k_{\pi}}(t) d t=\left\{\begin{array}{l}
1 \text { if } k_{t}=\ldots=k_{n} \\
0 \text { otherwise }
\end{array}\right.
$$

We are grateful to Andrew Tonge for suggesting an improvement in the proof of the following result.

Theorem 1.3. Let $P \in P\left({ }^{n} c_{0}\right)$. Then $\left\|\left(P\left(e_{j}\right)\right)\right\|_{t_{1}} \leq\|P\|$.
Proof. Let $A \in L\left({ }^{n} c_{0}\right)$ be the symmetric n-linear form associated to P. Fix any $m \in N$. For each $i=1, \ldots, m$, let $\lambda_{1}=\left|A\left(e_{i}, \ldots, e_{i}\right)\right| / A\left(e_{i}, \ldots, e_{1}\right)$, if $A\left(e_{v}, \ldots, e_{i}\right) \neq 0$, and 1 otherwise. Furthermore, let β_{i} denote any $n^{\text {th }}$ root of λ_{t}. Thus, $\lambda_{i} A\left(e_{i}, \ldots, e_{i}\right)=\left|P\left(e_{i}\right)\right|$ for each $i=1, \ldots, m$. Adding and applying Lemma 1.2 for the integer n, we get $\sum_{i=1}^{m}\left|P\left(e_{i}\right)\right|=\sum_{i=1}^{m} \lambda_{i} A\left(e_{i}, \ldots, e_{i}\right)$

$$
\begin{aligned}
& =\sum_{1_{2} \cdots J_{n}=1}^{m} \int_{0}^{1} \lambda_{r} s_{1}(t) S_{j_{2}}(t) \ldots s_{j_{n}}(t) A\left(e_{1} e_{j_{2}, \ldots, e_{j_{n}}}\right) d t \\
& =\int_{0}^{1} A\left(\sum_{i-1}^{m} \lambda_{1} s_{1}(t) e_{1}, \ldots, \sum_{j_{n}=1}^{m} s_{j_{n}}(t) e_{j_{n}}\right) d t \\
& =\int_{0}^{1} A\left(\sum_{j_{5}-1}^{m} \beta_{j_{1}} s_{j_{1}}(t) e_{\left.j_{1}, \ldots, \sum_{j_{n}=1}^{m} \beta_{j_{n}} s_{j_{n}}(t) e_{j_{n}}\right) d t .}\right.
\end{aligned}
$$

Since $\left\|\sum_{j=1}^{m} \beta_{j} s_{j}(t) e_{j}\right\| \leq 1$ for all t, the last expression is clearly less than or equal to $\|P\|$. Since m was arbitrary, the proof is complete.

Rephrasing the above result in terms of the mapping R mentioned in the introduction, Theorem 1.3 implies that for any $n_{r} R\left(P\left(c_{0}\right)\right) \subset l_{1}$. In fact, R is onto l_{1}, since any $\vec{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{p} \ldots\right) \in l_{1}$ equals $R(P)$, where $P \in P\left({ }^{n} c_{0}\right)$ is given by $P(x)=\sum_{j=1}^{\infty} \lambda_{j} x_{j}^{n}$.

We conclude this section by proving that, up to a normalizing factor, $R\left(H_{b}\left(B_{R}\left(c_{0}\right)\right)\right)=l_{l}$, for every $R>1$. Since $H_{b}\left(B_{R}\left(c_{0}\right)\right)$ "approaches" $A^{\infty}\left(B\left(c_{0}\right)\right)$ as $R \downarrow 1$, it is tempting to guess that Corollary 1.4 below is also true for the latter space. We will see in the next section that this is completely false.

Corollary 1.4. Let $R>1$ and let $f \in H_{b}\left(B_{R}\left(c_{0}\right)\right)$, with $f(0)=0$. Then $\left(f\left(e_{n}\right)\right)_{n=1}^{\infty} \in l_{1}$.

Proof. By the characterization given earlier of $H_{t}\left(B_{R}\left(c_{0}\right)\right)$, we see that if S is such that $1<S<R$, then $\left\|P_{m}\right\|^{1 / m}<1 / S$, for all large m. Therefore,

$$
\begin{gathered}
\sum_{n=1}^{\infty}\left|f\left(e_{n}\right)\right|=\sum_{n=1}^{\infty}\left|\sum_{m=1}^{\infty} P_{m}\left(e_{n}\right)\right| \\
\leq \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left|P_{m}\left(e_{n}\right)\right| \leq \sum_{m=1}^{\infty} \mid\left\|P_{m}\right\|<\infty . \square
\end{gathered}
$$

SECTION 2

The following fundamental lemma shows in effect that any sequence of 0 's and l's can be interpolated by a norm one function in $A^{\infty}\left(B\left(c_{0}\right)\right)$.

