REVISTA MATEMATICA de la Universidad Complutense de Madrid Volumen 2, número suplementario, 1989 http://dx.doi.org/10.5209/rev_REMA.1989.v2.18059

Analytic Functions on c.

RICHARD M. ARON and JOSIP GLOBEVNIK

ABSTRACT. Let F be a space of continuous complex valued functions on a subset of c_0 which contains the standard unit vector basis $\{e_n\}$. Let $R:F \rightarrow C^N$ be the restriction map, given by $R(f) = (f(e_1), \dots, f(e_n), \dots)$. We characterize the ranges R(F) for various "nice" spaces F. For example, if $F = P(^*c_0)$, then $R(F) = l_1$, and if $F = A^{\infty}(B(c_0))$, then $R(F) = l_{\infty}$,

Let c_0 be the Banach space of complex null sequences $\vec{x} = (x_n)$, with the normal *sup*-norm and usual basis vectors $\vec{e}_n = (0,..., 0, 1, 0,...)$, and let F be a space of continuous complex-valued functions on some subset of c_0 which contains the standard basis of c_0 . Let $R: F \to C^{\mathbb{N}}$ be the mapping which assigns to each function $f \in F$ the sequence $(f(e_1),...,f(e_n),...)$. Our attention in this article will be focussed on characterizing the range of R for various spaces F of interest. For example, if $F = C(c_0)$, the space of all continuous complex valued functions on c_0 , then a trivial application of the Tietze extension theorem shows that $R(F) = C^{\mathbb{N}}$. On the other hand, c_0 is weakly normal (Corson [6], see also Ferrera [9]). Since $\{0\} \cup \{e_n: n \in N\}$ is weakly compact, we see that R(F) = c, the space of convergent sequences, if we take F to be the subspace of $C(c_0)$ consisting of weakly continuous functions. Recently Jaramillo [11] has examined the relationship between reflexivity of the space F and the range of R, for certain spaces of *real* valued infinitely differentiable functions and polynomials on a Banach space E with unconditional basis $\{e_n: n \in N\}$.

We concentrate here on analogous spaces of *complex* valued functions on c_0 . After a review of relevant notation and definitions, we show in Section 1 that $R(F) = l_1$ when $F = P({}^nc_0)$, $n \in N$. As a consequence, we prove that if $F = \{f \in H_b(B_R(c_0)): f(0) = 0\}$, then $R(F) = l_1$. Taking n = 2 in the above result, we see that every 2-homogeneous polynomial P on c_0 satisfies $\sum_{j=1}^{\infty} |P(e_j)| < \infty$. This result is reminiscent of classical work of Littlewood [13], who proved that every continuous bilinear form A on $c_0 \times c_0$ satisfies $(A(e_p, e_k))_{j,k=1}^{\infty} \in l_{4/3}$. Littlewood's work was extended by Davie [7], who showed

¹⁹⁸⁰ Mathematics Subject Classification (1985 revision): 46E15, 46G20 Editorial de la Universidad Complutense. Madrid 1989.

that every continuous *n*-linear form $A:c_0 \times \ldots \times c_0 \rightarrow C$ satisfies $(A(e_{a_1},\ldots,a_n)) \in l_{2n/n+1}$. In Section 2, we prove that $R(A^{\infty}(B(c_0))) = l_{\infty}$, and as a corollary of the proof of this result we show $R(A_{\iota}(B(c_0))) = l_1$.

Our notation for analytic functions is standard and follows, for example, Dineen [8] and Mujica [14]. For a Banach space E, $B_R(E)$ denotes the open R-ball centered at 0 in E with $B_1(E)$ abbreviated to B(E). $L(^nE)$ denotes the Banach space of continuous *n*-linear forms $A:E \times ... \times E \rightarrow C$, equipped with the norm $||A|| = sup\{|A(x_1,...,x_n)| : x_j \in E, ||x_j|| \le 1, j = 1,...,n\}$. $P(^nE)$ denotes the Banach space of continuous *n*-homogeneous polynomials on E. Each such polynomial P is associated with a unique symmetric continuous *n*-linear form A, by P(x) = A(x,...,x), and ||P|| is defined to be $sup_{||x|| \le 1}|P(x)|$. A function f from an open subset U of E to C is said to be holomorphic if f has a complex Fréchet derivative at each point of U. Equivalently, f is holomorphic if for all points $a \in U$, the Taylor series $f(x) = \sum_{n=0}^{\infty} P_n(x-a)$, converges uniformly for all x in some neighborhood of a, where each $P_n \in P(^nE)$.

