Skip to main content
Log in

Lie Group Analysis for a (2+1)-dimensional Generalized Modified Dispersive Water-Wave System for the Shallow Water Waves

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Shallow water waves refer to the waves with the bottom boundary affecting the movement of water quality points when the ratio of water depth to wavelength is small. Under investigation in this paper is a (2+1)-dimensional generalized modified dispersive water-wave (GMDWW) system for the shallow water waves. We obtain the Lie point symmetry generators and Lie symmetry groups for the GMDWW system via the Lie group method. Optimal system of the one-dimensional subalgebras is derived. According to that optimal system, we obtain certain symmetry reductions. Hyperbolic-function, trigonometric-function and rational solutions for the GMDWW system are derived via the polynomial expansion, Riccati equation expansion and \(\left( \frac{G^{'}}{G}\right) \) expansion methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cheng, C.D., Tian, B., Ma, Y.X., et al.: Pfaffian, breather and hybrid solutions for a (2+1)-dimensional generalized nonlinear system in fluid mechanics and plasma physics. Phys. Fluids 34, 115132 (2022)

    Google Scholar 

  2. Tamang, J., Saha, A.: Bifurcations of small-amplitude supernonlinear waves of the mKdV and modified Gardner equations in a three-component electron-ion plasma. Phys. Plasmas 27, 012105 (2020)

    Google Scholar 

  3. Moleleki, L.D., Simbanefayi, I., Khalique, C.M.: Symmetry solutions and conservation laws of a (3+1)-dimensional generalized KP-Boussinesq equation in fluid mechanics. Chin. J. Phys. 68, 940–949 (2020)

    MathSciNet  Google Scholar 

  4. Liu, R.X., Tian, B., Liu, L.C., et al.: Bilinear forms, N-soliton solutions and soliton interactions for a fourth-order dispersive nonlinear Schrödinger equation in condensed-matter physics and biophysics. Phys. B 413, 120–125 (2013)

    Google Scholar 

  5. Kayum, M.A., Ara, S., Osman, M.S., et al.: Onset of the broad-ranging general stable soliton solutions of nonlinear equations in physics and gas dynamics. Results Phys. 20, 103762 (2021)

    Google Scholar 

  6. Yang, D.Y., Tian, B., Tian, H.Y., et al.: Darboux transformation, localized waves and conservation laws for an M-coupled variable-coefficient nonlinear Schrödinger system in an inhomogeneous optical fiber. Chaos Solitons Fract. 156, 111719 (2022)

    MATH  Google Scholar 

  7. Khalique, C.M., Adeyemo, O.D.: Langrangian formulation and solitary wave solutions of a generalized Zakharov-Kuznetsov equation with dual power-law nonlinearity in physical sciences and engineering. J. Ocean Eng. Sci. (2023). https://doi.org/10.1016/j.joes.2021.12.001

    Article  Google Scholar 

  8. Adeyemo, O.D.: Applications of cnoidal and snoidal wave solutions via optimal system of subalgebras for a generalized extended (2+1)-D quantum Zakharov-Kuznetsov equation with power-law nonlinearity in oceanography and ocean engineering. J. Ocean Eng. Sci. (2023). https://doi.org/10.1016/j.joes.2022.04.012

    Article  Google Scholar 

  9. Wang, L., Gao, Y.T., Gai, X.L., et al.: Inelastic interactions and double Wronskian solutions for the Whitham-Broer-Kaup model in shallow water. Phys. Scr. 80, 065017 (2009)

    MATH  Google Scholar 

  10. Meng, D.X., Gao, Y.T., Wang, L., et al.: Elastic and inelastic interactions of solitons for a variable coefficient generalized dispersive water-wave system. Nonlinear Dyn. 69, 391–398 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Gao, X.T., Tian, B., Shen, Y., et al.: Considering the shallow water of a wide channel or an open sea through a generalized (2+1)-dimensional dispersive long-wave system. Qual. Theory Dyn. Syst. 21, 104 (2022)

    MathSciNet  MATH  Google Scholar 

  12. Lakestani, M., Manafian, J.: Application of the ITEM for the modified dispersive water-wave system. Opt. Quantum Electron. 49, 128 (2017)