Lemma 2.1. (i). Let $S \subset N$ be an arbitrary set. There exists a function $F \in A^{\infty}\left(B\left(c_{0}\right)\right)$ with the following properties:

$$
\begin{gathered}
\|F\|=\sup _{x \in A\left(c_{0}\right)}|F(x)|=1, \\
F\left(e_{n}\right)=\left\{\begin{array}{l}
1 \text { if } n \in S \\
0 \text { if } n \notin S
\end{array}\right.
\end{gathered}
$$

(ii). If S is finite, then a function $F \in A_{v}\left(B\left(c_{0}\right)\right)$ can be found which satisfies the above conditions.

Proof. Let $\alpha_{j} \uparrow \infty$ so quickly that the following three conditions are satisffed:
(i). The function $\Phi(x) \equiv \Pi_{j \in S}\left(1-x_{j}\right)^{1 / a_{j}}$ converges for all $x \in \overline{B\left(c_{0}\right)}$,
(ii). $\operatorname{Re} \Phi(x) \geq 0$, for all $x \in B\left(c_{0}\right)$,
(iii). $\Phi(x)=0$ for some $x \in \overline{B\left(c_{0}\right)}$ if and only if $\operatorname{Re} \Phi(x)=0$.

Note that $\Phi \in A^{\infty}\left(B\left(c_{0}\right)\right)$ and, if S is finite then in fact $\Phi \in A_{v(}\left(B\left(c_{0}\right)\right)$. Also,

$$
\Phi\left(e_{n}\right)= \begin{cases}0 & \text { for } n \in S \\ 1 \text { for } n \notin S\end{cases}
$$

Now, let $G(x) \equiv e^{-\alpha(x)}$. From the above, it is clear that $G \in A^{\infty}\left(B\left(c_{0}\right)\right)$ for arbitrary S and that $G \in A_{\iota}\left(B\left(c_{0}\right)\right)$ for finite S. In addition, $|G(x)| \leq 1$ for all x and

$$
G\left(e_{n}\right)=\left\{\begin{array}{l}
1 \text { for } n \in S \\
1 / e \text { for } n \notin S
\end{array}\right.
$$

Finally, let $T: \bar{\Delta} \rightarrow \bar{\Delta}$ be the Mobius transformation $T(z)=\frac{z-1 / e}{1-z / e}$ (where Δ is the complex unit disc.) It is clear that $F \equiv T$ o G satisfies all the conditions of the lemma.

We come now to the analogue of Corollary 1.4, for the polydisc algebras $A^{\infty}\left(B\left(c_{0}\right)\right)$ and $A_{\nu}\left(B\left(c_{0}\right)\right)$. Note that here the situation is completely different from the situation in Section 1.

Theorem 2.2. (i). $R\left(A^{\infty}\left(B\left(c_{0}\right)\right)\right)=l_{\rho_{0}}$. In fact, given $\left(\alpha_{n}\right) \in l_{\infty}$, there is $F \in A^{\circ}\left(B\left(c_{0}\right)\right)$ such that $F\left(e_{n}\right)=\alpha_{n}$ for all $n \in N$ and such that $\|F\| \leq 4\left\|\left(\alpha_{n}\right)\right\|_{1}$.
(ii). $R\left(A_{v}\left(B\left(c_{0}\right)\right)\right)=c$. In fact, given $\left(\alpha_{n}\right) \in c$, there is $F \in A_{v}\left(B\left(c_{0}\right)\right)$ such that $F\left(e_{n}\right)=\alpha_{n}$ for all $n \in N$ and such that $\|F\| \leq 8\left\|\left(\alpha_{n}\right)\right\|_{i_{\infty}}$.

Proof. (i). Without loss of generality, $\left\|\left(\alpha_{n}\right)\right\| \leq 1$. Let us first suppose that $\alpha_{n} \geq 0$ for all n. Write $\alpha_{n}=\sum_{j=1}^{\infty} 2^{\mu} \alpha_{n}$, where each $\alpha_{n}=0$ or 1 . Let $S=\{n \in N$: $\left.\alpha_{n}=1\right\}$, and let F_{j} be the associated function obtained using Lemma 2.1. It is easy to see that $F \equiv \sum_{j=1}^{\infty} 2^{-j} F_{j}$ is the required function in this case, and that $\|F\| \leq\left\|\left(\alpha_{n}\right)\right\|$. The case of general α_{n} 's is treated by writing $\alpha_{n}=p_{n}-q_{n}+i u_{n}-i v_{n}$.
(ii). Suppose first that $\left(\alpha_{n}\right) \in c$ with $\left\|\left(\alpha_{n}\right)\right\| \leq 1$, and write each $\alpha_{n}=l+\beta_{n}$ where $l=l i m_{n+\infty} \alpha_{n}$. As above, if each β_{n} is expressed in binary series form, then
 ma 2.1 (ii), so that $F \in A_{v}\left(B\left(c_{0}\right)\right.$). The required function is $G \equiv F+l$.

