Skip to main content

Digital Education to Approach the Affective Domain in Mathematics Learning

  • Chapter
  • First Online:
Inclusive Digital Education

Abstract

The consideration of affective domain in the educational practices to favor students learning is gaining increased importance. This is manifested by the growing number of research on this facet carried out from different fields, particularly Mathematics Education. The results obtained, although modest, shed light on the positive effect of an affective approach to reduce school failure and early school leaving. We can think of this in general, from an inclusive perspective, but especially in the case of students at risk of exclusion. These students face socio-family situations, characterized by a lack of resources, among other things, that can affect their emotional state. This could accentuate the well-known digital gap and decrease their interest in learning, leading to an increasement of the risk of school dropout. This chapter illustrates the role that educational technology can play in increasing students’ interest in mathematics and mathematical learning. Particularly, we present the results of an out-school socio-educational program promoting the mathematical stimulus to adolescents at risk of social exclusion. The activities implemented in the program, which are based on the STEM methodology, develop mathematical content from an interdisciplinary perspective with the help of different technological resources. Robots, 3D printing, math apps for learning and software such as GeoGebra have been used, among others. This kind of programs can also help bridge the digital gap by providing spaces and times for disfavored students to learn how to use and become familiar with technology outside of school.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anwar, S., Bascou, N. A., Menekse, M., & Kardgar, A. (2019). A systematic review of studies on educational robotics. Journal of Pre-College Engineering Education Research, 9(2), 19–42.

    Article  Google Scholar 

  • Aryasa, K., Fabrianes, J. C., Irwan, A. M., Hasyrif, S. Y., Paulus, Y. T., & Irmayana, A. (2021). The use of game puzzle application for presenting arithmetic problems. In 2021 3rd international conference on cybernetics and intelligent system (ICORIS) (pp. 1–4). IEEE.

    Google Scholar 

  • Bellas, F., Salgado, M., Blanco, T. F., & Duro, R. J. (2019). Robotics in primary school: A realistic mathematics approach. In Smart learning with educational robotics (pp. 149–182). Springer.

    Chapter  Google Scholar 

  • Beltrán-Pellicer, P. (2017). Modelado e impresión 3D como recurso didáctico en el aprendizaje de la probabilidad [3D modelling and printing as a didactic tool in probability learning]. Revista Épsilon, 34(95), 99–106.

    Google Scholar 

  • Beltrán-Pellicer, P., & Rodríguez-Jaso, C. (2017). Modelado e impresión en 3D en la enseñanza de las matemáticas: un estudio exploratorio [3D Modelling and Printing in the Teaching of Mathematics: An exploratory study]. ReiDoCrea, 6, 16–28.

    Google Scholar 

  • Beltrán-Pellicer, P., & Godino, J. D. (2020). An onto-semiotic approach to the analysis of the affective domain in mathematics education. Cambridge Journal of Education, 50, 1–20.

    Article  Google Scholar 

  • Beltrán-Pellicer, P., & Muñoz-Escolano, J. M. (2021). Una experiencia formativa con BlocksCAD con futuros docentes de matemáticas en secundaria [A training experience using BlocksCAD with future high school teachers of mathematics]. Didacticae, 10, 71–90.

    Article  Google Scholar 

  • Bennison, G. M., & Bielinski, D. (2018). Identifying practices that promote engagement with mathematics among students from disadvantaged backgrounds. 154–161. https://research.usc.edu.au/discovery/fulldisplay/alma99451003002621/61USC_INST:ResearchRepository. Document Type: Published Version.

  • Blanco, T. F., & Ares-Méndez, I. (2021). Exploratory analysis of mathematical applications as a didactic resource. In L. Gómez Chova, A. López Martínez, & I. Candel Torres (Eds.), Proceeedings of 13th international conference on education and new learning technologies (pp. 11639–11645). EDULERAN.

    Google Scholar 

  • Blanco, T. F., & Fernández-López, A. (2021). Pilgrimage way to Santiago de Compostela through robotics and 3D printing in primary classroom. In L. Gómez Chova, A. López Martínez, & I. Candel Torres (Eds.), Proceeedings of 13th international conference on education and new learning technologies (pp. 11628–11633). EDULERAN.

    Google Scholar 

  • Blanco, T. F., Gorgal, A., Salgado, M., Salinas, M. J., Sequeiros, P. G., Rodríguez, D., Núñez, C., & Diego-Mantecón, J. M. (2018). Interdisciplinary activities for an inclusive mathematics education. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.), Proceedings of the 42nd conference of the international group for the psychology of mathematics education (Vol. 5, p. 208). PME.

