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Analytic Functions on e,

RICHARD M. ARON and JosíP GLOBEVNIK

ABSTRACr. Let F be a space of conlinuous complex valued funetions on a subset of e0 which
contains the standard unit Vector basis ej. Lct R~F—~C~ be the restriction map, given by
R(f)=(f(e1),...J(e,),..4. Wc characterize the ranges R(F) for various “nice” spaeet E. For
example, if F=PUc,), then R(F)=1, and ifF=A~(B{c0)), then R(fl=1,0,

Let c0 be tite Banach space ofcomplex nulí sequences X = (ir,), with the nor-
mal sup-norm and basis vectors ¿, = (O,..., 0,1,0,...), and let Fbea space
of continuous complex-valued functions on some subset of c0 which contains
tite standard basis of c0. Let R:F—>CJ’ be tite mapping wbicit assigns to eacit
function fe F tite sequence (f(e),...J(e,),...). Our attention in this article will
be focussed on citaracterizing the range of R for various spaces F of in-
terest. For example, if F= C(c0), the space of alí continuous complex valued
flmctionson c0, titen a trivialapplication ofthe Tietzeextension theoiem sitows titat
R(19 = O”. On tite otiter band, e0 is weakly normal (Corson [6], see also Fe-
rrera [9]). Since {0~U{e,:n eN> is weakly compact, we see that R(fl= c, tite
space of convergent sequences, if we take F to be tite subspace of C(c0) con-
sisting of weakly continuous functions. Recently Jaramillo [II] itas examined
tite relationsitip between reflexivity of the space Eand tite range of R. for cer-
tain spaces of real valued infinitely differentiable functions and polynomials
on a Banach space E with unconditional basis ( e,; n eN>.

We concentrate itere on analogous spaces of comp/ex valued functions on
c,. After a review of relevant notation and definitions, we slrnw in Section 1
tbat R(F)=l wben F=P(’cj, n eN. As a consequence, we prove that if
F= (fE Hb(BR(c0)): f(O) = O>, titen R(fl = k Taking n = 2 in tite aboye result, we
see titat every 2—itomogeneous polynomial P on c, satisfies
Ir¡P(e)( ceo. This result is reminiscent of classical work of Littlewood [13],
wito proved titat every continuous bilinear form A Ofl 4 x c0 satisfies
(A(eJ,ek))7k..Í E 14/3. Littlewood’s work was extended by Davie [7],wito showed
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titat every continuous n-linear form A:c0 x ... x c0—*C satisfies
(A(e0,.,.,.,e0 )) ~ 4,,,~,. In Section 2, we prove that R(A”’(R(c0)))= 1,,, and asaco-
rolla~y of file proof of this result we show R(A~(B(cj)) = 1.

Our notation for analytic functions is standard and follows, for example,
Dineen [8] and Mujica [14]. For a Banacit space E, Bfi(E) denotes tite open
R—ball centered at O in E with B(E) abbreviated to R(E). L(”E) denotes tite
Banacit space ofcontinuous n-linear formsA:Ex ... x E—*C, equipped with tite
norm IIAII=supflA(x,...,x,)~ :xj eE, IIx,II=l,j=1 ,...,n}. P(~E) denotes tite Ba-
nacit space of continuous n—homogeneous polynomials on E. Eacit such poly-
nomial F is associated with a unique symmetric continuous n—linear form A,
by F(x)=A(x ir), and ¡Fil is defined to be supí~1=[P(x)[ A function f from
an open subset U of E to C is said to be holomorphic iff itas a complex Fré-
chet derivative at each point of U. Equivalently, f is holomorphic if for alí
points a e U, the Taylor seriesf(x)=I’~P}x—a), converges uniformly for alí
ir in sorne neighborhood of a, where eacit P~ c I’(~E9.

Hb(BR(E)) is tite space of alí holomorphic functions on B~<E) wbich are
bounded on B,(E) for every r.cR. A useful characterization of HS(BR(E)) is that
it consists of alí itolomorphic functions f on B~(E) such that
limsup~..~ IIP5II”~=l/R, wbere (P5:n EN> represents tite Taylor polynomials of
f at tite origin. Tite spaces A”(B(E)) and AJ8(E)) itave been studied by Cole
and Gamelin [4,5], Globevnik [10] and others [1]. AMB(Efl={f:B<E’)—*C.f is
bolomorphic on B(E) and continuous and bounded on B(E)>. Unless E is fi-
nite dimensional, titis space is always strictly larger than ALXB(E))=
{f:R(E) —*C:f is holomorphic and uniformly continuous on B(E) }. Botit of these
spaces are natural infinite dimensional analogues of the disc algebra.