Finally, note that for any $F \in A_{\mathcal{U}}\left(B\left(c_{0}\right)\right), F(x)$ can be approximated uniformly for $x \in B\left(c_{0}\right)$ by $F(x)=F(r x)$ for r sufficiently close to 1. Next, $F(r x)$ can be uniformly approximated on the unit ball of c_{0} by a finite Taylor series, say $\sum_{k=0}^{k} P_{k}(x)$ (where P_{0} is a constant). Next, it is well known (see, for example, [15]) that any k-homogeneous polynomial P_{k} on c_{0} can be uniformly approximated on $B\left(c_{0}\right)$ by an k-homogeneous polynomial Q_{k} which is a finite sum of products of k continuous linear functionals on c_{0}. Summarizing, we see that the original function F can be uniformly approximated on $B\left(c_{0}\right)$ by $\sum_{k=0}^{M} Q_{k}$ Now, since, $\left(e_{n}\right) \rightarrow 0$ weakly if follows that for each $k=1, \ldots, M, Q_{k}\left(e_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Hence $R(F) \in \mathcal{C}$, and the proof is complete.

It would be interesting to determine the best possible estimates in Theorem 2.2. In [2], we note that in this situation, the best estimate must be strictly
larger than 1 . To see this, suppose that there is $F \in A^{\infty}\left(B\left(c_{0}\right)\right)$ such that $\|F\|=1$ and such that $F\left(e_{1}\right)=1, F\left(e_{2}\right)=-1$, and $F\left(e_{i}\right)=0$ for all $j \geq 3$. Then the function $f_{1}(z) \equiv F(1, z, 0, \ldots)$ would be in the disc algebra $A(\Delta)$, and f_{1} would attain its maximum at 0 . Hence, f_{1} would be a constant and, in particular, $1=f_{1}(1)=F(1,1,0, \ldots)$. Similarly, the function $f_{2}(z) \equiv F(z, 1,0, \ldots)$ would be constant, and so $-1=f_{2}(1)=F(1,1,0, \ldots)$, a contradiction. In [2], the authors find necessary and sufficient conditions on the sequence $\left(x_{n}\right) \subset c_{0}$ in order that the mapping $F \in A^{\infty}\left(B\left(c_{0}\right)\right) \rightarrow\left(F\left(x_{n}\right)\right) \in l_{\infty}$ be surjective and satisfy the following condition: For each $\left(\alpha_{n}\right) \in l_{\infty}$, there is $F \in A^{\infty}\left(B\left(c_{0}\right)\right)$ such that $F\left(x_{n}\right)=\alpha_{n}$ for each $n \in N$ and $\|F\|=\sup _{n}\left|\alpha_{n}\right|$.

References

[1] R. M. ARON, B. COLE, and T. GAMELIN. The spectra of algebras of analytic functions associated with a Banach space, to appear.
[2] R. M. ARON and J. Globenik, Interpolation by analytic functions on c_{0}, Math. Proc. Camb. Phil . Soc. 104(1988)295-302.
[3] S. D. Chatterji, Continuous functions representable as sums of independent random variables, Z. Wahrsch., 13 (1969) 338-341.
[4] B. Cole and T. Gamelin, Representing measures and Hardy spaces for the infinite polydisc algebra, Proc. London Math. Soc (3) 53 (1986) 1, 112-142.
[5] B. COLE and T. Gamelin, Weak-star continuous homomorphisms and a decomposition of orthogonal measures, Ann. Inst. Fourier 35 (1985) 149-189.
[6] H. H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1-15.
[7] A. M. Davie, Quotient algebras of uniform algebras, J. London Math. Soc. 7 (1973) 31-40.
[8] S. Dineen, Complex analysis in locally convex spaces, Mathematics Studies 83, North Holland, Amsterdam, 1981.
[9] J. Ferrera, Spaces of weakly continuous functions, Pacific J. Math. 102(1982) 285-291.
[10] J. GLOBEVNIK, Boundaries for polydisc algebras in infinite dimensions, Math. Proc. Camb. Phil. Soc. 85 (1979) 291-303.
[11] J. A. Jaramillo, Algebras de funciones continuas y diferenciables, PhD dissertation, Univ. Complutense de Madrid, 1988.
[12] K. JOHN, On tensor product characterization of nuclear spaces, Math. Ann. 257(1981) 341-353.
[13] J. Littlewood, On bounded bilinear forms in an infinite number of variables, Quart. Journ. of Math. (2) 2 (1930), 164-174.
[14] J. MuıICA, Complex analysis in Banach spaces, Math. Studies 120, North Holland, Amsterdam, 1986.
[15] A. Pelczynski, A theorem of Dunford-Pettis type for polynomial operators, Bull. Acad. Pol. Sc. XI, 6 (1963) 379-386.

Department of Mathematics
Kent State University
Kent, Ohio 44242
U.S.A.
Institute of Mathematics
University of Ljubljana
19 Jadranska
61000 Ljubljana
Yugoslavia