    Google Scholar 

  • Blanco, T. F., Conde-Lago, J., & Diego-Mantecón, J. M. (2021). Creencias y emociones en el aprendizaje de las matemáticas en alumnado con dificultades afectivas y/o sociales [Beliefs and emotions on math learning in students with affective and/or social difficulties]. In P. D. Diago, D. F. Yáñez, M. T. González-Astudillo, & D. Carrillo (Eds.), Investigación en Educación Matemática XXIV (p. 641). SEIEM.

    Google Scholar 

  • Bouck, E. C., Chamberlain, C., & Park, J. (2017). Concrete and app-based manipulatives to support students with disabilities with subtraction. Education and Training in Autism and Developmental Disabilities, 52(3), 317–331.

    Google Scholar 

  • Bouck, E. C., Working, C., & Bone, E. (2018). Manipulative apps to support students with disabilities in mathematics. Intervention in School and Clinic, 53(3), 177–182.

    Article  Google Scholar 

  • Brad, A., & Tangney, B. (2017). Technology usage in mathematics education research – A systematic review of recent trends. Computers & Education, 114, 255–273.

    Article  Google Scholar 

  • Budhwar, K. (2017). The role of technology in education. International Journal of Engineering Applied Sciences and Technology, 2(8), 55–57.

    Google Scholar 

  • Cárdenas, M., Diego-Mantecón, J. M., & Blanco, T. F. (2020). Robotics as a tool for learning STEAM with students’ at risk of exclusion. In S. H. Paik, K. H. Cho, M. Ha, & Y. H. Kim (Eds.), Proceedings of international conference on the advancement of STEAM 2020: Borderless connectivity (pp. 125–126).

    Google Scholar 

  • Cueli, M., González-Castro, P., Álvarez, L., García, T., & González-Pienda, J. A. (2014). Variables afectivo-motivacionales y rendimiento en matemáticas: Un análisis bidireccional [Affective-motivational varibles and performance in mathematics: A bidirectional analysis]. Revista Mexicana de Psicología, 31(2), 153–163.

    Google Scholar 

  • Daniela, L. (Ed.). (2019). Smart learning with educational robotics. Using robots to scaffold learning outcomes. Springer.

    Google Scholar 

  • Daniela, L., Strods, R., & Alimisis, D. (2017). Analysis of robotics-based learning interventions for preventing school failure and early school leaving in gender context. In L. Gómez Chova, A. López Martínez, & I. Candel Torres (Eds.), EDULEARN17 proceedings (pp. 0810–0818). Published by IATED Academy, iated.org.

    Chapter  Google Scholar 

  • De Witte, K., & Rogge, N. (2014). Does ICT matter for effectiveness and efficiency in mathematics education? Computers & Education, 75, 173–184.

    Article  Google Scholar 

  • DeBellis, V. A., & Goldin, G. A. (2006). Affect and meta-affect in mathematical problem solving: A representational perspective. Educational Studies in Mathematics, 63, 131–147.

    Article  Google Scholar 

  • Diego-Mantecón, J. M., Arcera, O., Blanco, T. F., & Lavicza, Z. (2019). An engineering technology problem-solving approach for modifying student mathematics-related beliefs: Building a robot to solve a Rubik’s cube. International Journal for Technology in Mathematics Education, 26(2), 55–64.

    Google Scholar 

  • Dubé, A. K., Kacmaz, G., Wen, R., Alam, S. S., & Xu, C. (2020). Identifying quality educational apps: Lessons from ‘top’ mathematics apps in the Apple App store. Education and Information Technologies, 25(6), 5389–5404.

    Article  Google Scholar 

  • Ferraguti, F., Villani, V., Sabattini, L., & Bonfè, M. (2020). Human-friendly robotics 2019. Springer.

    Book  Google Scholar 

  • García, M. M., & Romero, I. M. (2009). The influence of new technologies on learning and attitudes in mathematics in secondary students. Electronical Journal of Research in Educational Psychology, 7(17), 369–396.

    Google Scholar 

  • García, M. M., Romero, I. M., & Gil, F. (2021). Efectos de trabajar con GeoGebra en el aula en la relación afecto-cognición [Effects of working with GeoGebra in the classroom on the affect-cognition relationship]. Enseñanza de las ciencias. Revista de investigación y experiencias didácticas, 39(3), 177–198.

    Article  Google Scholar 

  • Goldin, G. A. (2009). The affective domain and students’ mathematical inventiveness. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 181–194). Sense Publishers.

    Google Scholar 

  • Gómez-Chacón, I. M. (2000). Matemática emocional. Los afectos en el aprendizaje matemático. Narcea.

