Skip to main content
Log in

Relative Controllability of Impulsive Linear Discrete Delay Systems

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper investigates relative controllability of impulsive linear discrete delay systems with constant coefficients and a pure delay. Grammian and rank criteria for relative controllability are respectively established by introducing an impulsive discrete delay Grammian matrix. Thereafter, the restricted relative controllability of impulsive linear discrete delay systems is studied. More precisely, when the terminal state locates in a special invariant linear subspace, Grammian and rank criteria for relative controllability are demonstrated and an expression of corresponding control function is constructed. Finally, an example is provided to illustrate theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalman, R.E.: On the general theory of control systems. In: Proceedings First International Conference on Automatic Control, Moscow, pp. 481–492 (1960)

  2. Khusainov, D.Y., Shuklin, G.V.: Relative controllability in systems with pure delay. Int. Appl. Mech. 41(2), 210–221 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Diblík, J., Khusainov, D.Y.: Representation of solutions of discrete delayed system \(x(k+1)=ax(k)+bx(k-m)+f(k)\) with commutative matrices. J. Math. Anal. Appl. 318(1), 63–76 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Diblík, J., Khusainov, D.Y.: Representation of solutions of linear discrete systems with constant coefficients and pure delay. Adv. Differ. Equ. 1–13, 2006b (2006)

    MathSciNet  MATH  Google Scholar 

  5. Diblík, J., Morávková, B.: Representation of solutions of linear discrete systems with constant coefficients, a single delay and with impulses. J. Appl. Math. 3(2), 45–52 (2010)

    Google Scholar 

  6. Morávková, B.: Representation of solutions of linear discrete systems with delay. Ph.D. thesis, Brno University of Technology, Brno, Czech Republic (2014)

  7. Pospíšil, M.: Representation of solutions of delayed difference equations with linear parts given by pairwise permutable matrices via z-transform. Appl. Math. Comput. 294, 180–194 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Diblík, J., Mencáková, K.: Representation of solutions to delayed linear discrete systems with constant coefficients and with second-order differences. Appl. Math. Lett. 105, 106309 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diblík, J.: Representation of solutions to delayed differential equations with a single delay by dominant and subdominant solutions. Appl. Math. Lett. 119, 107236 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Medved’, M., Pospíšil, M.: Sufficient conditions for the asymptotic stability of nonlinear multidelay differential equations with linear parts defined by pairwise permutable matrices. Nonlinear Anal. Theory Methods Appl. 75(7), 3348–3363 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Luo, Z., Wei, W., Wang, J.: Finite time stability of semilinear delay differential equations. Nonlinear Dyn. 89(1), 713–722 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. You, Z., Wang, J.: On the exponential stability of nonlinear delay systems with impulses. IMA J. Math. Control. Inf. 35(3), 773–803 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, X., Peng, D., Cao, J.: Lyapunov stability for impulsive systems via event-triggered impulsive control. IEEE Trans. Autom. Control 65(11), 4908–4913 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, X., Yang, X., Cao, J.: Event-triggered impulsive control for nonlinear delay systems. Automatica 117, 108981 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, X., Li, P.: Stability of time-delay systems with impulsive control involving stabilizing delays. Automatica 124, 109336 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, X., Li, P.: Input-to-state stability of nonlinear systems: event-triggered impulsive control. IEEE Trans. Autom. Control 67(3), 1460–1465 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stamova, I., Stamov, G.: On the stability of sets for reaction–diffusion Cohen–Grossberg delayed neural networks. Discrete Contin. Dyn. Syst. S 14(4), 1429–1446 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Martynyuk, A., Stamova, I.: Stability of sets of hybrid dynamical systems with aftereffect. Nonlinear Anal. Hybrid Syst. 32, 106–114 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, H., Kao, Y., Stamova, I., Shao, C.: Global asymptotic stability and \( {S}\)-asymptotic \(\omega \)-periodicity of impulsive non-autonomous fractional-order neural networks. Appl. Math. Comput. 410, 126459 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Wang, J., Luo, Z., Fečkan, M.: Relative controllability of semilinear delay differential systems with linear parts defined by permutable matrices. Eur. J. Control 38, 39–46 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pospíšil, M.: Relative controllability of neutral differential equations with a delay. SIAM J. Control Optim. 55(2), 835–855 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. You, Z., Wang, J., O’Regan, D., Zhou, Y.: Relative controllability of delay differential systems with impulses and linear parts defined by permutable matrices. Math. Methods Appl. Sci. 42(3), 954–968 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. You, Z., Fečkan, M., Wang, J., O’Regan, D.: Relative controllability of impulsive multi-delay differential systems. Nonlinear Anal. Model. Control 27(1), 70–90 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Diblík, J., Khusainov, D.Y., Růžičková, M.: Controllability of linear discrete systems with constant coefficients and pure delay. SIAM J. Control. Optim. 47(3), 1140–1149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Diblík, J., Fečkan, M., Pospíšil, M.: On the new control functions for linear discrete delay systems. SIAM J. Control Optim. 52(3), 1745–1760 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Diblík, J.: Relative and trajectory controllability of linear discrete systems with constant coefficients and a single delay. IEEE Trans. Autom. Control 64(5), 2158–2165 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Diblík, J., Mencáková, K.: A note on relative controllability of higher order linear delayed discrete systems. IEEE Trans. Autom. Control 65(12), 5472–5479 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed and agreed this revised manuscript.

Corresponding author

Correspondence to JinRong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by the National Natural Science Foundation of China (12161015), Guizhou Provincial Basic Research Program (Natural Science) [2023]034, and by the Slovak Grant Agency VEGA Nos. 1/0084/23 and 2/0127/20.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Fečkan, M. & Wang, J. Relative Controllability of Impulsive Linear Discrete Delay Systems. Qual. Theory Dyn. Syst. 22, 133 (2023). https://doi.org/10.1007/s12346-023-00831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00831-x

Keywords

Navigation