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Abstract 

The papers deals with estimation of missing observations in possibly 
nonstationary ARIMA models. First, the model is assumed known, and the 
structure of the interpolation filter is analysed. Using the inverse or dual 
autocorrelation function it is seen how estimation of a missing observation is 
analogous to the removal of an outlier effect; both problems are closely 
related with the signal plus noise decomposition of the series. 

The results are extended to cover, first, the case of a missing 
observation near the two extemes of the series; then to the case of a sequence 
of missing observations, and finally to the general case of any number of 
sequences of any length of missing observations. The optimal estimator can 
always be expressed, in a compact way, in terms of the dual autoco'i'relation 
function or a truncation thereof; its mean squared error is equal to the 
inverse of the (appropriately chosen) dual autocovariance matrix. 

The last part of the paper illustrates a point of applied interest: When 
the model is unknown, the additive outlier approach may provide a convenient 
and efficient alternative to the standard Kalman filter-fixed point smoother 
approach for missing observations estimation. 





1 Introduction 

In this paper we deal with interpolation of missing observations in time series that 
are the outcome of Autoregressive Integrated Moving Average (ARIMA) processes. 
For a stationary time series, the problem of interpolating missing values given an 
infinite realization of the (known) stochastic process was solved by Kolmogorow and 
Wiener [see, for example, Grenander and Rosenblatt (1957), or Whittle (1963)]. The 
interpolator is obtained as the expected value of the missing observation given the 
observed infinite realization of the series. For many years, however, their result was 
not extended to the more general problem of interpolation in a finite realization of 
a (possibly) nonstationary time series, generated by a model with unknown param­
eters. A first step connecting the classical result on interpolation with estimation of 
missing values in nonstationary series with unknown model parameters is found in 
Brubaciler and Wilson (1976). In their approach, the unobserved values are treated 
as unknown parameters, and are estimated. by a least squares method. The missing 
observation estimator obtained. can be interpreted as a symmetric weighted combi­
nation of the observed data before and after the gap, where the symmetric weights 
are the elements of the Inverse or Dual Autocorrelation Function DACF of the pro­
cess, a function introduced in Cleveland (1972). The authors also noticed how their 
result was a straightforward extension of the classical result on stationary series. 

For some years, however, the important contribution of Brubacher and Wilson 
went mostly unnoticed. To quote an example, in a review paper on inverse autocor­
relation by Chatfield (1979), no mention is made of the key role this autocorrelation 
plays in the field of interpolation, nor is the work of Brubacher and Wilson men­
tioned. Perhaps the relatively small impact of their work was due to the fact that, 
contrary to standard procedure, in their approach the missing values were treated as 
parameters) and not computed as the conditional expectation of the unknown ran­
dom variable. Moreover, they dealt with nonstationary series, and the properties of 
missing observations estimators for this class of series were not well-understood at 
the time. 

Of the several approaches to the problem of interpolation in time series, pos­
sibly the one that offers at present the best-known and most complete solution is 
based on the Kalman filter. Jones (1980) used Akaike's state space representation 
of an ARMA model to compute its likelihood function in the case of missing observa­
tions. Shumway and Stoffer (1982) proposed using the EM algorithm in conjuntion 
with the conventional Kalman smoothed estimators for estimating the parameters 
by maximum likelihood allowing for missing data. Computation of the estimates by 
a modified Newton -Raphson routine was discussed by Wincek and Reinsel (1986). 
Harvey and Pierse (1984) extended the work of Jones to deal with nonstationary 
time series, and used the fixed--point algorithm to estimate the missing values. The 
important contribution of Harvey and Pierse had a limitation, requiring no missing 
values at the beginning or the end of the series. Kohn and Ansley (1986) obtained 
a general solution to the problem of interpolation in finite nonstationary series with 
unknown model parameters. In their approach, in order to define the likelihood, the 
data is transformed to eliminate depend�nce on the starting values. Next, a modified 
Kalman filter is used to compute the likelihood) and a modified fixed-point smooth-
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ing algorithm interpolates the missing observations. Both are generalizations of the 
ordinary Kalman filter and fixed-point smoother for handling • partially diffuse 
initial state vector. The powerful approach of Kohn and Ansley, developed over a 
sequence of papers, possibly represents the present state of the art. Examples of 
additional contributions are found in De Jong (1991), where an alternative modifica­
tion of the Kalman filter handles diffuse initial states in a numerically safe way, and 
in Bell and Hillmer (1991), where it is shown how suitable initialization of the ordi­
nary Kalman filter can provide the same results as the "transformation" approach 
of Kohn and Ansley. Finally, Gomez and Mar.vaIl (1992a) develop . methodology 
based on a standard state-space representation of the series and on the ordinary 
Kalman and fixed-point smoothing filters, which is seen to yield the same results 
of Kohn and Ansley (1986) and of Harvey and Pierse (1984), when the latter is 
applicable. 