    Google Scholar 

  13. Wang, P., Tian, B., Liu, W.J., et al.: Lax pair, Bäcklund transformation and multi-soliton solutions for the Boussinesq-Burgers equations from shallow water waves. Appl. Math. Comput. 218, 1726–1734 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Abloeitz, M.J.: Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons. Cambridge Univ. Press, Cambridge (2011)

    Google Scholar 

  15. Zdyrski, T., Feddersen, F.: Wind-induced changes to surface gravity wave shape in shallow water. J. Fluid Mech. 913, A27 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Liu, F.Y., Gao, Y.T., Yu, X., et al.: Wronskian, Gramian, Pfaffian and periodic-wave solutions for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves. Nonlinear Dyn. 108, 1599–1616 (2022)

    Google Scholar 

  17. Gao, X.T., Tian, B.: Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system. Appl. Math. Lett. 128, 107858 (2022)

    MathSciNet  MATH  Google Scholar 

  18. Cheng, C.D., Tian, B., Zhou, T.Y., et al.: Wronskian solutions and Pfaffianization for a (3+1)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili equation in a fluid or plasma. Phys. Fluids 35, 037101 (2023)

    Google Scholar 

  19. Gao, X.Y., Guo, Y.J., Shan, W.R.: Shallow-water investigations: Bilinear auto-Bäcklund transformations for a (3+1)-dimensional generalized nonlinear evolution system. Appl. Comput. Math. 22, 133–142 (2023)

    Google Scholar 

  20. Shen, Y., Tian, B., Cheng, C.D., et al.: Pfaffian solutions and nonlinear waves of a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics. Phys. Fluids 35, 025103 (2023)

    Google Scholar 

  21. Gao, X.T., Tian, B., Feng, C.H.: In oceanography, acoustics and hydrodynamics: investigations on an extended coupled (2+1)-dimensional Burgers system. Chin. J. Phys. 77, 2818–2824 (2022)

    MathSciNet  Google Scholar 

  22. Liu, F.Y., Gao, Y.T., Yu, X.: Rogue-wave, rational and semi-rational solutions for a generalized (3+1)-dimensional Yu-Toda-Sasa-Fukuyama equation in a two-layer fluid. Nonlinear Dyn. 111, 3713–3723 (2023)

    Google Scholar 

  23. Chakraverty, S., Karunakar, P., Karunakar, P., et al.: Homotopy perturbation method for predicting tsunami wave propagation with crisp and uncertain parameters. Int. J. Numer. Methods Heat Fluid Flow 31, 92–105 (2020)

  24. Shen, Y., Tian, B., Liu, S.H., et al.: Studies on certain bilinear form, N-soliton, higher-order breather, periodic-wave and hybrid solutions to a (3+1)-dimensional shallow water wave equation with time-dependent coefficients. Nonlinear Dyn. 108, 2447–2460 (2022)

    Google Scholar 

  25. Chakravarty, S., Kodama, Y.: Construction of KP solitons from wave patterns. J. Phys. A Math. Theor. 47, 025201 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Zabusky, N.J., Galvin, C.J.: Shallow-water waves, the Korteweg-deVries equation and solitons. J. Fluid Mech. 47, 811–824 (1971)

    Google Scholar 

  27. Wu, H.Y., Jiang, L.H.: Instruction on the construction of coherent structures based on variable separation solutions of (2+1)-dimensional nonlinear evolution equations in fluid mechanics. Nonlinear Dyn. 97, 403–412 (2019)