SECTION 1

Wc show itere that for alí FE P(”c0) and al! fl EN, IJ-4 P(e,)~=¡Fil. This has
already been done by K. John [12], in tite case n=2. In [13], Littlewood
sitowed that for every A E LQ’cJ, (A(e, e5ft~5, E 14/3, and titat 4/3 is best possible;
thus, Littlewood’s 4/3 result notwithstanding, Joitn’s result is that every
A e LQ’c3 has a trace. Our proof will make use of a generalization of tite cías-
sical Rademaciter functions, which seems to be well-known to probabilists
(see, for example, Citattexji [3]).

Defrnition 1.1. F¡x n~ N, n=2,and leí a~= 1, a,,.... a, denote ihe ní~~ roots
of unity. Leí s» [0,1]—* C be Me step funct¡on tak¡ng Me value a, on (j-1/n,
jin), forj= 1 n. Assum¡ng thai s~_ has been defined, defines, in íhefollow-
¡ng natural way. F¡x any of ihe n

t- sub-¡ntervals 1 of [0,1]used ¡ti Me dej2-
nition ofs

5i. Divide 1 mio n equal intervals I,,...,I,,, and set s5(t,)=a, if te 4.
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(The endpoints ofthe Intervais are irrelevantior this consiruction and we may,
for exaznple, define s~ lo be 1 on each endpoint.)

Of course, witen n = 2, Definition 1.1 gives us tite classical Rademacher
functions. Tite following lemma lists tite basic properties of tite functions s~
Its proof is similar to tite usual, induction proof for the Rademaciter func-
tions, and is omitted.

Lemma 1.2. For each n=2,3 the associaíedfunchons s, saiisfy ihefol-
lowing properiles:

(a). ¡yi)I = ¡for alt kENand al! le [0,1].
(b). For any choice ofk,,...,

1 zfk,=...=k~

5~<~•~~= { o oiherwise
We are grateful to Andrew Tonge for suggesting an improvement in tite

proof of tite following result.

Theorem 1.3. Let PeF<’cj. Then II(P(e,))JI,=[IP[l.

Proof. LetA e LQ’c,) be tite symmetric n-linear form associated to P. Fix
any m eN. For eacit ¡=1 m, let 2., = IA(e,..., ej! /A<e,,..., e,), if
A(e,,..., e,) !=0,and 1 otiterwise. Furtitermore, let ¡3, denote any n’5 root of A~.
Titus, X4(e,,..., e,)=~F(e,)~ for each 1= 1 ni. Adding and applying Lemma 1.2
for tite integer n, we get ~‘~j ¡‘(e, )~ ~ e,)

~ (t)...s,(t)A(e,e, e, )dt

rr,s,Q)e,)dí

Since Il2~’ ,p,s/i)e,Ii =1for alí 1, tite last expression is clearly less titan or
equal to ¡¡¡‘II. Since ni was arbitrary, tite proof is complete..

Repitrasing tite aboye result in terms of tite mapping R mentioned in tite
antroduction, Titeorem 1.3 implies that for any n, R<FNCO))GA. In fact, R is onto
1,, since any t = (X,...,X,...) e 1, equals R(P), wbere Fe PQ’c

0) is given by
Fx)=yj,2~ x~
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Wc conclude titis section by proving that, up to a normalizing factor,
R(1’1b(BR(cO)))= 1, for every R> 1. Since Hb(BR<co)) “approacites” A”(B(cj) as
R ¿l,it is tempting to guess that Corollary 1.4 below is also true for tite latter
space. We will see in tite next section that titis is completely false.

Corolíary 1.4. Let R> 1 and leí fE H~(B~(Cj), wiih f(0»=0. Then
E 1.

Proof. By the characterization given carlier of Hb(BR(cO)), we see titat if5
is sucit that 1 ~cScR, titen IlPmIIl/~< 1/5, for alí large m. Therefore,

SECTION 2

Tite following fundamental lemma sitows in effect titat any sequence of 0’s
ami l’s can be interpolated by a norm one function in A’~(B(c0)).

Lemma 2.1. (1). Leí ScN be an arbitrary sel. There exLsis a funcíion
Fc A”’(B(c0)) with íhefollow¡ng properúes:

IlF1I=sup[F(x)I =1,

{ 1 ífn~S
~

(u). ff5 Lsfin¡ie, ihen afunchon FcA,/R(c3) can befound which safisfies ihe

aboye condii¡ons.