 $H_b(B_R(E))$ is the space of all holomorphic functions on $B_R(E)$ which are bounded on $B_i(E)$ for every r < R. A useful characterization of $H_b(B_R(E))$ is that it consists of all holomorphic functions f on $B_R(E)$ such that $\limsup_{n\to\infty} ||P_n||^{1/n} \le 1/R$, where $\{P_n: n \in N\}$ represents the Taylor polynomials of f at the origin. The spaces $A^{\infty}(B(E))$ and $A_{ij}(B(E))$ have been studied by Cole and Gamelin [4,5], Globevnik [10] and others [1]. $A^{\infty}(B(E)) = \{f:B(E) \to C: f \text{ is} finite dimensional, this space is always strictly larger than <math>A_{ij}(B(E)) =$ $\{f:B(E) \to C: f \text{ is holomorphic and uniformly continuous on <math>B(E)$ }. Both of these spaces are natural infinite dimensional analogues of the disc algebra.

SECTION 1

We show here that for all $P \in P({}^{n}C_{0})$ and all $n \in N$, $\sum_{j=1}^{\infty} |P(e_{j})| \leq ||P||$. This has already been done by K. John [12], in the case n=2. In [13], Littlewood showed that for every $A \in L({}^{n}C_{0})$, $(A(e_{p}, e_{k}))_{j,k=1}^{\infty} \in l_{4/3}$, and that 4/3 is best possible; thus, Littlewood's 4/3 result notwithstanding, John's result is that every $A \in L({}^{n}C_{0})$ has a trace. Our proof will make use of a generalization of the classical Rademacher functions, which seems to be well-known to probabilists (see, for example, Chatterji [3]).

Definition 1.1. Fix $n \in N$, $n \ge 2$, and let $\alpha_1 = 1$, $\alpha_2,...,\alpha_n$ denote the nth roots of unity. Let s_i : $[0,1] \rightarrow C$ be the step function taking the value α_i on (j-1/n, j/n), for j = 1,..., n. Assuming that s_{k-1} has been defined, define s_k in the following natural way. Fix any of the n^{k-1} sub-intervals I of [0,1] used in the definition of s_{k-1} . Divide I into n equal intervals $I_p..., I_n$ and set $s_k(t) = \alpha_j$ if $t \in I_j$. Analytic functions on c_0

(The endpoints of the intervals are irrelevant for this construction and we may, for example, define s_k to be 1 on each endpoint.)

Of course, when n=2, Definition 1.1 gives us the classical Rademacher functions. The following lemma lists the basic properties of the functions s_k . Its proof is similar to the usual, induction proof for the Rademacher functions, and is omitted.

Lemma 1.2. For each n = 2, 3, ..., the associated functions s_k satisfy the following properties:

(a). $|s_k(t)| = l$, for all $k \in N$ and all $t \in [0,1]$. (b). For any choice of k_p, \dots, k_n ,

$$\int_{0}^{t} s_{k_{1}}(t) \dots s_{k_{n}}(t) dt = \begin{cases} l & \text{if } k_{1} = \dots = k_{n} \\ 0 & \text{otherwise} \end{cases}$$

We are grateful to Andrew Tonge for suggesting an improvement in the proof of the following result.

Theorem 1.3. Let $P \in P({}^{\circ}C_{0})$. Then $||(P(e_{j}))||_{l_{1}} \leq ||P||$.

