Skip to main content
Log in

Strong Resonance Bifurcations and State Feedback Control in a Discrete Prey-Predator Model with Harvesting Effect

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper investigates a discrete-time predator–prey model with predator harvesting. The stability analysis for different fixed points of the discretized model is shown briefly. In this study, different types of bifurcation and their normal forms are determined. As the prey harvesting and conversion rate of prey into predator are ecologically significant, the impact of theirs have been studied by choosing the bifurcation parameter. The system exhibits a sequence of bifurcations of codim-1 viz. Neimark–Sacker bifurcation and flip bifurcation (period-doubling) and codim-2 resonance bifurcation (1:2, 1:3 and 1:4) at a positive fixed point. For each bifurcation, by using the critical normal form coefficient method, various critical states are calculated under non-degeneracy conditions. Further, a detailed numerical simulation is presented for supporting the analytical findings. The bifurcation curves, phase plots and Maximum Lyapunov exponent (MLE) are drawn. The system exhibits a wide range of bifurcation, including periodic orbits, quasi-periodicity, resonance bifurcation and chaos. Moreover, it is shown that predator harvesting has a stabilizing effect on the dynamics of the model. The chaos that occurred in the system is reduced beyond the critical value of harvesting. The predator population goes extinct after crossing the threshold value of harvesting. This work reflects that the feasible upper bound of the harvesting rate for the species coexistence can be guaranteed. Further, a state feedback controller is employed to suppress the dense chaos in the discrete system. The control technique applied for codim-1 Neimark–Sacker bifurcation and codim-2 1:4 resonance bifurcation is instrumental to reduce the complexity in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this manuscript.

References

  1. Costantino, R., Cushing, J., Dennis, B., Desharnais, R.A.: Experimentally induced transitions in the dynamic behaviour of insect populations. Nature 375(6528), 227–230 (1995)

    Google Scholar 

  2. Cushing, J.M., Costantino, R.F., Dennis, B., Desharnais, R., Henson, S.M.: Chaos in Ecology: Experimental Nonlinear Dynamics, vol. 1. Elsevier (2003)

  3. Desharnais, R.A., Costantino, R., Cushing, J., Henson, S.M., Dennis, B.: Chaos and population control of insect outbreaks. Ecol. Lett. 4(3), 229–235 (2001)

    Google Scholar 

  4. Turchin, P.: A theoretical/empirical synthesis, mongraphs in population biology, complex population dynamics, MPB- vol. 35 (2003)

  5. Bazykin, A.D.: Nonlinear Dynamics of Interacting Populations. World Scientific (1998)

  6. Hastings, A., Powell, T.: Chaos in a three-species food chain. Ecology 72(3), 896–903 (1991)

    Google Scholar 

  7. Singh, A., Gakkhar, S.: Controlling chaos in a food chain model. Math. Comput. Simul. 115, 24–36 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Sabin, G.C., Summers, D.: Chaos in a periodically forced predator-prey ecosystem model. Math. Biosci. 113(1), 91–113 (1993)

    MATH  Google Scholar 

  9. Berezovskaya, F., Karev, G., Arditi, R.: Parametric analysis of the ratio-dependent predator-prey model. J. Math. Biol. 43(3), 221–246 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Sen, M., Banerjee, M., Morozov, A.: Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect. Ecol. Complex. 11, 12–27 (2012)

    Google Scholar 

  11. Wang, J., Shi, J., Wei, J.: Predator-prey system with strong Allee effect in prey. J. Math. Biol. 62(3), 291–331 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Morozov, A.Y., Banerjee, M., Petrovskii, S.V.: Long-term transients and complex dynamics of a stage-structured population with time delay and the Allee effect. J. Theor. Biol. 396, 116–124 (2016)

    MATH  Google Scholar 

  13. Lotka, A.J.: Elements of Physical Biology. Williams & Wilkins (1925)

  14. Volterra, V.: Variations and fluctuations in the number of individuals in cohabiting animal species 412, 432–433 (1926)

  15. Du, Y., Peng, R., Wang, M.: Effect of a protection zone in the diffusive Leslie predator-prey model. J. Differ. Equ. 246(10), 3932–3956 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Gakkhar, S., Singh, A.: Control of chaos due to additional predator in the Hastings–Powell food chain model. J. Math. Anal. Appl. 385(1), 423–438 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Huang, Jc., Xiao, D.M.: Analyses of bifurcations and stability in a predator-prey system with Holling type-IV functional response. Acta Math. Appl. Sin. 20(1), 167–178 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Huang, J., Gong, Y., Ruan, S.: Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete Contin. Dyn. Syst.-B 18(8), 2101 (2013)