Proof. Lot a1teo so quickly that the following titree conditions are satisfied:

(i). Tite function <F(.x)~fI16~(l —x)/”~ converges for alí XE

(u). Re <F(x) =0,for alí ir c

(iii). <F(x)= O for sorne x E B(c0) ifand only if Re <F<jx) = 0.

Note titat <FE A’~(B(c0)) and, if 5 is finite titen in fact <FE AjB(c0)). Also,{ O for n E 5
<F(ej=

1 forn~S
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Now, let 0(x) e~4(x). From tite aboye, it is clear titat O eA”(R(cJ) for ar-
bitrary 5 and tbat GEA~(B(cj) for finite 5. In addition, ¡ G(x)¡ =1 for alí ir and

1 forneS
G<e,j=

1/e forn~S

Finally, let T:A—*A be the Mobius transformation Rz)= z—l/e (witere A
— zie

is tite complex unit disc.) It is clear titat F~ T o O satisfies alí tite conditions
of tite lemma.m

Wc come now to the analogue of Corollary 1.4, for tite polydisc algebras
A”’(B(c9) and AÁR(c9). Note titat itere the situation is completely different
from tite situation in Section 1.

Theorem 2.2. (¡). R(A(B(c
0)))= 4,. In fact, given (a,) e 4,, Mere ¡s

FEA(B(cj) such that F(e,,) = a,for aY neNandsuch íhat I¡F1I=411(a,jJI,
<u). R(A~(B<q,j»)=c. In fact, given («3 EC, there is FEAL(B(cj) such th’bt

F(e,j=a,for al! nENand such ihat ¡[Fil =8¡J(«ji¡,.

Proof. (i). Without loss of generality, ¡¡(«311=1. Let us first suppose titat
a,=0for alí n. Write a,=r 2<;, witere each a, =0 or 1. Let 8 nc
a, = 1>, and let fl be the associated ‘function obtain’ed using Lemma 2.1. It is
ea’sy to see titat F~yy’ 2< E. is tite required function in titis case, and titat
¡¡Fil =¡¡(«911. Tite case of general «,s is treated by writing a,=p,—q,+ ¡u,— ¡y,.

(ji). Suppose fxrst that (a,)cc witit ¡¡(«911=1, and write eacit ct,=l±J3,
witere 1= ¡¡ni a_ As aboye, ifeacit 3, is expressed in binary series form, titen
eacit of tite associated sets S~ is finite. As a resuit, eacit F~ is inAJB(cj) by Lem-
ma 2.1 <u), so titat FEAdB(CO)). Tite required function is G~F+L

Finally, note that for any Fe A,ÁB(cj), F(x) can be approximated uni-
formly for ir E R(c0) by F,(x) = F(rx) for r sufficiently close to 1. Next, FQ’x) can
be uniformly approximated on tite unit balI of c0 by a finite Taylor series, say
ri,¡’5(x (where 1% is a constant). Next, it is well known (see, for example,
[15])titat any k-itomogeneous polynomial P~0n c0 can be uniformly approxi-
mated on B(c,) by an k-homogeneous polynomial Q~ witicit is a finite sum of
products of k continuous linear functionals on c0. Summarizing, we see titat
tite original function E can be uniformly approximated on B(c,) by ItOQ~.

Now, since, <e3—*0 weakly if follows that for eacit k= 1 M, Q~(e,,) —*0 as
n—*oo. Hence R(J1 e c, and tite proof is complete. u

It would be interesting to determine the best possible estimates in Tite-
orem 2.2. In [2], we note that in titis situation, the best estimate must be strictly
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larger titan 1. lo see titis, suppose titat there is FEAIB(c0)) sucit that ¡¡Fil =

and sucb íbat F(e,)=l,F(e, )=—l, and F(e)=Oforallj=3. Titen tite func-
tionf,(z)~F(1,z,0,...) would be in tite disc algebra A(ÉO, andf would attain
its maximum at 0. Hence, f1 would be a constant and, in particular,
1 =ft(1) = ~X 1,1,0,...). Similarly, tite funetion f,(z) F(z, 1,0,...) would be con-
stant, and so —1 =f,(1)=RI,1,0,...), a contradiction. In [2], tite authors find
necessary and sufficient conditions on tite sequence (xjGc, in order titat tite
mapping FE A”’(B(cj)—*(F(x3) E 4, be suuiective and satisfy tite following con-
dition: For eacit (a,) E 1,,, there iS FE A”(B(c0» such titat F(x,)= a, for eacit
n ~N and ¡IFi¡ =zsup4a»j.
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