Skip to main content
Log in

New Analytic Solutions for Fluid Flow Equations in Higher Dimensions Around an Offshore Structure Describing Bidirectional Wave Surfaces

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Offshore structures are utilized in several fields, including marine engineering, the oil and gas industries, energy harvesting systems, transportation, aquaculture, and more. The exact solution of nonlinear evolution equations shows the various physical behavior of these equations. In this order, this article aims to examine the \((2+1)\) and \((3+1)\)-dimensional Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equations for the fluid flows around an offshore structure. The Paul–Painlevé approach method has been adopted for the first time to solve these nonlinear evolution equations analytically. By employing this method, abundant multiple exact solutions have been derived. All the obtained solutions are verified by using the software MATHEMATICA. All the results have been expressed by the 3D graphs. These graphs depict the solitary wave solutions in the form of singular, bright, dark and singular periodic-soliton solutions. By carefully selecting the parameters used in numerical simulation and physical explanations, we can demonstrate the importance of the findings. The obtained results depict the bidirectional wave surfaces around an offshore structure in fluid dynamics. It is suggested that the provided approach can be used to facilitate nonlinear dynamical models that can be used in a wide range of physical applications. We believe that many professionals in the field of nonlinear physics and engineering models will gain knowledge from this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singh, S., Saha Ray, S.: Painlevé analysis, auto-Bäcklund transformation and analytic solutions for modified KdV equation with variable coefficients describing dust acoustic solitary structures in magnetized dusty plasmas. Mod. Phys. Lett. B 35(30), 2150464 (2021)

    Google Scholar 

  2. Zahran, E.H., Bekir, A.: Enormous soliton solutions to a \((2+ 1)\)-dimensional Heisenberg ferromagnetic spin chain equation. Chin. J. Phys. 77, 1236–1252 (2022)

    MathSciNet  Google Scholar 

  3. Singh, S., Saha Ray, S.: New abundant analytic solutions for generalized KdV6 equation with time-dependent variable coefficients using Painlevé analysis and auto-Bäcklund transformation. Int. J. Geom. Methods Mod. Phys. 19(06), 2250086 (2022)

    Google Scholar 

  4. Zahran, E.H., Guner, O., Bekir, A.: Comparison between three distinct perceptions to the new solitary solutions of the generalized Hirota–Satsuma coupling KDV system. Mod. Phys. Lett. B 36(14), 2250068 (2022)

    MathSciNet  Google Scholar 

  5. Younas, U., Ren, J.: Construction of optical pulses and other solutions to optical fibers in absence of self-phase modulation. Int. J. Mod. Phys. B 36(32), 2250239 (2022)

    Google Scholar 

  6. Younas, U., Ren, J., Akinyemi, L., Rezazadeh, H.: On the multiple explicit exact solutions to the double-chain DNA dynamical system. Math. Methods Appl. Sci. 46(6), 6309–6323 (2023)

    MathSciNet  Google Scholar 

  7. Younas, U., Sulaiman, T.A., Ren, J.: On the study of optical soliton solutions to the three-component coupled nonlinear Schrödinger equation: applications in fiber optics. Opt. Quantum Electron. 55(1), 72 (2023)

    Google Scholar 

  8. Younas, U., Sulaiman, T.A., Ren, J.: Dynamics of optical pulses in fiber optics with stimulated Raman scattering effect. Int. J. Mod. Phys. B 37(08), 2350080 (2022)

    Google Scholar 

  9. Younas, U., Ren, J.: On the study of optical soliton molecules of Manakov model and stability analysis. Int. J. Mod. Phys. B 36(26), 2250180 (2022)

    Google Scholar 

  10. Al-Mamun, A., Ananna, S.N., Gharami, P.P., An, T., Asaduzzaman, M.: The improved modified extended tanh-function method to develop the exact travelling wave solutions of a family of 3D fractional WBBM equations. Results Phys. 41, 105969 (2022)

    Google Scholar 

  11. Al-Mamun, A., Ananna, S.N., An, T., Shahen, N.H.M., Asaduzzaman, M.: Dynamical behaviour of travelling wave solutions to the conformable time-fractional modified Liouville and mRLW equations in water wave mechanics. Heliyon 7(8), e07704 (2021)

    Google Scholar 

  12. Al-Mamun, A., Ananna, S.N., An, T., Asaduzzaman, M., Rana, M.S.: Sine-Gordon expansion method to construct the solitary wave solutions of a family of 3D fractional WBBM equations. Results Phys. 40, 105845 (2022)