    MathSciNet  MATH  Google Scholar 

  19. May, R.M.: The Theory of Chaotic Attractors, pp. 85–93. Springer (2004)

  20. Georgescu, P., Hsieh, Y.H.: Global dynamics of a predator-prey model with stage structure for the predator. SIAM J. Appl. Math. 67(5), 1379–1395 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Takeuchi, V.: Global Dynamical Properties of Lotka–Volterra Systems. World Scientific (1996)

  22. Chakraborty, K., Jana, S., Kar, T.K.: Global dynamics and bifurcation in a stage structured prey-predator fishery model with harvesting. Appl. Math. Comput. 218(18), 9271–9290 (2012)

    MathSciNet  MATH  Google Scholar 

  23. May, R.M., Oster, G.F.: Bifurcations and dynamic complexity in simple ecological models. Am. Nat. 110(974), 573–599 (1976)

    Google Scholar 

  24. Liz, E.: Local stability implies global stability in some one-dimensional discrete single-species models. Discrete Contin. Dyn. Syst.-B 7(1), 191 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Huang, J., Liu, S., Ruan, S., Xiao, D.: Bifurcations in a discrete predator-prey model with nonmonotonic functional response. J. Math. Anal. Appl. 464(1), 201–230 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Din, Q.: Complexity and chaos control in a discrete-time prey-predator model. Commun. Nonlinear Sci. Numer. Simul. 49, 113–134 (2017)

    MathSciNet  MATH  Google Scholar 

  27. He, Z., Lai, X.: Bifurcation and chaotic behavior of a discrete-time predator-prey system. Nonlinear Anal. Real World Appl. 12(1), 403–417 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Agiza, H., Elabbasy, E., El-Metwally, H., Elsadany, A.: Chaotic dynamics of a discrete prey-predator model with Holling type II. Nonlinear Anal. Real World Appl. 10(1), 116–129 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Smith, J.M.: Mathematical Ideas in Biology. CUP Archive (1968)

  30. Levine, S.H.: Discrete time modeling of ecosystems with applications in environmental enrichment. Math. Biosci. 24(3–4), 307–317 (1975)

    MATH  Google Scholar 

  31. Liu, X., Xiao, D.: Bifurcations in a discrete-time Lotka–Volterra predator-prey system. Discrete Contin. Dyn. Syst.-B 6(3), 559 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Hadeler, K., Gerstmann, I.: The discrete Rosenzweig model. Math. Biosci. 98(1), 49–72 (1990)

    MathSciNet  MATH  Google Scholar 

  33. Li, S., Zhang, W.: Bifurcations of a discrete prey-predator model with Holling type-II functional response. Discrete Contin. Dyn. Syst.-B 14(1), 159 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Singh, A., Deolia, P.: Dynamical analysis and chaos control in discrete-time prey-predator model. Commun. Nonlinear Sci. Numer. Simul. 90, 105–313 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Singh, A., Deolia, P.: Bifurcation and chaos in a discrete predator–prey model with Holling type–III functional response and harvesting effect. J. Biol. Syst. 29(2), 451–478 (2021)

  36. Xiao, D., Li, W., Han, M.: Dynamics in a ratio-dependent predator-prey model with predator harvesting. J. Math. Anal. Appl. 324(1), 14–29 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Din, Q.: Dynamics of a discrete Lotka–Volterra model. Adv. Differ. Equ. 2013(1), 1–13 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Kuznetsov, Y.A.: Elements of applied bifurcation theory. Appl. Math. Sci. 112, 591 (1998)

    MathSciNet  MATH  Google Scholar 

  39. Kuznetsov, Y.A., Meijer, H.G.: Numerical normal forms for CODIM 2 bifurcations of fixed points with at most two critical eigenvalues. SIAM J. Sci. Comput. 26(6), 1932–1954 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Yuan, L.G., Yang, Q.G.: Bifurcation, invariant curve and hybrid control in a discrete-time predator-prey system. Appl. Math. Model. 39(8), 2345–2362 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Alidousti, J., Eskandari, Z., Fardi, M., Asadipour, M.: Codimension two bifurcations of discrete Bonhoeffer–van der Pol oscillator model. Soft. Comput. 25(7), 5261–5276 (2021)

