Skip to main content
Log in

Modeling the Impact of Migration on Mosquito Population Suppression

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The Wolbachia-induced incompatible insect technique is a promising strategy for controlling wild mosquito populations. However, recent experimental studies have shown that mosquito migration into target areas dilutes the strategy’s effectiveness. In this work, we formulate a delay differential equation model to assess the impact of migration on mosquito population suppression. We identify that mosquito migration into an idealized target area makes it impossible to eliminate the target population completely. Our analysis identifies a lower bound of the suppression rate \(\gamma ^*\) for a given migration number, which reveals the possible maximum reduction of wild population size in the peak season. For a given suppression rate target \(\gamma _0>\gamma ^*\), we identify the permitted maximum migration number \(D(\gamma _0)\), above which is impossible to reduce the field mosquito density up to \((1-\gamma _0)\times 100\%\) in peak season. To reduce more than \(95\%\) of Aedes albopictus population during its peak season in Guangzhou within six weeks, the required minimum release number of Wolbachia-infected males climbs steeply as the migration number increases to D(0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Atkinson, M.P., Su, Z., Alphey, N., et al.: Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system. PNAS 104(22), 9540–9545 (2007)

    Article  Google Scholar 

  2. Baldacchino, F., Caputo, F., Drago, A., et al.: Control methods against invasive Aedes mosquitoes in Europe: a review. Pest Manag. Sci. 71, 1471–1485 (2015)

    Article  Google Scholar 

  3. Curtiss, D.R.: Recent extentions of Descartes’ rule of signs. Ann. Math. 19(4), 251–278 (1918)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dye, C.: Models for the population dynamics of the yellow fever mosquito, Aedes aegypti. J. Anim. Ecol. 53, 247–268 (1984)

    Article  Google Scholar 

  5. Freedman, H.I.: Deterministic Mathematical Models in Population Ecology, 2nd edn. HIFR Consulting LTD, Edmonton (1987)

    MATH  Google Scholar 

  6. Goff, G.L., Damiens, D., Ruttee, A.H., et al.: Field evaluation of seasonal trends in relative population sizes and dispersal pattern of Aedes albopictus males in support of the design of a sterile male release strategy. Paras. Vect. 12, 81 (2019)

    Article  Google Scholar 

  7. Harrington, L.C., Scott, T.W., Lerdthusnee, K., et al.: Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am. J. Trop. Med. Hyg. 72, 209–220 (2005)

    Article  Google Scholar 

  8. Hu, L., Huang, M., Tang, M., et al.: Wolbachia spread dynamics in stochastic environments. Theor. Popul. Biol. 106, 32–44 (2015)

    Article  MATH  Google Scholar 

  9. Hu, L., Tang, M., Wu, Z., et al.: The threshold infection level for Wolbachia invasion in random environments. J. Diff. Equ. 266, 4377–4393 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, M., Hu, L.: Modeling the suppression dynamics of Aedes mosquitoes with mating inhomogeneity. J. Biol. Dyn. 14(1), 656–678 (2020)

    Article  MathSciNet  Google Scholar 

  11. Huang, M., Tang, M., Yu, J.: Wolbachia infection dynamics by reaction–diffusion equations. Sci. China Math. 58, 77–96 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, M., Yu, J., Hu, L., Zheng, B.: Qualitative analysis for a Wolbachia infection model with diffusion. Sci. China Math. 59, 1249–1266 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, M., Lou, J., Hu, L., et al.: Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations. J. Theor. Biol. 440, 1–11 (2018)

    Article  MathSciNet  Google Scholar 

  14. Huang, M., Tang, M., Yu, J., Zheng, B.: The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppression. Math. Biosci. Eng. 16(5), 4741–4757 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, M., Tang, M., Yu, J., Zheng, B.: A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete Contin. Dyn. Syst. 40(6), 3467–3484 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hui, Y., Lin, G., Yu, J., Li, J.: A delayed differential equation model for mosquito population suppression with sterile mosquitoes. Discrete Contin. Dyn. Syst. B 25(12), 4659–4676 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Huxley, P.J., Murray, K.A., Pawar, S., Cator, L.J.: Competition and resource depletion shape the thermal response of population fitness in Aedes aegypti. Commun. Biol. 5, 66 (2022)

    Article  Google Scholar 

  18. Kyle, J.L., Harris, E.: Global spread and persistence of dengue. Annu. Rev. Microbiol. 62, 71–92 (2008)

    Article  Google Scholar 

  19. Li, Y., Kamara, F., Zhou, G., et al.: Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivor shop. PLoS Negl. Trop. Dis. 8(11), e3301 (2014)