Proof. Let $A \in L({}^{n}c_{0})$ be the symmetric *n*-linear form associated to *P*. Fix any $m \in N$. For each i = 1, ..., m, let $\lambda_{i} = |A(e_{i}, ..., e_{i})| / A(e_{i}, ..., e_{i})$, if $A(e_{i}, ..., e_{i}) \neq 0$, and 1 otherwise. Furthermore, let β_{i} denote any n^{in} root of λ_{i} . Thus, $\lambda_{i}A(e_{i}, ..., e_{i}) = |P(e_{i})|$ for each i = 1, ..., m. Adding and applying Lemma 1.2 for the integer *n*, we get $\sum_{i=1}^{m} |P(e_{i})| = \sum_{i=1}^{m} \lambda_{i}A(e_{i}, ..., e_{i})$

$$=\sum_{i,j_{2},\dots,j_{n}=1}^{m} \int_{0}^{1} \lambda_{i} S_{i}(t) S_{j_{2}}(t) \dots S_{j_{n}}(t) A(e_{i}, e_{j_{2}},\dots,e_{j_{n}}) dt$$

$$=\int_{0}^{1} A(\sum_{i=1}^{m} \lambda_{i} S_{i}(t) e_{i},\dots,\sum_{j_{n}=1}^{m} S_{j_{n}}(t) e_{j_{n}}) dt$$

$$=\int_{0}^{1} A(\sum_{j_{1}=1}^{m} \beta_{j_{1}} S_{j_{1}}(t) e_{j_{1}},\dots,\sum_{j_{n}=1}^{m} \beta_{j_{n}} S_{j_{n}}(t) e_{j_{n}}) dt.$$

Since $\|\sum_{j=1}^{m} \beta_j s_j(t) e_j\| \le 1$ for all t, the last expression is clearly less than or equal to $\|P\|$. Since m was arbitrary, the proof is complete.

Rephrasing the above result in terms of the mapping R mentioned in the introduction, Theorem 1.3 implies that for any n, $R(P({}^{n}c_{0})) \subset l_{1}$. In fact, R is onto l_{1} , since any $\overline{\lambda} = (\lambda_{1},...,\lambda_{p}...) \in l_{1}$ equals R(P), where $P \in P({}^{n}c_{0})$ is given by $P(x) = \sum_{j=1}^{\infty} \lambda_{j} x_{j}^{n}$.

We conclude this section by proving that, up to a normalizing factor, $R(H_b(B_R(c_0))) = l_1$, for every R > 1. Since $H_b(B_R(c_0))$ "approaches" $A^{\infty}(B(c_0))$ as $R \downarrow 1$, it is tempting to guess that Corollary 1.4 below is also true for the latter space. We will see in the next section that this is completely false.

Corollary 1.4. Let R > 1 and let $f \in H_b(B_R(c_0))$, with f(0) = 0. Then $(f(e_n))_{n=1}^{\infty} \in l_1$.

Proof. By the characterization given earlier of $H_b(B_R(c_0))$, we see that if S is such that 1 < S < R, then $||P_m||^{1/m} < 1/S$, for all large m. Therefore,

$$\sum_{n=1}^{\infty} |f(e_n)| = \sum_{n=1}^{\infty} |\sum_{m=1}^{\infty} P_m(e_n)|$$

$$\leq \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |P_m(e_n)| \leq \sum_{m=1}^{\infty} ||P_m|| < \infty. \blacksquare$$

SECTION 2

The following fundamental lemma shows in effect that any sequence of 0's and 1's can be interpolated by a norm one function in $A^{\infty}(B(c_0))$.

Lemma 2.1. (i). Let $S \subset N$ be an arbitrary set. There exists a function $F \in A^{\infty}(B(c_0))$ with the following properties:

$$||F|| = \sup_{x \in B(c_0)} |F(x)| = 1,$$

$$F(e_n) = \begin{cases} 1 & \text{if } n \in S \\ 0 & \text{if } n \notin S \end{cases}$$

(ii). If S is finite, then a function $F \in A_{c}(B(c_{o}))$ can be found which satisfies the above conditions.