    MATH  Google Scholar 

  42. Eskandari, Z., Alidousti, J.: Stability and codimension 2 bifurcations of a discrete-time SIR model. J. Frankl. Inst. 357(15), 10937–10959 (2020)

    MathSciNet  MATH  Google Scholar 

  43. Eskandari, Z., Alidousti, J.: Generalized flip and strong resonances bifurcations of a predator-prey model. Int. J. Dyn. Control 9, 275–287 (2021)

    MathSciNet  Google Scholar 

  44. Ghaziani, R.K., Govaerts, W., Sonck, C.: Resonance and bifurcation in a discrete-time predator-prey system with Holling functional response. Nonlinear Anal. Real World Appl. 13(3), 1451–1465 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Naik, P.A., Eskandari, Z., Shahraki, H.E.: Flip and generalized flip bifurcations of a two-dimensional discrete-time chemical model. Math. Model. Numer. Simul. Appl. 1(2), 95–101 (2021)

    Google Scholar 

  46. Eskandari, Z., Avazzadeh, Z., Ghaziani, R.K.: Theoretical and numerical bifurcation analysis of a predator–prey system with ratio-dependence. Math. Sci. 1–12 (2023)

  47. Naik, P.A., Eskandari, Z., Yavuz, M., Zu, J.: Complex dynamics of a discrete-time Bazykin–Berezovskaya prey-predator model with a strong Allee effect. J. Comput. Appl. Math. 413, 114–401 (2022)

    MathSciNet  MATH  Google Scholar 

  48. Naik, P.A., Eskandari, Z., Avazzadeh, Z., Zu, J.: Multiple bifurcations of a discrete-time prey-predator model with mixed functional response. Int. J. Bifurc. Chaos 32(04), 2250050 (2022)

    MathSciNet  MATH  Google Scholar 

  49. Chen, G., Dong, X.: From Chaos to Order: Methodologies, Perspectives and Applications, vol. 24. World Scientific (1998)

  50. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170(6), 421–428 (1992)

    Google Scholar 

  51. Chen, G.: On some controllability conditions for chaotic dynamics control. Chaos, Solitons Fractals 8(9), 1461–1470 (1997)

    MathSciNet  Google Scholar 

  52. Ren, J., Yu, L.: Codimension-two bifurcation, chaos and control in a discrete-time information diffusion model. J. Nonlinear Sci. 26(6), 1895–1931 (2016)

    MathSciNet  MATH  Google Scholar 

  53. Luo, X.S., Chen, G., Wang, B.H., Fang, J.Q.: Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems. Chaos, Solitons Fractals 18(4), 775–783 (2003)

    MATH  Google Scholar 

  54. Yu, P., Chen, G.: Hopf bifurcation control using nonlinear feedback with polynomial functions. Int. J. Bifurc. Chaos 14(05), 1683–1704 (2004)

    MathSciNet  MATH  Google Scholar 

  55. Chakraborty, K.: Ecological complexity and feedback control in a prey-predator system with Holling type-III functional response. Complexity 21(5), 346–360 (2016)

    MathSciNet  Google Scholar 

  56. Din, Q.: Bifurcation analysis and chaos control in discrete-time glycolysis models. J. Math. Chem. 56(3), 904–931 (2018)

    MathSciNet  MATH  Google Scholar 

  57. Zhang, L., Zou, L.: Bifurcations and control in a discrete predator-prey model with strong Allee effect. Int. J. Bifurc. Chaos 28(05), 1850062 (2018)

    MathSciNet  MATH  Google Scholar 

  58. Chen, F., Ma, Z., Zhang, H.: Global asymptotical stability of the positive equilibrium of the Lotka–Volterra prey-predator model incorporating a constant number of prey refuges. Nonlinear Anal. Real World Appl. 13(6), 2790–2793 (2012)

    MathSciNet  MATH  Google Scholar 

  59. López-Gómez, J., Ortega, R., Tineo, A.: The periodic predator-prey Lotka–Volterra model. Adv. Differ. Equ. 1(3), 403–423 (1996)