    Google Scholar 

  13. Al-Mamun, A., Ananna, S.N., An, T., Asaduzzaman, M., Hasan, A.: Optical soliton analysis to a family of 3D WBBM equations with conformable derivative via a dynamical approach. Partial Differ. Equ. Appl. Math. 5, 100238 (2022)

    Google Scholar 

  14. Al-Mamun, A., Ananna, S.N., An, T., Shahen, N.H.M.: Periodic and solitary wave solutions to a family of new 3D fractional WBBM equations using the two-variable method. Partial Differ. Equ. Appl. Math. 3, 100033 (2021)

    Google Scholar 

  15. Al-Mamun, A., Shahen, N.H.M., Ananna, S.N., Asaduzzaman, M.: Solitary and periodic wave solutions to the family of new 3D fractional WBBM equations in mathematical physics. Heliyon 7(7), e07483 (2021)

    Google Scholar 

  16. Zaman, U.H.M., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Analyzing numerous travelling wave behavior to the fractional-order nonlinear Phi-4 and Allen–Cahn equations throughout a novel technique. Results Phys. 37, 105486 (2022)

    Google Scholar 

  17. Arefin, M.A., Sadiya, U., Inc, M., Uddin, M.H.: Adequate soliton solutions to the space-time fractional telegraph equation and modified third-order KdV equation through a reliable technique. Opt. Quantum Electron. 54(5), 309 (2022)

    Google Scholar 

  18. Arefin, M.A., Saeed, M.A., Akbar, M.A., Uddin, M.H.: Analytical behavior of weakly dispersive surface and internal waves in the ocean. J. Ocean Eng. Sci. 7(4), 305–312 (2022)

    Google Scholar 

  19. Arefin, M.A., Khatun, M.A., Uddin, M.H., İnç, M.: Investigation of adequate closed form travelling wave solution to the space-time fractional non-linear evolution equations. J. Ocean Eng. Sci. 7(3), 292–303 (2022)

    Google Scholar 

  20. Zaman, U.H.M., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Analytical behavior of soliton solutions to the couple type fractional-order nonlinear evolution equations utilizing a novel technique. Alex. Eng. J. 61(12), 11947–11958 (2022)

    Google Scholar 

  21. Sadiya, U., Inc, M., Arefin, M.A., Uddin, M.H.: Consistent travelling waves solutions to the non-linear time fractional Klein–Gordon and Sine–Gordon equations through extended tanh-function approach. J. Taibah Univ. Sci. 16(1), 594–607 (2022)

    Google Scholar 

  22. Xu, K.D., Guo, Y.J., Liu, Y., Deng, X., Chen, Q., Ma, Z.: 60-GHz compact dual-mode on-chip bandpass filter using GaAs technology. IEEE Electron Device Lett. 42(8), 1120–1123 (2021)

    Google Scholar 

  23. Feng, Y., Zhang, B., Liu, Y., Niu, Z., Fan, Y., Chen, X.: A D-band manifold triplexer with high isolation utilizing novel waveguide dual-mode filters. IEEE Trans. Terahertz Sci. Technol. 12(6), 678–681 (2022)

    Google Scholar 

  24. Yuan, Q., Kato, B., Fan, K., Wang, Y.: Phased array guided wave propagation in curved plates. Mech. Syst. Signal Process. 185, 109821 (2023)

    Google Scholar 

  25. Yuan, H., Yang, B.: System dynamics approach for evaluating the interconnection performance of cross-border transport infrastructure. J. Manag. Eng. 38(3), 04022008 (2022)

    Google Scholar 

  26. Chen, G., Chen, P., Huang, W., Zhai, J.: Continuance intention mechanism of middle school student users on online learning platform based on qualitative comparative analysis method. Math. Probl. Eng. 2022, 1–12 (2022)

    Google Scholar 

  27. Jiang, S., Zhao, C., Zhu, Y., Wang, C., Du, Y.: A practical and economical ultra-wideband base station placement approach for indoor autonomous driving systems. J. Adv. Transp. 2022, 3815306 (2022)

    Google Scholar 

  28. Feng, Q., Feng, Z., Su, X.: Design and simulation of human resource allocation model based on double-cycle neural network. Comput. Intell. Neurosci. 2021, 1–10 (2021)

    Google Scholar 

  29. Della Volpe, C., Siboni, S.: From van der Waals equation to acid-base theory of surfaces: a chemical-mathematical journey. Rev. Adhes. Adhes. 10(1), 47–97 (2022)