    Google Scholar 

  • Gómez-Chacón, I. M. (2011). Mathematics attitudes in computerized environments. In L. Bu & R. Schoen (Eds.), Model-Centered learning. Modeling and simulations for learning and instruction (Vol. 6, pp. 145–168). SensePublishers.

    Chapter  Google Scholar 

  • Gómez-Chacón, I.M., & Marbán, J.M. (2019). Afecto y conocimiento profesional docente en matemáticas [Affect and professional teaching knowledge in mathematics]. En E. Badillo, N. Climent, C. Fernández , M. T. González (Eds.), Investigación sobre el profesor de matemáticas: formación, práctica de aula, conocimiento y competencia profesional (pp. 397–416). Ediciones Universidad Salamanca.

    Google Scholar 

  • Gómez-Chacón, I. M., Romero, I. M., & García, M. M. (2016). Zig-zagging in geometrical reasoning in technological collaborative environments: A Mathematical Working Space-framed study concerning cognition and affect. ZDM, 48(6), 909–924.

    Article  Google Scholar 

  • Granberg, C., & Olsson, Y. (2015). ICT-supported problem solving and collaborative creative reasoning: Exploring linear functions using dynamic mathematics software. Journal of Mathematical Behavior, 37, 48–62.

    Article  Google Scholar 

  • Hannula, M. S. (2015). Emotions in problem solving. In S. Cho (Ed.), Selected regular lectures from the 12th international congress on mathematical education. Springer.

    Google Scholar 

  • Hansson, S. O. (2020). Technology and mathematics. Philosophy & Technology, 33, 117–139.

    Article  Google Scholar 

  • Hsu, Y. C., Ching, Y. H., Callahan, J., & Bullock, D. (2021). Enhancing STEM majors’ college trigonometry learning through collaborative mobile apps coding. TechTrends, 65(1), 26–37.

    Article  Google Scholar 

  • Ingram, N., Holmes, M., Linsell, C., Livy, S., McCormick, M., & Sullivan, P. (2020). Exploring an innovative approach to teaching mathematics through the use of challenging tasks: A New Zealand perspective. Journal for Research in Mathematics Education, 32, 497–522.

    Article  Google Scholar 

  • Kalloo, V., & Mohan, P. (2012). Correlating questionnaire data with actual usage data in a mobile learning study for high school mathematics. Electronic Journal of e-Learning, 10(1), 76–89.

    Google Scholar 

  • Kwon, H. (2017). Effects of 3D printing and design software on students’ interest, motivation, mathematical and technical skills. Journal of STEM Education, 18(4), 37–42.

    Google Scholar 

  • Lamana-Selva, M. T., & De la Peña, C. (2018). Rendimiento académico en matemáticas. Relación con creatividad y estilos de afrontamiento [Academic performance in mathematics. Relationship with creativity and coping styles]. Revista Mexicana de Investigación Educativa, 23(79), 1075–1092.

    Google Scholar 

  • Larkin, K., & Milford, T. (2018). Using cluster analysis to enhance student learning when using geometry mathematics apps. In Uses of technology in primary and secondary mathematics education (pp. 101–118). Springer.

    Chapter  Google Scholar 

  • Lieban, D., & Lavicza, Z. (2019). Dissecting a cube as a teaching strategy for enhancing students’ spatial reasoning: Combining physical and digital resources. In Bridges 2019 conference proceedings (pp. 319–326). Tessellations Publishing.

    Google Scholar 

  • Lomibao, L. S., Luna, C. A., & Namoco, R. A. (2016). The influence of mathematical communication on students’ mathematics performance and anxiety. American Journal of Educational Research, 4(5), 378–382.

    Google Scholar 

  • Maree, J. G., Fletcher, L., & Erasmus, P. (2013). The relationship between emotional intelligence, study orientation in mathematics and the mathematics achievement of the middle adolescent. Journal of Psychology in Africa, 23(2), 205–211.

    Article  Google Scholar 

  • McGahern, P., Bosch, F., & Poli, D. (2015). Enhancing learning using 3D printing: An alternative to traditional student project methods. The American Biology Teacher, 77(5), 376–377.

    Article  Google Scholar 

  • McLeod. (1992). Research on affect in mathematics education: A reconceptualization. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 575–598). Macmillan.

    Google Scholar 

  • Mosley, P., Ardito, G., & Scollins, L. (2016). Robotic cooperative learning promotes student STEM interest. American Journal of Engineering Education, 7(2), 117–128.

    Google Scholar 

  • Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2018). Educational apps from the android Google play for Greek Preschoolers: A systematic review. Computers and Education, 116, 139–160.