    MathSciNet  MATH  Google Scholar 

  60. MacDonald, N.: Time delay in prey-predator models. Math. Biosci. 28(3–4), 321–330 (1976)

    MathSciNet  MATH  Google Scholar 

  61. Deng, H., Chen, F., Zhu, Z., Li, Z.: Dynamic behaviors of Lotka–Volterra predator-prey model incorporating predator cannibalism. Adv. Differ. Equ. 2019(1), 1–17 (2019)

    MathSciNet  MATH  Google Scholar 

  62. Ma, Z.: The research of predator-prey models incorporating prey refuges. Ph. D. Thesis, Lanzhou University, China (2010)

  63. De Oca, F.M., Vivas, M.: Extinction in a two dimensional Lotka–Volterra system with infinite delay. Nonlinear Anal. Real World Appl. 7(5), 1042–1047 (2006)

    MathSciNet  MATH  Google Scholar 

  64. Tang, S., Chen, L.: The periodic predator-prey Lotka–Volterra model with impulsive effect. J. Mech. Med. Biol. 2(03n04), 267–296 (2002)

    Google Scholar 

  65. Guan, X., Liu, Y., Xie, X.: Stability analysis of a Lotka-Volterra type predator-prey system with allee effect on the predator species. Commun. Math. Biol. Neurosci. 2018, Article–ID–9 (2018)

  66. Clark, C.W.: Mathematical models in the economics of renewable resources. SIAM Rev. 21(1), 81–99 (1979)

    MathSciNet  MATH  Google Scholar 

  67. Beddington, J.R., Cooke, J.: Harvesting from a prey-predator complex. Ecol. Model. 14(3–4), 155–177 (1982)

    Google Scholar 

  68. Brauer, F., Soudack, A.: Stability regions in predator-prey systems with constant-rate prey harvesting. J. Math. Biol. 8(1), 55–71 (1979)

    MathSciNet  MATH  Google Scholar 

  69. Leard, B., Lewis, C., Rebaza, J.: Dynamics of ratio-dependent predator-prey models with nonconstant harvesting. Discrete Contin. Dyn. Syst.-S 1(2), 303 (2008)

    MathSciNet  MATH  Google Scholar 

  70. Singh, A., Malik, P.: Bifurcations in a modified leslie–gower predator–prey discrete model with michaelis–menten prey harvesting. J. Appl. Math. Comput. 67, 1–32 (2021)

  71. Nie, L., Teng, Z., Hu, L., Peng, J.: The dynamics of a Lotka–Volterra predator-prey model with state dependent impulsive harvest for predator. Biosystems 98(2), 67–72 (2009)

    Google Scholar 

  72. Martin, A., Ruan, S.: Predator-prey models with delay and prey harvesting. J. Math. Biol. 43(3), 247–267 (2001)

    MathSciNet  MATH  Google Scholar 

  73. Xiao, D., Ruan, S.: Bogdanov–Takens bifurcations in predator-prey systems with constant rate harvesting. Fields Inst. Commun. 21, 493–506 (1999)

    MathSciNet  MATH  Google Scholar 

  74. Gupta, R., Chandra, P., Banerjee, M.: Dynamical complexity of a prey-predator model with nonlinear predator harvesting. Discrete Contin. Dyn. Syst.-B 20(2), 423 (2015)

    MathSciNet  MATH  Google Scholar 

  75. Hu, D., Cao, H.: Bifurcation and chaos in a discrete-time predator-prey system of Holling and Leslie type. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 702–715 (2015)

    MathSciNet  MATH  Google Scholar 

  76. Hu, D., Cao, H.: Stability and bifurcation analysis in a predator-prey system with Michaelis–Menten type predator harvesting. Nonlinear Anal. Real World Appl. 33, 58–82 (2017)

    MathSciNet  MATH  Google Scholar 

  77. Singh, A., Sharma, V.S.: Codimension-2 bifurcation in a discrete predator–prey system with constant yield predator harvesting. Int. J. Biomath. 16(05), 1–27 (2022)

  78. Doust, M.R.: The efficiency of harvested factor; Lotka–Volterra predator-prey model. Caspian J. Math. Sci. (CJMS) Peer 4(1), 51–59 (2015)

  79. Ak GÖzlem, G., Feckan, M.: Stability, Neimark–Sacker bifurcation and chaos control for a prey-predator system with harvesting effect on predator. Miskolc Math. Notes 22(2), 663–679 (2021)