    Google Scholar 

  30. Xie, X., Wang, T., Zhang, W.: Existence of solutions for the \((p, q)\)-Laplacian equation with nonlocal Choquard reaction. Appl. Math. Lett. 135, 108418 (2023)

    MathSciNet  MATH  Google Scholar 

  31. Zhang, J., Xie, J., Shi, W., Huo, Y., Ren, Z., He, D.: Resonance and bifurcation of fractional quintic Mathieu–Duffing system. Chaos: an interdisciplinary. J. Nonlinear Sci. 33(2), 23131 (2023)

    Google Scholar 

  32. Malik, S., Almusawa, H., Kumar, S., Wazwaz, A.M., Osman, M.S.: A \((2+ 1)\)-dimensional Kadomtsev–Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions. Results Phys. 23, 104043 (2021)

    Google Scholar 

  33. Djennadi, S., Shawagfeh, N., Osman, M.S., Gómez-Aguilar, J.F., Arqub, O.A.: The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique. Phys. Scr. 96(9), 094006 (2021)

    Google Scholar 

  34. Kumar, S., Niwas, M., Osman, M.S., Abdou, M.A.: Abundant different types of exact soliton solution to the \((4+ 1)\)-dimensional Fokas and \((2+ 1)\)-dimensional breaking soliton equations. Commun. Theor. Phys. 73(10), 105007 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Ismael, H.F., Bulut, H., Park, C., Osman, M.S.: \(M\)-lump, \(N\)-soliton solutions, and the collision phenomena for the \((2+ 1)\)-dimensional Date–Jimbo–Kashiwara-Miwa equation. Results Phys. 19, 103329 (2020)

    Google Scholar 

  36. Tariq, K.U., Rezazadeh, H., Zubair, M., Osman, M.S., Akinyemi, L.: New exact and solitary wave solutions of nonlinear Schamel–KdV equation. Int. J. Appl. Comput. Math. 8(3), 114 (2022)

    MathSciNet  MATH  Google Scholar 

  37. Mia, R., Miah, M.M., Osman, M.S.: A new implementation of a novel analytical method for finding the analytical solutions of the \((2+ 1)\)-dimensional KP-BBM equation. Heliyon 9(5), e15690 (2023)

    Google Scholar 

  38. Akbar, M.A., Wazwaz, A.M., Mahmud, F., Baleanu, D., Roy, R., Barman, H.K., Mahmoud, W., Al Sharif, M.A., Osman, M.S.: Dynamical behavior of solitons of the perturbed nonlinear Schrödinger equation and microtubules through the generalized Kudryashov scheme. Results Phys. 43, 106079 (2022)

    Google Scholar 

  39. Saha Ray, S., Singh, S.: New various multisoliton kink-type solutions of the \((1+ 1)\)-dimensional Mikhailov–Novikov–Wang equation. Math. Methods Appl. Sci. 44(18), 14690–14702 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Xiao, Y., Fan, E., Liu, P.: Inverse scattering transform for the coupled modified Korteweg–de Vries equation with nonzero boundary conditions. J. Math. Anal. Appl. 504(2), 125567 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Saha Ray, S.: Painlevé analysis, group invariant analysis, similarity reduction, exact solutions, and conservation laws of Mikhailov–Novikov–Wang equation. Int. J. Geom. Methods Mod. Phys. 18(6), 2150094–3985 (2021)

    Google Scholar 

  42. Singh, S., Saha Ray, S.: Painlevé analysis, auto-Bäcklund transformation and new exact solutions of \((2+ 1)\) and \((3+ 1)\)-dimensional extended Sakovich equation with time dependent variable coefficients in ocean physics. J. Ocean Eng. Sci. 8(3), 246–262 (2023)

    Google Scholar 

  43. Zhou, T.Y., Tian, B., Chen, S.S., Wei, C.C., Chen, Y.Q.: Bäcklund transformations, Lax pair and solutions of a Sharma–Tasso–Olver–Burgers equation for the nonlinear dispersive waves. Mod. Phys. Lett. B 35(35), 2150421 (2021)

    Google Scholar 

  44. Singh, S., Saha Ray, S.: Painlevé integrability, auto-Bäcklund transformations, new abundant analytic solutions including multi-soliton solutions for time-dependent extended KdV8 equation in nonlinear physics. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.03.020