It is worth noticing that the Kalman filter-fixed point smoother method men­
tioned in the previous paragraph does not refer to the work by Brubacher and 
Wilson. More in line with the regression approach of these authors, an alternative 
approach to missing values in time series takes into account the relationship betwccn 
estimation of outliers and interpolation. Pena (1987) showed that, for stationary 
autoregressive models, missing value estimation was asymptotically (.'quivalent to 
additive outlier estimation. In particular, the likelihood is in both cases the same), 
apart from a determinant whose effect will tend to zero as the length of the series 
increases (relative to the number of missing observations). Ljung (1989) extended 
the additive outlier approach to blocks of missing data, and analysed the likelihood 
in these cases. Pena and Maravall (1991) used the additive outlier-missing observa­
tion relationship to find the optimal interpolator for any pattern of missing data in 
an infinite realization of a possibly nonstationary series, and showed how the vector 
of interpolators could be expressed using the DACF. Further extensions of the DAcF 
approach to missing observation interpolation are found in Battaglia and Bhansali 
(1987). 

Whatever the approach, estimation of missing observations in ARIMA time 
series requires two distinct steps. First, maximization of a well-defined likelihood 
yields estimators of the model parameters. Second, once the parameters have been 
estimated, interpolators of the mis.c;ing values are obtained by computing the condi­
tional expectation of the missing observations given the available data. This paper 
centers mostly on the second step: the filter that yields the conditional expectation 
of interest for the general case of any pattern of missing observations in a possibly 
nonstationary time series. The main purpose of the paper is to provide a better 
understanding of the structure of this filter, and how it relates to the stochastic 
structure of the series and to other statistical problems such as outlier removal and 
signal extraction. In particular, the relationship with estimation of outlier effects is 
seen to provide an implication of considerable applied interest. 

Section 2 provides some background material and considers the case of a single 
missing observation for a complete realization of the series. Section 3 discusses 
some properties of the estimator and relates missing observation interpolation to the 
problem of removing an outlier effect. Section 4 considers the relationship betwccn 
interpolation and the problem of decomposing a time series into signal plus noise. 
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Section 5 presents an interesting alternative derivation of the optimal estimator I 

which is then used in "section 6 to consider the case of a missing observation near 
one of the extremes of the series (Le., the case of a finite realization). Section 
7 generalizes the results to a vector of missing observations, first when they are 
consecutive, and second to the general case of any number of sequences of any 
length of missing observations in a finite series. Finally, section 8 presents the 
empirical application, in which estimation of missing observations by the standard 
Kalman filter-fixed point smoother approach and by an additive outlier approach 
are compared using a well-known example. 
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2 Optimal Interpolation of a Missing Value 

In order to establish some terminology and assumptions that will be used throughout 
the paper, let the series in question follow the general ARIMA model 

4>(B) Zt = O(B) at, (2.1) 

where 4>(B) and O(B) are finite polynomials in the lag operator B; and at is a 
Gaussian white-noise process with variance Va' Without loss of generality, we set 
Va = 1; thus, in the following pages, all.variances and mean-squared errors will be 
implicitly expressed in units of the on.e-step-ahead forecast error (or innovation) 
variance. The polynomial ¢(B) may contain any number of unit roots and hence 
the process can be nonstationary; we assume, however, that the model is invertible, 
so that the roots of 8(B) lie outside the unit circle. Thus, the model (2.1) can 
alternatively be expressed in autoregressive form as 

,,(B) Zt = at, (2.2) 

where 7I"(B) is the convergent polynomial 

,,(B) = 4>(B) 8(B)-1 = (1 - "I B - '" B' - ... ). 