    MATH  Google Scholar 

  28. Dai, C.Q., Wang, Y.Y., Biswas, A.: Dynamics of dispersive long waves in fluids. Ocean Eng. 81, 77–88 (2014)

    Google Scholar 

  29. Tang, X.Y., Lou, S.Y., Zhang, Y.: Localized excitations in (2+1)-dimensional systems. Phys. Rev. E 66, 046601 (2002)

    MathSciNet  Google Scholar 

  30. Wang, M., Tian, B., Zhou, T.Y.: Darboux transformation, generalized Darboux transformation and vector breathers for a matrix Lakshmanan-Porsezian-Daniel equation in a Heisenberg ferromagnetic spin chain. Chaos Solitons Fract. 152, 111411 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Feng, L.L., Tian, S.F., Wang, X.B., et al.: Rogue waves, homoclinic breather waves and soliton waves for the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation. Appl. Math. Lett. 65, 90–97 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Zhou, T.Y., Tian, B., Chen, Y.Q., et al.: Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (2+1)-dimensional generalized Burgers system with the variable coefficients in a fluid. Nonlinear Dyn. 108, 2417–2428 (2022)

    Google Scholar 

  33. Gao, X.Y., Guo, Y.J., Shan, W.R.: Reflecting upon some electromagnetic waves in a ferromagnetic film via a variable-coefficient modified Kadomtsev-Petviashvili system. Appl. Math. Lett. 132, 108189 (2022)

    MathSciNet  MATH  Google Scholar 

  34. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev-Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 104, 1581–1594 (2021)

    Google Scholar 

  35. Wu, X.H., Gao, Y.T., Yu, X., et al.: Binary Darboux transformation, solitons, periodic waves and modulation instability for a nonlocal Lakshmanan-Porsezian-Daniel equation. Wave Motion 114, 103036 (2022)

    MathSciNet  MATH  Google Scholar 

  36. Zhou, T.Y., Tian, B.: Auto-Bäcklund transformations, Lax pair, bilinear forms and bright solitons for an extended (3+1)-dimensional nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 133, 108280 (2022)

    MATH  Google Scholar 

  37. Shen, Y., Tian, B., Zhou, T.Y., et al.: N-fold Darboux transformation and solitonic interactions for the Kraenkel-Manna-Merle system in a saturated ferromagnetic material. Nonlinear Dyn. 111, 2641–2649 (2023)

    Google Scholar 

  38. Wu, X.H., Gao, Y.T., Yu, X., et al.: Vector breathers, rogue and breather-rogue waves for a coupled mixed derivative nonlinear Schrödinger system in an optical fiber. Nonlinear Dyn. 111, 5641–5653 (2023)

    Google Scholar 

  39. Zhou, T.Y., Tian, B., Zhang, C.R., et al.: Auto-Bäcklund transformations, bilinear forms, multiple-soliton, quasi-soliton and hybrid solutions of a (3+1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in an electron-positron plasma. Eur. Phys. J. Plus 137, 912 (2022)

    Google Scholar 

  40. Yang, D.Y., Tian, B., Hu, C.C., et al.: The generalized Darboux transformation and higher-order rogue waves for a coupled nonlinear Schrödinger system with the four-wave mixing terms in a birefringent fiber. Eur. Phys. J. Plus 137, 1213 (2022)

    Google Scholar 

  41. Alam, M.N., Li, X.: Symbolic methods to construct a cusp, breathers, kink, rogue waves and some soliton waves solutions of nonlinear partial differential equations. Comput. Methods Differ. Equ. 8, 597–609 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Yue, C., Lu, D.C., Khater, M.M.A.: Abundant wave accurate analytical solutions of the fractional nonlinear Hirota-Satsuma-Shallow water wave equation. Fluids 6, 235 (2021)

    Google Scholar 

  43. Li, L.Q., Gao, Y.T., Yu, X., et al.: Gramian solutions and solitonic interactions of a (2+1)-dimensional Broer-Kaup-Kupershmidt system for the shallow water. Int. J. Numer. Methods Heat Fluid Flow 32, 2282–2295 (2022)

  44. Abd-el-Malek, M.B., Amin, A.M.: Lie group method for solving generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equations. Appl. Math. Comput. 224, 501–516 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Wu, X.H., Gao, Y.T., Yu, X., et al.: N-fold generalized Darboux transformation and soliton interactions for a three-wave resonant interaction system in a weakly nonlinear dispersive medium. Chaos Solitons Fract. 165, 112786 (2022)