    Article  Google Scholar 

  20. Li, D., Wan, H.: The threshold infection level for Wolbachia invasion in a two-sex mosquito population model. Bull. Math. Biol. 81, 2596–2624 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Q.: Dengue fever in China: new epidemical trend, challenges and strategies for prevention and control. Chin. J Vect. Biol. Control 31(1), 1–6 (2020)

    Google Scholar 

  22. Liu, Z., Zhang, Y., Yang, Y.: Population dynamics of Aedes (Stegomyia) albopictus (Skuse) under laboratory conditions. Acta Entomol. Sin. 28(3), 274–280 (1985)

    Google Scholar 

  23. Liu, F., Zhou, C., Lin, P.: Studies on the population ecology of Aedes albopictus 5. The seasonal abundance of natural population of Aedes albopictus in Guangzhou. Acta Sci. Nat. Universitatis Sunyatseni 29(2), 118–122 (1990)

    Google Scholar 

  24. Liu, F., Yao, C., Lin, P., Zhou, C.: Studies on life table of the natural population of Aedes albopictus. Acta Sci. Nat. Universitatis Sunyatseni 31(3), 84–93 (1992)

    Google Scholar 

  25. Parham, P.E., Michael, E.: Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118, 620–626 (2010)

    Article  Google Scholar 

  26. Smith, H.L.: An Introduction to Delay Differential Equations with Applications to the Life Sciences, vol. 57. Springer, New York (2011)

    MATH  Google Scholar 

  27. Trájer, A., Hammer, T., Kacsala, I., et al.: Decoupling of active and passive reasons for the invasion dynamics of Aedes albopictus Skuse (Diptera: Culicidae): comparisons of dispersal history in the Apennine and Florida peninsulas. J. Vect. Ecol. 42(2), 233–242 (2017)

    Article  Google Scholar 

  28. WHO (2012) Global Strategy for Dengue Prevention and Control 2012–2020, Aedes albopictus. World Health Organization

  29. Xi, Z., Khoo, C.C., Dobson, S.L.: Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310, 326–328 (2005)

    Article  Google Scholar 

  30. Yu, J.: Modeling mosquito population suppression based on delay differential equations. SIAM J. Appl. Math. 78(6), 3168–3187 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yu, J.: Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model. J. Differ. Equ. 269, 10395–10415 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yu, J., Li, J.: Global asymptotic stability in an interactive wild and sterile mosquito model. J. Differ. Equ. 269, 6193–6215 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yu, J., Li, J.: Dynamics of interactive wild and sterile mosquitoes with time delay. J. Biol. Dyn. 13(1), 606–620 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yu, J., Li, J.: A delay suppression model with sterile mosquitoes release period equal to wild larvae maturation period. J. Math. Biol. 84, 14 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, L., Tan, L., Hui, A., et al.: Laboratory and field studies on the oviposition pattern of Aedes albopictus. Acta Parasitol. Et. Med. Entomol. Sin. 16, 219–223 (2019)

    Google Scholar 

  36. Zhang, X., Tang, S., Cheke, R.A.: Birth-pulse models of Wolbachia-induced cytoplasmic incompatibility in mosquitoes for dengue virus control. Nonlinear Anal. Real World Appl. 22, 236–258 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zheng, B., Yu, J., Xi, Z., Tang, M.: The annual abundance of dengue and Zika vector Aedes albopictus and its stubbornness to suppression. Ecol. Model. 387, 38–48 (2018)

    Article  Google Scholar 

  38. Zheng, B., Yu, J., Li, J.: Modeling and analysis of the implemention of the Wolbachia incompatible and sterile insect technique for mosquito population suppression. SIAM J. Appl. Math. 81(2), 718–740 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zheng, B., Li, J., Yu, J.: Existence and stability of periodic solutions in a mosquito population suppression model with time delay. J. Differ. Equ. 315, 159–178 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zheng, X., Zhang, D., Li, Y., et al.: Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572, 56–61 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank four anonymous reviewers for valuable and precious comments on the manuscript. This work was supported by National Natural Science Foundation of China (12226414, 11471085, 11631005, 12171112).

Author information

Authors and Affiliations

Authors

Contributions

MH and JY wrote the main manuscript text and prepared figures 1–3. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jianshe Yu.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Yu, J. Modeling the Impact of Migration on Mosquito Population Suppression. Qual. Theory Dyn. Syst. 22, 134 (2023). https://doi.org/10.1007/s12346-023-00834-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00834-8

Keywords

Mathematics Subject Classification

Navigation