    Article  Google Scholar 

  45. Rabie, W.B., Ahmed, H.M.: Dynamical solitons and other solutions for nonlinear Biswas–Milovic equation with Kudryashov’s law by improved modified extended tanh-function method. Optik 245, 167665 (2021)

    Google Scholar 

  46. Albares, P., Esévez, P.G., Lejarreta, J.D.: Derivative non-linear Schrödinger equation: singular manifold method and lie symmetries. Appl. Math. Comput. 400, 126089 (2021)

    MATH  Google Scholar 

  47. Ravi, L.K., Saha Ray, S., Sahoo, S.: New exact solutions of coupled Boussinesq–Burgers equations by exp-function method. J. Ocean Eng. Sci. 2(1), 34–46 (2017)

    Google Scholar 

  48. Zafar, A., Rezazadeh, H., Reazzaq, W., Bekir, A.: The simplest equation approach for solving non-linear Tzitzeica type equations in non-linear optics. Mod. Phys. Lett. B 35(07), 2150132 (2021)

    MathSciNet  Google Scholar 

  49. Sahoo, S., Saha Ray, S., Abdou, M.A.: New exact solutions for time-fractional Kaup–Kupershmidt equation using improved \((G^{\prime }/G)\)-expansion and extended \((G^{\prime }/G)\)-expansion methods. Alex. Eng. J. 59(5), 3105–3110 (2020)

    Google Scholar 

  50. Painlevé, P.: Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme. Acta Math. 25(1), 1–85 (1902)

    MathSciNet  MATH  Google Scholar 

  51. Kudryashov, N.A.: The Painlevé approach for finding solitary wave solutions of nonlinear nonintegrable differential equations. Optik 183, 642–649 (2019)

    Google Scholar 

  52. Saha Ray, S., Singh, S.: New bright soliton solutions for Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equations and bidirectional propagation of water wave surface. Int. J. Mod. Phys. C 33(05), 2250069 (2021)

    MathSciNet  Google Scholar 

  53. Wazwaz, A.M.: Exact solutions of compact and noncompact structures for the KP-BBM equation. Appl. Math. Comput. 169(1), 700–712 (2005)

    MathSciNet  MATH  Google Scholar 

  54. Abdou, M.A.: Exact periodic wave solutions to some nonlinear evolution equations. Int. J. Nonlinear Sci. 6(2), 145–153 (2008)

    MathSciNet  MATH  Google Scholar 

  55. Wazwaz, A.M.: The extended tanh method for new compact and noncompact solutions for the KP-BBM and the ZK-BBM equations. Chaos Solit. Fractals. 38(5), 1505–1516 (2008)

    MathSciNet  MATH  Google Scholar 

  56. Yu, Y., Ma, H.C.: Explicit solutions of \((2+ 1)\)-dimensional nonlinear KP-BBM equation by using Exp-function method. Appl. Math. Comput. 217(4), 1391–1397 (2010)

    MathSciNet  MATH  Google Scholar 

  57. Song, M., Yang, C., Zhang, B.: Exact solitary wave solutions of the Kadomtsov–Petviashvili–Benjamin–Bona–Mahony equation. Appl. Math. Comput. 217(4), 1334–1339 (2010)

    MathSciNet  MATH  Google Scholar 

  58. Alam, M.N., Akbar, M.A.: Exact traveling wave solutions of the KP-BBM equation by using the new approach of generalized \((G^{\prime }/G)\)-expansion method. Springerplus 2(1), 1–7 (2013)

    Google Scholar 

  59. Adem, K.R., Khalique, C.M.: Exact solutions and conservation laws of a \((2+ 1)\)-dimensional nonlinear KP-BBM equation. Abstr. Appl. Anal. 2013, 791863 (2013)

    MathSciNet  MATH  Google Scholar 

  60. Khan, U., Irshad, A., Ahmed, N., Mohyud-Din, S.T.: Improved \(\tan \left(\frac{\phi (\xi )}{2}\right)\)-expansion method for \((2+ 1)\)-dimensional KP-BBM wave equation. Opt. Quantum Electron. 50(3), 1–22 (2018)

    Google Scholar 

  61. Manafian, J., Ilhan, O.A., Alizadeh, A.A.: Periodic wave solutions and stability analysis for the KP-BBM equation with abundant novel interaction solutions. Phys. Scr. 95(6), 065203 (2020)

    Google Scholar 

  62. Tanwar, D.V., Wazwaz, A.M.: Lie symmetries, optimal system and dynamics of exact solutions of \((2+ 1)\)-dimensional KP-BBM equation. Phys. Scr. 95(6), 065220 (2020)