Proof. Let $\alpha_i \uparrow \infty$ so quickly that the following three conditions are satisfied:

- (i). The function $\Phi(x) \equiv \prod_{j \in S} (1-x_j)^{1/a_j}$ converges for all $x \in B(c_0)$,
- (ii). Re $\Phi(x) \ge 0$, for all $x \in B(c_0)$,
- (iii). $\Phi(x)=0$ for some $x \in \overline{B(c_0)}$ if and only if Re $\Phi(x)=0$.

Note that $\Phi \in A^{\infty}(B(c_0))$ and, if S is finite then in fact $\Phi \in A_{t}(B(c_0))$. Also,

$$\Phi(e_n) = \begin{cases} 0 \text{ for } n \in S \\ 1 \text{ for } n \notin S \end{cases}$$

30

31

Now, let $G(x) \equiv e^{-\Phi(x)}$. From the above, it is clear that $G \in A^{\infty}(B(c_0))$ for arbitrary S and that $G \in A_{\iota}(B(c_0))$ for finite S. In addition, $|G(x)| \leq 1$ for all x and

$$G(e_n) = \begin{cases} 1 \text{ for } n \in S \\ 1/e \text{ for } n \notin S \end{cases}$$

Finally, let $T:\overline{\Delta} \to \overline{\Delta}$ be the Mobius transformation $T(z) = \frac{z = 1/e}{1 - z/e}$ (where Δ is the complex unit disc.) It is clear that $F \equiv T$ o G satisfies all the conditions of the lemma.

We come now to the analogue of Corollary 1.4, for the polydisc algebras $A^{\infty}(B(c_0))$ and $A_{U}(B(c_0))$. Note that here the situation is completely different from the situation in Section 1.

Theorem 2.2. (i). $R(A^{\infty}(B(c_0))) = l_{\infty}$. In fact, given $(\alpha_n) \in l_{\infty}$, there is $F \in A^{\infty}(B(c_0))$ such that $F(e_n) = \alpha_n$ for all $n \in N$ and such that $||F|| \le 4||(\alpha_n)||_i$. (ii). $R(A_t(B(c_0))) = c$. In fact, given $(\alpha_n) \in c$, there is $F \in A_t(B(c_0))$ such that $F(e_n) = \alpha_n$ for all $n \in N$ and such that $||F|| \le 8||(\alpha_n)||_i$.

Proof. (i). Without loss of generality, $\|(\alpha_n)\| \le 1$. Let us first suppose that $\alpha_n \ge 0$ for all *n*. Write $\alpha_n = \sum_{j=1}^{\infty} 2^{-j} \alpha_{n,j}$ where each $\alpha_n = 0$ or 1. Let $S_j = \{ n \in N : \alpha_{n,j} = 1 \}$, and let F_j be the associated function obtained using Lemma 2.1. It is easy to see that $F \equiv \sum_{j=1}^{\infty} 2^{-j} F_j$ is the required function in this case, and that $\|F\| \le \|(\alpha_n)\|$. The case of general α_n 's is treated by writing $\alpha_n = p_n - q_n + iu_n - iv_n$.

(ii). Suppose first that $(\alpha_n) \in c$ with $||(\alpha_n)|| \le 1$, and write each $\alpha_n = l + \beta_n$ where $l = lim_{n \to \infty} \alpha_n$. As above, if each β_n is expressed in binary series form, then each of the associated sets S_j is finite. As a result, each F_j is in $A_{ij}(B(c_0))$ by Lemma 2.1 (ii), so that $F \in A_{ij}(B(c_0))$. The required function is $G \equiv F + l$.

Finally, note that for any $F \in A_t(B(c_0))$, F(x) can be approximated uniformly for $x \in B(c_0)$ by $F_t(x) = F(rx)$ for r sufficiently close to 1. Next, F(rx) can be uniformly approximated on the unit ball of c_0 by a finite Taylor series, say $\sum_{k=0}^{M} P_k(x)$ (where P_0 is a constant). Next, it is well known (see, for example, [15]) that any k-homogeneous polynomial P_k on c_0 can be uniformly approximated on $B(c_0)$ by an k-homogeneous polynomial Q_k which is a finite sum of products of k continuous linear functionals on c_0 . Summarizing, we see that the original function F can be uniformly approximated on $B(c_0)$ by $\sum_{k=0}^{M} Q_k$. Now, since, $(e_n) \rightarrow 0$ weakly if follows that for each k = 1, ..., M, $Q_k(e_n) \rightarrow 0$ as $n \rightarrow \infty$. Hence $R(F) \in c$, and the proof is complete.