  80. Elaydi, S.N.: Discrete Chaos: With Applications in Science and Engineering. Chapman and Hall/CRC (2007)

  81. Din, Q.: Stability, bifurcation analysis and chaos control for a predator-prey system. J. Vib. Control 25(3), 612–626 (2019)

    MathSciNet  Google Scholar 

  82. Fan, M., Wang, K.: Periodic solutions of a discrete-time nonautonomous ratio-dependent predator-prey system. Math. Comput. Model. 35(9–10), 951–961 (2002)

    MathSciNet  MATH  Google Scholar 

  83. Govaerts, W., Ghaziani, R.K., Kuznetsov, Y.A., Meijer, H.G.: Numerical methods for two-parameter local bifurcation analysis of maps. SIAM J. Sci. Comput. 29(6), 2644–2667 (2007)

    MathSciNet  MATH  Google Scholar 

  84. Din, Q., Zulfiqar, M.A.: Qualitative behavior of a discrete predator-prey system under fear effects. Ze. Naturforsch. A 77(11), 1023–1043 (2022)

    Google Scholar 

  85. Singh, A., Sharma, V.S.: Bifurcations and chaos control in a discrete-time prey-predator model with Holling type-II functional response and prey refuge. J. Comput. Appl. Math. 418, 114–666 (2023)

    MathSciNet  MATH  Google Scholar 

  86. Sáez, E., González-Olivares, E.: Dynamics of a predator-prey model. SIAM J. Appl. Math. 59(5), 1867–1878 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The work of Anuraj Singh is supported by a Core Research Grant, Science Engineering Research Board, Govt. of India (CRG/2021/006380). The work of Vijay Shankar Sharma is supported by the University Grant Commission (UGC), Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

Equal contribution by all authors.

Corresponding author

Correspondence to Anuraj Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

We hereby give our consent to participate.

Consent to publish

We hereby give our consent for the publication of our paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