    Google Scholar 

  63. Kumar, S., Kumar, D., Kharbanda, H.: Lie symmetry analysis, abundant exact solutions and dynamics of multisolitons to the \((2+ 1)\)-dimensional KP-BBM equation. Pramana 95(1), 1–19 (2021)

    Google Scholar 

  64. Ren, J., Ilhan, O.A., Bulut, H., Manafian, J.: Multiple rogue wave, dark, bright, and solitary wave solutions to the KP-BBM equation. J. Geom. Phys. 164, 104159 (2021)

    MathSciNet  MATH  Google Scholar 

  65. Tanwar, D.V., Ray, A.K., Chauhan, A.: Lie symmetries and dynamical behavior of soliton solutions of KP-BBM equation. Qual. Theory Dyn. Syst. 21(1), 1–14 (2022)

    MathSciNet  MATH  Google Scholar 

  66. Li, L.Q., Gao, Y.T., Yu, X., Liu, F.Y.: Lie group analysis, optimal system and analytic solutions of a \((3+ 1)\)-dimensional generalized Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equation for the fluid flow around an offshore structure. Eur. Phys. J. Plus 137(5), 1–11 (2022)

    Google Scholar 

  67. Liu, S.: Multiple rogue wave solutions for the \((3+ 1)\)-dimensional generalized Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equation. Chin. J. Phys. 68, 961–970 (2020)

    MathSciNet  Google Scholar 

  68. Xie, Y., Li, L.: Multiple-order breathers for a generalized \((3+ 1)\)-dimensional Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equation near the offshore structure. Math. Comput. Simul. 193, 19–31 (2022)

    MathSciNet  MATH  Google Scholar 

  69. Yin, Y., Tian, B., Wu, X.Y., Yin, H.M., Zhang, C.R.: Lump waves and breather waves for a \((3+ 1)\)-dimensional generalized Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equation for an offshore structure. Mod. Phys. Lett. B 32(10), 1850031 (2018)

    MathSciNet  Google Scholar 

  70. Tariq, K.U.H., Seadawy, A.R.: Soliton solutions of \((3+ 1)\)-dimensional Korteweg–de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water waves. J. King Saud Univ. Sci. 31(1), 8–13 (2019)

    Google Scholar 

  71. Bekir, A., Zahran, E.H.: Painlevé approach and its applications to get new exact solutions of three biological models instead of its numerical solutions. Int. J. Mod. Phys. B 34(29), 2050270 (2020)

    MATH  Google Scholar 

  72. Bekir, A., Shehata, M.S., Zahran, E.H.: Comparison between the exact solutions of three distinct shallow water equations using the Painlevé approach and its numerical solutions. Russ. J. Nonlinear Dyn. 16(3), 463–477 (2020)

    MathSciNet  MATH  Google Scholar 

  73. Bekir, A., Zahran, E.H.: Exact and numerical solutions for the nanosoliton of ionic waves propagating through microtubules in living cells. Pramana 95(4), 1–9 (2021)

    Google Scholar 

  74. Zahran, E.H., Bekir, A., Alotaibi, M.F., Omri, M., Ahmed, H.: New impressive behavior of the exact solutions to the Benjamin–Bona–Mahony–Burgers equation with dual power-law nonlinearity against its numerical solution. Results Phys. 29, 104730 (2021)

    Google Scholar 

  75. Bekir, A., Zahran, E.H.: New visions of the soliton solutions to the modified nonlinear Schrödinger equation. Optik 232, 166539 (2021)

    Google Scholar 

  76. Bekir, A., Zahran, E.H.: Optical soliton solutions of the thin-film ferro-electric materials equation according to the Painlevé approach. Opt. Quantum Electron. 53(2), 1–11 (2021)

    Google Scholar 

  77. Bekir, A., Zahran, E.H., Güner, Ö.: Soliton solutions of the \((3+ 1)\)-dimensional Yu–Toda–Sassa–Fukuyama equation by the new approach and its numerical solutions. Int. J. Mod. Phys. B 35(02), 2150025 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contribution in this mauscript.

Corresponding author

Correspondence to Santanu Saha Ray.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Saha Ray, S. New Analytic Solutions for Fluid Flow Equations in Higher Dimensions Around an Offshore Structure Describing Bidirectional Wave Surfaces. Qual. Theory Dyn. Syst. 22, 123 (2023). https://doi.org/10.1007/s12346-023-00823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00823-x

Keywords

Mathematics Subject Classification

Navigation