Skip to main content
Log in

Normalized Ground States and Multiple Solutions for Nonautonomous Fractional Schrödinger Equations

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we consider the following fractional Schrödinger equations with prescribed \(L^2\)-norm constraint:

$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^s u=\lambda u+h(\varepsilon x)f(u)&{}\text{ in }\ \mathbb R^N, \\ \int _{\mathbb R^N}|u|^2dx=a^2,\\ \end{array} \right. \end{aligned}$$

where \(0<s<1\), \(N\ge 3\), \(a, \varepsilon >0\), \(h\in C(\mathbb {R}^{N},\mathbb {R^+})\) and \(f\in C(\mathbb {R},\mathbb {R})\). In the mass subcritical case but under general assumptions on f, we prove the multiplicity of normalized solutions to this problem. Specifically, we show that the number of normalized solutions is at least the number of global maximum points of h when \(\varepsilon \) is small enough. Before that, without any restrictions on \(\varepsilon \) and the number of global maximum points, the existence of normalized ground states can be determined. In this sense, by studying the relationship between \( h_0:=\inf _{x\in \mathbb {R}^{N}}h(x)\) and \(h_{\infty }:=\lim _{|x|\rightarrow \infty }h(x)\), we establish new results on the existence of normalized ground states for nonautonomous elliptic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Alves, C.: On existence of multiple normalized solutions to a class of elliptic problems in whole \({\mathbb{R} }^N\). Z. Angew. Math. Phys. 73, 97 (2022)

    Article  MATH  Google Scholar 

  2. Alves, C., Ji, C., Miyagaki, O.: Normalized solutions for a Schrödinger equation with critical growth in \({\mathbb{R} }^N\). Calc. Var. Partial Differ. Equ. 61, 18 (2022)

    Article  MATH  Google Scholar 

  3. Appolloni, L., Secchi, S.: Normalized solutions for the fractional NLS with mass supercritical nonlinearity. J. Differ. Equ. 286, 248–283 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Applebaum, D.: Lévy processes-from probability to finance and quantum groups. Not. Am. Math. Soc. 51, 1336–1347 (2004)

    MATH  Google Scholar 

  5. Bieganowski, B., Mederski, J.: Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth. J. Funct. Anal. 280, 108989 (2020)

    Article  MATH  Google Scholar 

  6. Boulenger, T., Himmelsbach, D., Lenzmann, E.: Blowup for fractional NLS. J. Funct. Anal. 271, 2569–2603 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Springer International Publishing, Switzerland (2016)

    Book  MATH  Google Scholar 

  9. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians: I. regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire. 31, 23-53 (2014)

  10. Cao, D., Noussair, E.: Multiplicity of positive and nodal solutions for nonlinear elliptic problem in \({\mathbb{R} }^N\). Ann. Inst. H. Poincaré Anal. Non Linéaire 13, 567–588 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, M., Tian, L., Wang, J., Zhang, F.: Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping potentials. Proc. Roy. Soc. Edinb. Sect. A 149, 617–653 (2019)

    Article  MATH  Google Scholar 

  12. Felmer, P., Quaas, A., Tan, J.: Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Proc. Roy. Soc. Edinb. Sect. A 142, 1237–1262 (2012)

    Article  MATH  Google Scholar 

  13. Guo, Z., Luo, S., Zou, W.: On critical systems involving fractional Laplacian. J. Math. Anal. Appl. 446, 681–706 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 27, 1633–1659 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jeanjean, L., Le, T.: Multiple normalized solutions for a Sobolev critical Schrödinger equation. Math. Ann. 384, 101–134 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, L., Teng, K., Yang, J., Chen, H.: Concentration behaviour of normalized ground states of the mass critical fractional Schrödinger equations with ring-shaped potentials. Proc. Roy. Soc. Edinb. Sect. A (2022). https://doi.org/10.1017/prm.2022.81

    Article  Google Scholar 

  17. Luo, H., Zhang, Z.: Normalized solutions to the fractional Schrödinger equations with combined nonlinearities. Calc. Var. Partial Differ. Equ. 59, 143 (2020)

    Article  MATH  Google Scholar 

  18. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences. New York Inc., Springer (1989)

    Book  MATH  Google Scholar 

  19. Molle, R., Riey, G., Verzini, G.: Normalized solutions to mass supercritical Schrödinger equations with negative potential. J. Differ. Equ. 333, 302–331 (2022)

    Article  MATH  Google Scholar 

  20. Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peng, S., Xia, A.: Normalized solutions of supercritical nonlinear fractional schrödinger equation with potential. Commun. Pure. Appl. Anal. 20, 3723–3744 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Pozrikidis, C.: The Fractional Laplacian. Taylor & Francis Group, LLC (2016)

  23. Servadei, R., Raffaella, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33, 2105–2137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 279, 6941–6987 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case. J. Funct. Anal. 279, 108610 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Valdinoci, E.: From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. 49, 33–44 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Willem, M.: Minimax Theorems Birkhäuser, Boston, (1996)

  28. Yang, J., Yang, J.: Normalized solutions and mass concentration for supercritical nonlinear Schrödinger equations. Sci. China Math. 65, 1383–1412 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yu, S., Tang, C., Zhang, Z.: Normalized solutions of mass subcritical fractional Schrödinger equations in exterior domains. J. Geom. Anal. 33, 162 (2023)

    Article  MATH  Google Scholar 

  30. Zhen, M., Zhang, B.: Normalized ground states for the critical fractional NLS equation with a perturbation. Rev. Mat. Complut. 35, 89–132 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, Z., Zhang, Z.: Normalized solutions of mass subcritical Schrödinger equations in exterior domains. NoDEA Nonlinear Differ. Equ. Appl. 29, 32 (2022)

    Article  MATH  Google Scholar 

  32. Zhang, P., Han, Z.: Normalized solutions to a kind of fractional Schrödinger equation with a critical nonlinearity. Z. Angew. Math. Phys. 73, 149 (2022)

    Article  MATH  Google Scholar 

  33. Zhu, X., Cao, D.: The concentration-compactness principle in nonlinear elliptic equations. Acta Math. Sci. 9, 307–328 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China [No.11971393].

Funding

Supported by National Natural Science Foundation of China [No.11971393].

Author information

Authors and Affiliations

Authors

Contributions

CY wrote the main manuscript text; SY provided the method of the second part; CT studied the feasibility and modified the paper format. All authors reviewed the manuscript.

Corresponding author

Correspondence to Chun-Lei Tang.

Ethics declarations

Conflict of interest

Authors state no competing interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by National Natural Science Foundation of China (No. 11971393).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Yu, SB. & Tang, CL. Normalized Ground States and Multiple Solutions for Nonautonomous Fractional Schrödinger Equations. Qual. Theory Dyn. Syst. 22, 128 (2023). https://doi.org/10.1007/s12346-023-00827-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00827-7

Keywords

Navigation