    Article  Google Scholar 

  • Radović, S., Marić, M., & Passey, D. (2019). Technology enhancing mathematics learning behaviours: Shifting learning goals from “producing the right answer” to “understanding how to address current and future mathematical challenges”. Education and Information Technologies, 24(1), 103–126.

    Article  Google Scholar 

  • Rodríguez-García, A., & Arias-Gago, A. R. (2022). Modelos didácticos en matemáticas: relación e influencia en el rendimiento académico [Teaching models in mathematics: Relationship and influence in the academic achievement]. Profesorado. Revista de Currículum y Formación del Profesorado, 26(1), 281–302.

    Article  Google Scholar 

  • Schukajlow, S., & Krug, A. (2014). Do multiple solutions matter? Prompting multiple solutions, interest, competence, and autonomy. Journal for Research in Mathematics Education, 45(4), 497–533.

    Article  Google Scholar 

  • Schukajlow, S., Rakoczy, K., & Pekrun, R. (2017). Emotions and motivation in mathematics education: Theoretical considerations and empirical contributions. ZDM Mathematics Education, 49, 307–322.

    Google Scholar 

  • Segerman, H. (2012). 3D printing for mathematical visualisation. The Mathematical Intelligencer, 34(4), 56–62.

    Article  Google Scholar 

  • Shankar, R., Ploger, D., Nemeth, A., & Hecht, S. A. (2013). Robotics: Enhancing pre-college mathematics learning with real-world examples. In Proceedings of 2013 ASEE Annual Conference & Exposition (pp. 1–17).

    Google Scholar 

  • Stergiopoulou, M., Karatrantou, A., & Panagiotakopoulos, C. (2017). Educational robotics and STEM education in primary education: A pilot study using the H&S electronic systems platform. In D. Alimisis, M. Moro, & E. Menegatti (Eds.), Educational robotics in the makers era. Edurobotics 2016 (Advances in intelligent systems and computing) (Vol. 560, pp. 88–103). Springer.

    Google Scholar 

  • Tangarife, D. (2018). La enseñanza de las matemáticas a personas con síndrome de Down utilizando dispositivos móviles [Teaching mathematics to people with down syndrome using mobile devices]. Revista electrónica de investigación educativa, 20(4), 144–153.

    Article  Google Scholar 

  • Vankúš, P. (2021). Influence of game-based learning in mathematics education on students’ affective domain: A systematic review. Mathematics, 9, 986.

    Article  Google Scholar 

  • Verzosa, D. M. B., de Las Peñas, M. L. A. N., Sarmiento, J. F., Aberin, M. A. Q., Tolentino, M. A. C., & Loyola, M. L. (2021). Using mobile technology to promote higher-order thinking skills in Elementary mathematics. In Proceedings of the 8th International Conference on Educational Technologies 2021, ICEduTech 2021 and 17th International Conference on Mobile Learning 2021, ML 2021 (pp. 19–26).

    Google Scholar 

  • Wassie, Y. A., & Zergaw, G. A. (2018). Capabilities and contributions of the dynamic math software, GeoGebra–A review. North American GeoGebra Journal, 7(1), 68–86.

    Google Scholar 

  • Wilkerson, J. B. (2021). Cultivating a productive-disposition toward mathematics by engaging in service-learning. Primus, 31, 869–882.

    Article  Google Scholar 

  • Yoganci, S. (2018). A study on the views of graduate students on the use of GeoGebra in mathematics teaching. European Journal of Education Studies, 4(8), 63–78.

    Google Scholar 

  • Zetriuslita, Z., Nofriyandi, N., & Istikomah, E. (2020). The effect of GeoGebra-assisted direct instruction on students’ self-efficacy and self-regulation. Infinity, 9(1), 41–48.

    Article  Google Scholar 

  • Zhang, L., Shang, J., Pelton, T., & Pelton, L. F. (2020). Supporting primary students’ learning of fraction conceptual knowledge through digital games. Journal of Computer Assisted Learning, 36(4), 540–548.

    Article  Google Scholar 

Download references

Acknowledgement

Funded by: FEDER/Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación/ _Proyecto EDU2017-84979-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa F. Blanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blanco, T.F., Gorgal-Romarís, A., Núñez-García, C., Sequeiros, P.G. (2022). Digital Education to Approach the Affective Domain in Mathematics Learning. In: Daniela, L. (eds) Inclusive Digital Education. Educational Communications and Technology: Issues and Innovations. Springer, Cham. https://doi.org/10.1007/978-3-031-14775-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14775-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14774-6

  • Online ISBN: 978-3-031-14775-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics