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Analytic Functions on c,

RICHARD M. ARON and JosiP GLOBEVNIK

ABSTRACT. Let F be a space of continuous complex valued functions on a subset of ¢ which
contains the standard unit vector basis {¢,]. Let R:F»C” be the restriction map, given by
R(f}=(f(e))....f(e,),...). We characterize the ranges R(F) for various “nice” spaces F. For
example, if F=P("c,), then R(F)=/, and if F=A~(B{(c)), then R(A =1,

Let ¢, be the Banach space of complex null sequences ¥ =(x,), with the nor-
mal sup-norm and usual basis vectors €,=(0...., 0,1,0,...), and let Fbe a space
of continuous complex-valued functions on some subset of ¢, which contains
the standard basis of ¢, Let R:F—C" be the mapping which assigns to each
function f € F the sequence (f(e,),....f(€,),...). Our attention in this article will
be focussed on characterizing the range of R for various spaces F of in-
terest. For example, if F=C{(c,), the space of all continuous complex valued
functions on ¢,, then a trivial application of the Tietze extension theorem shows that
R(F) =C* On the other hand, c, is weakly normal (Corson [6], see also Fe-
rrera [9]). Since {0}iU{e,:n e N} is weakly compact, we see that R(F)= ¢, the
space of convergent sequences, if we take F to be the subspace of C(c,) con-
sisting of weakly continuous functions. Recently Jaramillo [11] has examined
the relationship between reflexivity of the space F and the range of R, for cer-
tain spaces of real valued infinitely differentiable functions and polynomials
on a Banach space E with unconditional basis { e, ; ne N}.

We concentrate here on analogous spaces of complex valued functions on
¢, After a review of relevant notation and definitions, we show in Section |
that R(F)=/, when F=P(c)), ne N. As a consequence, we prove that if
F={f € H{B{c,)): [(0)=0}, then R(F)=1I, Taking n=2 in the above result, we
see that every 2-homogeneous polynomial P on ¢, satisfies
S.=\|P(e)] <oo. This result is reminiscent of classical work of Littlewood [13],
who proved that every continuous bilinear form 4 on ¢,x¢, satisfies
(A(e,e)5.., € I, Littlewood’s work was extended by Davie [7],who showed
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that every continuous n-linear form A.¢;x...x ¢,—~C satisfies
(A(eu|,.,.,.,en )) € L. In Section 2, we prove that R(4~(B(c,)))=/.., and as a co-
rollary of the proof of this result we show R(A(B(c,))=1,.

Our notation for analytic functions is standard and follows, for example,
Dineen [8] and Mujica [14]. For a Banach space E, B E) denotes the open
R-ball centered at 0 in E with B,(E) abbreviated to B(E). L("E) denotes the
Banach space of continuous #-linear forms A:E x ... x E»C, equipped with the
norm {[Al| =supi|d(x,....x,)| :x; € E, lix}| <1, j= 1,..,n}. P("E') denotes the Ba-
nach space of continuous n-homogeneous polynomials on E. Each such poly-
nomial P is associated with a unique symmetric continuous »n-linear form A,
by P(x)=A(x,....x), and {|P|| is defined to be sup,,. |P(x) A function f from
an open subset U of E to C is said to be holomorphic if f has a complex Fré-
chet derivative at each point of U. Equivalently, f is holomorphic if for all
points a € U, the Taylor series f(x)=3%_,P,(x- a)}, converges uniformly for all
X in some neighborhood of a, where each P, e P("E).

H,(BE)) is the space of all holomorphic functions on B(E)} which are
bounded on B(E) for every r<R. A useful characterization of H,(B(E)) is that
it consists of all holomorphic functions f on Bg(E) such that
limsup, ., IP,|l"*<1/R, where { P,:n € N} represents the Taylor polynomials of
f at the origin. The spaces A=(B(E)) and A{B(E)) have been studied by Cole
and Gamelin [4,5], Globevnik [10] and others [1]. A=(B(E))= I BEy>Cf is
holomorphic on B(E) and continuous and bounded on B(E)}. Unless E is fi-
nite dimensional, this space is always strictly larger than A/{B(E))=
{f:B(E} ~>C:f is holomorphic and uniformly continuous on B(E)}. Both of these
spaces are natural infinite dimensional analogues of the disc algebra.

SECTION 1

We show here that for all P P(*c;) and all ne N, 3°_| P(¢)|<||PIl. This has
already been done by K. John [12], in the case n=2. In [13], Littlewood
showed that for every A € L("c)), (A(e, €))%, € Iy, and that 4/3 is best possible;
thus, Littlewood’s 4/3 result notwithstanding, John’s result is that every
Ae L("c,) has a trace. Our proof will make use of a generalization of the clas-
sical Rademacher functions, which seems to be well-known to probabilists
(see, for example, Chatterji [3]).

Definition 1.1. Fix ne N, nz2, and let a,=1, o,,...,a, denote the n* roots
of unity. Let s, [0,1] — C be the step function taking the value o, on (j-1/n,
j/n), for j=1,..., n. Assuming that s,_, has been defined, define s, in the Jollow-
ing natural way. Fix any of the n*-* sub-intervals I of [0,1] used in the defi-
nition of s, .. Divide I into n equal intervals 1,...,1, and set sft)=uw, if 1,
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(The endpoints of the intervals are irrelevant for this construction and we may,
Jor example, define s, to be 1 on each endpoint.)

Of course, when n=2, Definition 1.1 gives us the classical Rademacher
functions. The following lemma lists the basic properties of the functions S
Its proof is similar to the usual, induction proof for the Rademacher func-
tions, and is omitted.

Lemma 1.2. For each n=2,3,..., the associated functions s, satisfy the fol-
lowing properties:

(). |sf0)| = 1, for all ke N and all t € [0,1).
(b). For any choice of k,,....k,,

! i l:fk;=-..=kﬂ
[ 5, (0.5, (Ddlt = t

0 0 otherwise

We are grateful to Andrew Tonge for suggesting an improvement in the
proof of the following result.

Theorem 1.3. Let Pe P("c,). Then ||(P(e,))[l,l < All.

Proof. Let A€ L(c,) be the symmetric n-linear form associated to P. Fix
any meN. For each i=1,..,m, let A, = |d(e,..., e)| /A(e,....e), if
Ale,..., e) #0, and 1 otherwise. Furthermore, let B, denote any n* root of A,
Thus, L A(e,....e)=|P(e)| for each i= 1,...,m. Adding and applying Lemma 1.2
for the integer n, we get 37_| P, )| =37 A Ale,....e)

=3 rl,s,(t)sjz (t)...s,.n(tM(e,,e,z,...,e,” Yedt
=]’A(z~,=_ As(De,... ST _s, (e, )dt

= [ ! A(ET}J Ilsjl(t)ejl,.., j.‘f]B,.nsjn(t)qn)dl.

9

Since |5 Bs{nell<1 for all ¢, the last expression is clearly less than or
equal to [|P]l. Since m was arbitrary, the proof is complete.m

Rephrasing the above resuit in terms of the mapping R mentioned in the
introduction, Theorem 1.3 implies that for any n, R(P(*c,))c{,. In fact, R is onto
l, since any X =(A,...,A,...} €l equals R(P), where Pe P("c) is given by
P(x)=2°}'=178 X7
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We conclude this section by proving that, up to a normalizing factor,
R(H(Bic)))=1,, for every R> 1. Since H,(B,(c,)) “approaches” A=(B(c,)) as
R l1,it is tempting to guess that Corollary 1.4 below is also true for the latter
space. We will see in the next section that this is completely false.

Corollary 1.4. Let R>1 and let [ H(Byc)), with f(0)=0. Then
(fled)so. €l

Proof. By the characterization given earlier of Hy(Bg(c,)), we sce that if .S
is such that 1 <S<R, then ||P,||"=<1/S, for all large m. Therefore,

fe) =35 | Zn-Pule)]
<3025 Pale)] <35, 1Pl <com

o0
na=f

SECTION 2

The following fundamental lemma shows in effect that any sequence of 0's
and I's can be interpolated by a norm one function in 4=(B(c,))-

Lemma 2.1. (). Let ScN be an arbitrary set. There exists a function
F e A=(B(c,)) with the following properties:

Al =sup |[F(x)| =1,
xeB(cD)

l ifnesS
Fe,)=
0 ifnegsS

(ii). If S is finite, then a function F e A{B(c,)) can be found which satisfies the
above conditions.

Proof. Let u}.Too so quickly that the following three conditions are satisfted:

(1). The function ®(x}=I1 {1 —x)" converges for all x € B(cy),
(i1). Re ®(x)=0, for all x e B(c,),
(iii). ®(x)=0 for some x € B(c,) if and only if Re ®(x)=0.

Note that @ € A=(B(c,)) and, if S is finite then in fact ® € 4(B(c,)). Also,

0 forne§
Die,)=
1 fornegs
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Now, let G(x)=e-**. From the above, it is clear that G € A*(B(c,)) for ar-
bitrary .5 and that G € A,{B(c,)) for finite S. In addition, | G(x)| <1 for all x and

1 forne §
Gle)=
1/e forng S

Finally, let T:A—A be the Mobius transformation 7(z)=-1

l—zfe
is the complex unit disc.) It is clear that F=T o G satisfies all the conditions
of the lemma.m

{(where A

We come now to the analogue of Corollary 1.4, for the polydisc algebras
A~(B(c,)) and A4,(B(c,)). Note that here the situation is completely different
from the situation in Section 1.

Theorem 2.2. (i). R(A(B(c;))=I,. In fact, given (a)el, there is
Fe A=(B(c,)) such that Fle,} = a, for all ne N and such that |[Fi}<4li(c)]), .

(i). R(AAB(c,)))=c. In fact, given (0,) € c, there is Fe A(B(c,) such that
Re)=a, for all ne N and such that |Fl| <8li(a,), .

Proof. (i). Without loss of genera]ity, ll(e )l < 1. Let us first suppose that
a,20 for all n. Write a,=3%_, 2+, where each o, =0 or 1. Let §, ={ ne N:
a, =1}, and let F, be the associated function obtairied usmg Lemma 2.1. It is
edsy o see that F= 2%., 277 F is the required function in this case, and that
IAl < ll(a)ll. The case ofgeneral a,’s is treated by writing a,=p,—gq,+ iu,— iv,

(i1). Suppose first that (a,)ec¢ with [[(a)l{<1, and write each a,=/+8,
where I=1lim,_ _a,. Asabove, if each B, is expressed in bmary series form, then
each of the assocmted sets §; is finite. As a resuit, each F,is in 4,{B(c,)) by Lem-
ma 2.1 (ii), so that F eAU(B(Co)) The required function is G= F +1

Finally, note that for any Fe 4,(B(c,)), F(x) can be approximated uni-
formly for x € B(c,) by F(x)=F(rx) for r sufficiently close to 1. Next, F{(rx) can
be uniformly approximated on the unit ball of ¢, by a finite Taylor series, say
2H.oPx) (where P, is a constant). Next, it is well known (sce, for example,
[15]) that any k-homogeneous polynomial P, on c, can be uniformly approxi-
mated on B(c,) by an k-homogeneous polynomial Q, which is a finite sum of
products of k continuous linear functionals on ¢, Summarizing, we see that
the original function F can be uniformly approximated on B(c,) by 3*_,Q.
Now, since, (¢,)-»0 weakly if follows that for each k=1,..,.M, QJle,) -0 as
n—»co. Hence R(F) € ¢, and the proof is complete. m

It would be interesting to determine the best possible estimates in The-
orem 2.2. In [2], we note that in this situation, the best estimate must be strictly
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larger than 1. To see this, suppose that there is F e A*(B(c,)) such that [|Fl| =1
and such that Fle,)=1, F(e, }=—1, and F(e)=0 for all j=3. Then the func-
tion f(z)=F(1,z0,...) would be in the disc algebra 4(A), and f, would attain
its maximum at Q. Hence, f, would be a constant and, in particular,
1 =f(1)=F(1,1,0,...). Similarly, the function f(z) = F{(z,1,0,...) would be con-
stant, and so —1=£,(1)=F(1,1,0,...), a contradiction. In {2], the authors find
necessary and sufficient conditions on the sequence (x,)c¢, in order that the
mapping F € A=(B(c))—(F(x,)) € I, be surjective and satisfy the following con-
dition: For each (a,) e/, there is Fe A=(B(c,)) such that F(x,)=ua, for each
ne N and ||FA|=sup,ja,|
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