    MathSciNet  MATH  Google Scholar 

  46. Yang, D.Y., Tian, B., Hu, C.C., et al.: Conservation laws and breather-to-soliton transition for a variable-coefficient modified Hirota equation in an inhomogeneous optical fiber. Wave. Random Complex (2023). https://doi.org/10.1080/17455030.2021.1983237

    Article  Google Scholar 

  47. Adeyemo, O.D., Zhang, L., Khalique, C.M.: Bifurcation theory, Lie group-invariant solutions of subalgebras and conservation laws of a generalized (2+1)-dimensional BK equation type II in plasma physics and fluid mechanics. Mathematics 10, 2391 (2022)

    Google Scholar 

  48. Adeyemo, O.D., Khalique, C.M., Gasimov, Y.S., et al.: Variational and nonvariational approaches with Lie algebra of a generalized (3+1)-dimensional nonlinear potential Yu-Toda-Sasa-Fukuyama equation in Engineering and Physics. Alex. Eng. J. 63, 17–43 (2023)

    Google Scholar 

  49. Adeyemo, O.D., Khalique, C.M.: Lie group classification of generalized variable coefficient Korteweg-de Vries equation with dual power-law nonlinearities with linear damping and dispersion in quantum field theory. Symmetry 14, 83 (2022)

    Google Scholar 

  50. Adeyemo, O.D., Khalique, C.M.: Dynamical soliton wave structures of one-dimensional Lie subalgebras via group-invariant solutions of a higher-dimensional soliton equation with various applications in ocean physics and mechatronics engineering. Commun. Appl. Math. Comput. 4, 1531–1582 (2022)

    MathSciNet  MATH  Google Scholar 

  51. Adeyemo, O.D., Zhang, L., Khalique, C.M.: Optimal solutions of Lie subalgebra, dynamical system, travelling wave solutions and conserved currents of (3+1)-dimensional generalized Zakharov-Kuznetsov equation type I. Eur. Phys. J. Plus 137, 954 (2022)

    Google Scholar 

  52. Adeyemo, O.D., Khalique, C.M.: Dynamics of soliton waves of group-invariant solutions through optimal system of an extended KP-like equation in higher dimensions with applications in medical sciences and mathematical physics. J. Geom. Phys. 177, 104502 (2022)

    MathSciNet  MATH  Google Scholar 

  53. Kumar, S., Rani, S.: Lie symmetry reductions and dynamics of soliton solutions of (2+1)-dimensional Pavlov equation. Pramana-J. Phys. 94, 116 (2020)

    Google Scholar 

  54. Kumar, S., Rani, S.: Symmetries of optimal system, various closed-form solutions, and propagation of different wave profiles for the Boussinesq-Burgers system in ocean waves. Phys. Fluids 34, 037109 (2022)

    Google Scholar 

  55. Kumar, S., Rani, S.: Study of exact analytical solutions and various wave profiles of a new extended (2+1)-dimensional Boussinesq equation using symmetry analysis. J. Ocean Eng. Sci. 7, 475–484 (2022)

    Google Scholar 

  56. Rani, S., Kumar, S., Kumar, R.: Invariance analysis for determining the closed-form solutions, optimal system, and various wave profiles for a (2+1)-dimensional weakly coupled B-Type Kadomtsev-Petviashvili equations. J. Ocean Eng. Sci. (2023). https://doi.org/10.1016/j.joes.2021.12.007

    Article  Google Scholar 

  57. Kumar, S., Rani, S.: Invariance analysis, optimal system, closed-form solutions and dynamical wave structures of a (2+1)-dimensional dissipative long wave system. Phys. Scr. 96, 125202 (2021)

    Google Scholar 

  58. Kumar, S., Rani, S., Mann, N.: Diverse analytical wave solutions and dynamical behaviors of the new (2+1)-dimensional Sakovich equation emerging in fluid dynamics. Eur. Phys. J. Plus 137, 1226 (2022)

    Google Scholar 

  59. Sahoo, S., Ray, S.S.: Lie symmetry analysis and exact solutions of (3+1) dimensional Yu-Toda-Sasa-Fukuyama equation in mathematical physics. Comput. Math. Appl. 73, 253–260 (2017)