$$\begin{aligned} c_{R3}&=\dfrac{c_{R31}}{c_{R32}},\\ c_{R31}&=\gamma ^2 (-18 i h^6+6 i \gamma h^6+6 \gamma \sqrt{3} h^6-6 \sqrt{3} h^6-93 i h^5+12 i \gamma h^5-108 i \delta h^5\\&\quad +\,36 i \gamma \delta h^5-36 \sqrt{3} \delta h^5+18 \gamma \sqrt{3} h^5+36 \gamma \delta \sqrt{3} h^5-39 \sqrt{3} h^5+6 i \gamma ^2 h^4\\&\quad -\,2 \sqrt{3} \gamma ^2 h^4-270 i \delta ^2 h^4+90 i \gamma \delta ^2 h^4-90 \sqrt{3} \delta ^2 h^4-201 i h^4-12 i \gamma h^4\\&\quad -\,465 i \delta h^4+60 i \gamma \delta h^4-195 \sqrt{3} \delta h^4+90 \gamma \delta ^2 \sqrt{3} h^4+32 \gamma \sqrt{3} h^4\\&\quad +\,90 \gamma \delta \sqrt{3} h^4-57 \sqrt{3} h^4-i \gamma ^3 h^3-360 i \delta ^3 h^3+120 i \gamma \delta ^3 h^3-120 \sqrt{3} \delta ^3 h^3\\&\quad +\,34 i \gamma ^2 h^3-2 \sqrt{3} \gamma ^2 h^3-930 i \delta ^2 h^3+120 i \gamma \delta ^2 h^3-390 \sqrt{3} \delta ^2 h^3-207 i h^3\\&\quad +\,9 i \gamma h^3+24 i \gamma ^2 \delta h^3-8 \sqrt{3} \gamma ^2 \delta h^3-804 i \delta h^3-48 i \gamma \delta h^3-228 \sqrt{3} \delta h^3\\&\quad +\,\gamma ^3 \sqrt{3} h^3+120 \gamma \delta ^3 \sqrt{3} h^3+180 \gamma \delta ^2 \sqrt{3} h^3+35 \gamma \sqrt{3} h^3+128 \gamma \delta \sqrt{3} h^3\\&\quad +\,51 \sqrt{3} h^3-270 i \delta ^4 h^2+90 i \gamma \delta ^4 h^2-90 \sqrt{3} \delta ^4 h^2-930 i \delta ^3 h^2+120 i \gamma \delta ^3 h^2\\&\quad -\,390 \sqrt{3} \delta ^3 h^2+28 i \gamma ^2 h^2+36 i \gamma ^2 \delta ^2 h^2-12 \sqrt{3} \gamma ^2 \delta ^2 h^2-1206 i \delta ^2 h^2\\&\quad -\,72 i \gamma \delta ^2 h^2-342- \sqrt{3} \delta ^2 h^2-75 i h^2+72 i \gamma h^2-3 i \gamma ^3 \delta h^2+102 i \gamma ^2 \delta h^2\\&\quad -\,6 \sqrt{3} \gamma ^2 \delta h^2-621 i \delta h^2+27 i \gamma \delta h^2+90 \gamma \delta ^4 \sqrt{3} h^2+180 \gamma \delta ^3 \sqrt{3} h^2\\&\quad +\,192 \gamma \delta ^2 \sqrt{3} h^2+16 \gamma \sqrt{3} h^2+3 \gamma ^3 \delta \sqrt{3} h^2+105 \gamma \delta \sqrt{3} h^2+153 \delta \sqrt{3} h^2\\&\quad +\,195 \sqrt{3} h^2-108 i \delta ^5 h+36 i \gamma \delta ^5 h-36 \sqrt{3} \delta ^5 h-465 i \delta ^4 h+60 i \gamma \delta ^4 h\\&\quad -\,195 \sqrt{3} \delta ^4 h+24 i \gamma ^2 \delta ^3 h-8 \sqrt{3} \gamma ^2 \delta ^3 h-804 i \delta ^3 h-48 i \gamma \delta ^3 h-228 \sqrt{3} \delta ^3 h\\&\quad -\,3 i \gamma ^3 \delta ^2 h+102 i \gamma ^2 \delta ^2 h-6 \sqrt{3} \gamma ^2 \delta ^2 h-621 i \delta ^2 h+27 i \gamma \delta ^2 h+24 i h\\&\quad +\,45 i \gamma h+56 i \gamma ^2 \delta h-150 i \delta h+144 i \gamma \delta h+36 \gamma \delta ^5 \sqrt{3} h+90 \gamma \delta ^4 \sqrt{3} h\\&\quad +\,128 \gamma \delta ^3 \sqrt{3} h+3 \gamma ^3 \delta ^2 \sqrt{3} h+105 \gamma \delta ^2 \sqrt{3} h+153 \delta ^2 \sqrt{3} h+\gamma \sqrt{3} h\\&\quad +\,32 \gamma \delta \sqrt{3} h+390 \delta \sqrt{3} h+168 \sqrt{3} h-18 i \delta ^6+6 i \gamma \delta ^6-6 \sqrt{3} \delta ^6-93 i \delta ^5\\&\quad +\,12 i \gamma \delta ^5-39 \sqrt{3} \delta ^5+6 i \gamma ^2 \delta ^4-2 \sqrt{3} \gamma ^2 \delta ^4-201 i \delta ^4-12 i \gamma \delta ^4-57 \sqrt{3} \delta ^4\\&\quad -\,i \gamma ^3 \delta ^3+34 i \gamma ^2 \delta ^3-2 \sqrt{3} \gamma ^2 \delta ^3-207 i \delta ^3+9 i \gamma \delta ^3+28 i \gamma ^2 \delta ^2-75 i \delta ^2\\&\quad +\,72 i \gamma \delta ^2+18 i+24 i \delta +45 i \gamma \delta +6 \gamma \delta ^6 \sqrt{3}+18 \gamma \delta ^5 \sqrt{3}+32 \gamma \delta ^4 \sqrt{3}\\&\quad +\,\gamma ^3 \delta ^3 \sqrt{3}+35 \gamma \delta ^3 \sqrt{3}+51 \delta ^3 \sqrt{3}+16 \gamma \delta ^2 \sqrt{3}+195 \delta ^2 \sqrt{3}+\gamma \delta \sqrt{3}\\&\quad +\,168 \delta \sqrt{3}+48 \sqrt{3}).\\ c_{R32}&=12 \left( \sqrt{3}-3 i\right) (\delta +h+1)^3. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V.S., Singh, A. Strong Resonance Bifurcations and State Feedback Control in a Discrete Prey-Predator Model with Harvesting Effect. Qual. Theory Dyn. Syst. 22, 109 (2023). https://doi.org/10.1007/s12346-023-00805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00805-z

Keywords

Navigation