Define the "inverse or dual model" of (2.1) as the one that results from inter­
changing the AR and MA polynomials; therefore the dual model is given by 

B(B) 4' = 4>(B) at, (2.3) 

or 

zi' = ,,(B) at, (2.4) 

Since (2.1) is invertible, model (2.3) will be stationary; its autocorrelation generating 
function (ACGF) will be given by 

(2.5) 

where F = B-1 denotes the forward operator, and VD is the variance of the dual 
process, equal to 

= 

VD = L ,,1, (11"0 = 1), 
i=O 

(2.6) 

which will always be finite. The function (2.5) has been often referred to as the 
inverse autocorrelation function [Cleveland (1972)J. Since, in the next sections, we 
shall use autocorrelation matrices, and the inverse of the inverse autocorrelation 
matrix is not equal, in general, to the autocorrelation matrix, to avoid awkward 
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expcessions, we shall refer to (2.5) as the dual autocorrelation function (DACF). 
This is also in line with the duality properties of autoregressive and moving average 
polynomials in ARIMA models; see, for example, Pierce (1970). Trivially, from the 
ARIMA expression of the model, the DACF is immediately available. 

Consider first the case of a series Zt which has a missing value for t = T, 
and denote by Z{T) the vector of observed values. For a linear stationary series, the 
minimum mean-squared error (MMSE) estimator of ZT is given by 

that is 

where Cov(Zl'. Z(T» is a vector with the i-th element given by COV(ZT. z.;). i =1= T. and 
Var(z{1'») is the covariance matrix of Z(T)' Therefore, ZT is a filter given by a linear 
combination of the observed values. where the weights depend on the covariance 
structure of the process. As the series approaches 00 in both directions, the filter 
becomes centered and symmetric, and it is well known [see, for example, Grenander 
and Rosenblatt (1957)] that its weights are the dual autocorrelations of Zt; thus the 
optimal estimator of the missing value can be expressed as 

� 

Z1' = - 2: P;> (ZT-k + ZT+k), (2.7) 
k=l 

where pf is the coefficient of Bk in (2.5). It is also well-known [see, for example, 
Brubacker and Wilson (1976) or Liung (1989)1 that the result (2.7) remains un­
changed if the stationarity assumption is dropped and the process (2.1) becomes a 
nonstationary ARIMA model. The filter (2.7) will be finite for a pure AR model, 
and will extend to 00 otherwise; invertibility of the model guarantees, however, its 
convergence in this last case. 

Since (2.7) can be rewritten as 

(2.8) 

it. follows that 

and hence the Mean-Squared Error (MSE) of ZT is 

(2.9) 

To illustrate (2.7), consider first the AR(1) model 
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Its dual model is zp = at - ¢at_l, with variance VD = 1 + ¢2 and autocorrelatioIlS 
pf = -</>/(1 + </>'), PI? = 0 for I k I> 1. Tbe missing observation estimator is then 
given by 

in agreement with the result in Gourieroux and Monfort (1989, p. 734); moreover 

MSE(Zr) = 1/(1 + </>'). 

As a second example, we use the more complicated nonstationary model: 

{;. {;.12 Z, = (1 - 81B) (1 - 812 B
12) a" (2.10) 

(tbe so-called Airline Model), popularized by Box and Jenkins (1970, chap. 9). 
The model has been found useful for many monthly economic series that display 
trend and scasonal behavior. (Values of (JI close to 1 imply relatively stable trends 
and, Similarly, large values of (J12 represent relatively stable seasonality.) The Airline 
Model h&; also become a standard example in the literature on missing observations: 
see, for example, Harvey and Pierse (1984) and Kohn and Ansley (1986). We shall 
follow their tradition and the Airline Model will be used as an example throughout 
the paper. Figure 1 displays the two-sided symmetric filters that yield the estimator 
of a missing value in the middle of the series for 3 sets of parameter values. It is seen 
how stable components induce long filters, while unstable ones place practically.all 
weight on recent observations. 