    MathSciNet  MATH  Google Scholar 

  60. Hu, X., Li, Y., Chen, Y.: A direct algorithm of one-dimensional optimal system for the group invariant solutions. J. Math. Phys. 56, 053504 (2015)

    MathSciNet  MATH  Google Scholar 

  61. Ma, Z.Y., Fei, J.X., Du, X.Y.: Symmetry reduction of the (2+1)-dimensional modified dispersive water-wave system. Commun. Theor. Phys. 64, 127–132 (2015)

    MathSciNet  MATH  Google Scholar 

  62. Li, D.S., Zhang, H.Q.: New families of non-travelling wave solutions to the (2+1)-dimensional modified dispersive water-wave system. Chin. Phys. 13, 1377–1381 (2004)

    Google Scholar 

  63. Liang, J.F., Wang, X.: Consistent Riccati expansion for finding interaction solutions of (2+1)-dimensional modified dispersive water-wave system. Math. Meth. Appl. Sci. 42, 6131–6138 (2019)

    MathSciNet  MATH  Google Scholar 

  64. Ren, B., Ma, W.X., Yu, J.: Rational solutions and their interaction solutions of the (2+1)-dimensional modified dispersive water wave equation. Comput. Math. Appl. 77, 2086–2095 (2019)

    MathSciNet  MATH  Google Scholar 

  65. Gao, X.Y., Guo, Y.J., Shan, W.R.: Symbolically computing the shallow water via a (2+1)-dimensional generalized modified dispersive water-wave system: similarity reductions, scaling and hetero-Bäcklund transformations. Qual. Theory Dyn. Syst. 22, 17 (2023)

    MATH  Google Scholar 

  66. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, Berlin (1989)

    MATH  Google Scholar 

  67. Rui, W., Zhang, Y., Yang, F.: Group classification and conservation laws of a sixth-order thin film type equation. Nonlinear Anal. 43, 467–476 (2018)

    MathSciNet  MATH  Google Scholar 

  68. Albares, P., Conde, J.M., Estévez, P.G.: Spectral problem for a two-component nonlinear Schrödinger equation in (2+1) dimensions: singular manifold method and Lie point symmetries. Appl. Math. Comput. 355, 585–594 (2019)

    MathSciNet  MATH  Google Scholar 

  69. Liu, F.Y., Gao, Y.T.: Lie group analysis for a higher-order Boussinesq-Burgers system. Appl. Math. Lett. 132, 108094 (2022)

    MathSciNet  MATH  Google Scholar 

  70. Olver, P.J.: Application of Lie Group to Differential Equations. Springer, New York (2000)

    Google Scholar 

  71. Abdulwahhab, M.A.: Optimal system and exact solutions for the generalized system of 2-dimensional Burgers equations with infinite Reynolds number. Commun. Nonlinear Sci. Numer. Simul. 20, 98–112 (2015)

    MathSciNet  MATH  Google Scholar 

  72. Ayhan, B., Bekir, A.: The G’/G-expansion method for the nonlinear lattice equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3490–3498 (2012)

    MathSciNet  MATH  Google Scholar 

  73. Huang, W.H.: A polynomial expansion method and its application in the coupled Zakharov-Kuznetsov equations. Chaos Solitons Fract. 29, 365–371 (2006)

    MathSciNet  MATH  Google Scholar 

  74. Kong, L.Q., Dai, C.Q.: Some discussions about variable separation of nonlinear models using Riccati equation expansion method. Nonlinear Dyn. 81, 1553–1561 (2015)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the Editors, Reviewers and members of our discussion group for their valuable suggestions. This work has been supported by the National Natural Science Foundation of China under Grant No. 11772017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Tian Gao or Xin Yu.

Ethics declarations

Conflict of interest

No potential competing interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, FY., Gao, YT., Yu, X. et al. Lie Group Analysis for a (2+1)-dimensional Generalized Modified Dispersive Water-Wave System for the Shallow Water Waves. Qual. Theory Dyn. Syst. 22, 129 (2023). https://doi.org/10.1007/s12346-023-00792-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00792-1

Keywords

Navigation