It would be interesting to determine the best possible estimates in Theorem 2.2. In [2], we note that in this situation, the best estimate must be strictly larger than 1. To see this, suppose that there is $F \in A^{\infty}(B(c_0))$ such that ||F|| = 1and such that $F(e_1) = 1$, $F(e_2) = -1$, and $F(e_j) = 0$ for all $j \ge 3$. Then the function $f_1(z) \equiv F(1,z,0,...)$ would be in the disc algebra $A(\Delta)$, and f_1 would attain its maximum at 0. Hence, f_1 would be a constant and, in particular, $1 = f_1(1) = F(1,1,0,...)$. Similarly, the function $f_2(z) \equiv F(z,1,0,...)$ would be constant, and so $-1 = f_2(1) = F(1,1,0,...)$, a contradiction. In [2], the authors find necessary and sufficient conditions on the sequence $(x_n) \subset c_0$ in order that the mapping $F \in A^{\infty}(B(c_0)) \rightarrow (F(x_n)) \in l_{\infty}$ be surjective and satisfy the following condition: For each $(\alpha_n) \in l_{\infty}$, there is $F \in A^{\infty}(B(c_0))$ such that $F(x_n) = \alpha_n$ for each $n \in N$ and $||F|| = sup_n |\alpha_n|$.

References

- [1] R. M. ARON, B. COLE, and T. GAMELIN. The spectra of algebras of analytic functions associated with a Banach space, to appear.
- [2] R. M. ARON and J. GLOBENIK, Interpolation by analytic functions on c₀, Math. Proc. Camb. Phil. Soc. 104(1988)295-302.
- [3] S. D. CHATTERJI, Continuous functions representable as sums of independent random variables, Z. Wahrsch., 13 (1969) 338-341.
- [4] B. COLE and T. GAMELIN, Representing measures and Hardy spaces for the infinite polydisc algebra, Proc. London Math. Soc (3) 53 (1986) 1, 112-142.
- [5] B. COLE and T. GAMELIN, Weak-star continuous homomorphisms and a decomposition of orthogonal measures, Ann. Inst. Fourier 35 (1985) 149-189.
- [6] H. H. CORSON, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1-15.
- [7] A. M. DAVIE, Quotient algebras of uniform algebras, J. London Math. Soc. 7 (1973) 31-40.
- [8] S. DINEEN, Complex analysis in locally convex spaces, Mathematics Studies 83, North Holland, Amsterdam, 1981.
- [9] J. FERRERA, Spaces of weakly continuous functions, Pacific J. Math. 102(1982) 285-291.
- [10] J. GLOBEVNIK, Boundaries for polydisc algebras in infinite dimensions, Math. Proc. Camb. Phil. Soc. 85 (1979) 291-303.
- [11] J. A. JARAMILLO, Algebras de funciones continuas y diferenciables, PhD dissertation, Univ. Complutense de Madrid, 1988.
- [12] K. JOHN, On tensor product characterization of nuclear spaces, Math. Ann. 257(1981) 341-353.
- [13] J. LITTLEWOOD, On bounded bilinear forms in an infinite number of variables, Quart. Journ. of Math. (2) 2 (1930), 164-174.
- [14] J. MUJICA, Complex analysis in Banach spaces, Math. Studies 120, North Holland, Amsterdam, 1986.

. _ ... _.

[15] A. PELCZYNSKI, A theorem of Dunford-Pettis type for polynomial operators, Bull. Acad. Pol. Sc. XI, 6 (1963) 379-386.

Department of Mathematics Kent State University Kent, Ohio 44242 U.S.A. Institute of Mathematics University of Ljubljana 19 Jadranska 61000 Ljubljana Yugoslavia