Table 1 presents the root mean squared error (RMSE) of the final estimator ZT 
for different values of (Jl and (J12 (the units have been standarized by setting Va = 1). 
Table 1 is practically symmetric for (Jl and (J12' As (Jl and (J12 tend to 1, the RMSE of 
the estimator tends also to 1. This is sensible, since, in the limit, the two differences 
in (2.10) would cancel out, and, ignoring deterministic components, the series Zt 

would simply be the white-noise at, with variance 1. On the contrary, as the series 
approaches noninvertibility, the estimation error tends to zero, but the filter pD(8) 
tends then towards nonconvergence and, in the limit, the estimator ceases to exist. 
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Table 1: RMSE of a Missing Observation Estimator(*); Airline Model 

9" 
9, 

-0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 

-0.9 0.068 0.130 0.165 0.189 0.205 0.216 0.222 
-0.6 0.100 0.200 0.265 0.317 0.361 0.400 0.436 
-0.3 0.132 0.265 0.350 0.418 0.477 0.529 0.577 
0.0 0.158 0.316 0.418 0.500 0.570 0.632 0.689 
0.3 0.180 0.361 0.477 0.570 0.650 0.721 0.786 
0.6 0.200 0.400 0.529 0.632 0.721 0.800 0.872 
0.9 0.215 0.431 0.571 0.684 0.781 0.869 0.949 
• ( ) as a fractIOn of the mnovahon standard error 
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3 Missing Observation and Additive Outlier 

Consider now a series which follows model (2.1), but with an additive outlier (instead 
of a missing value) at time T. The effect of the outlier can be estimated in the 
following way. Express the observed. series Zt as 

Z, z" 

ZT ZT +W 
t # T  (3.1) 

where w is the outlier effect. Construct then the dummy variable fit, such that dt = 0 
for t # T and dr = 1, and write model (2.2) as 

,,(B) (Z, - wd,) = a.., 

or equivalently, 

,,(B) Z, = w ,,(B) d, + a,. (3.2) 

Defining the variables y, = ,,(B) Z, and x, = ,,(B) d" (3.2) is seen to be the 
simple regression model 

with Xt deterministic and at white-noise; therefore the MMSE estimator of w is given 
by 

(3.3) 

Using results from the Appendix in Box and Tiao (1975), after simplification, 
it is found that, for a complete realization of the series, 

and 

Ex; = E"(B)d,,,(B)d, = E,,; = VD 

so that expression (3.3) becomes 

(3.4) 

(3.5) 

(3.6) 

[in agreement with the result in Chang, Tiao and Chen (1988)] and, from (2.5), 
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(3.7) 

The estimator of the series, once the outlier effect has been removed, is 

(3.8) 

and, using (3.7), it can be expressed as 

00 

z,. = (1 -pD{B)) ZT = - L pf (ZT_' + ZT+k) , 
k=1 

identical to expression (2.7). As a consequence, when the model is known, the rela­
tionship between interpolation of a missing observation and estimation of an additive 
outlier can be summarized in two alternative ways: On the one hand, removal of 
the outlier effect at period T is equivalent to estimating a missing observation for 
T. Alternatively, estimation of a missing observation can be seen as the result of 
the following procedure: First, fill the "hole" in the series with an arbitrary number 
ZT; then treat ZT as an additive outlier. Removing the estimated outlier effect from 
Z1', the missing observation estimator is obtained.. 

Some properties of the estimators (3.7) aod (3.8) - or, equivalently, (2.7) -
are worth noticing: 

(1) The dcrivdtion remains unchanged when the' autoregressive polynomial of 
model (2.1) contains nonstationary roots. As for the MSE, since ZT - iT = 

W -w, cxpressiop (3.5) yields MSE{ZT) = MSE{W) = (VD)-I, in agreement 
with (2.9). Thus, even for nonstationary series, the MSE of the estimator is 
finite. Since VD > 1, it will always be smaller than the one-period-ahead 
forecast error variance, as should happen. As the process approaches nonin­
vcrtibility, then MSE (iT) -+ 0; in the limit, the problem degenerates, however, 
because the filter pD(B) becomes nonconvergent. 

(2) The procedure yields implicitly an estimated pseudo-innovation for T, equal 
to the difference between z,., obtained with the tWIrsided filter (2.7), and 
i1"-I(1). the one-period-ahead forecast of Z obtained at ( T  -1) using a one­
sided filter. This pseudo-innovation can be expressed as a linear combination 
of all innovations for periods T + k, k > O. 

(3) If the model (2.1) contains some difference of the series (and bence is nonsta.­
tionary), it will be that ,,(I) = 0, and hence, from (2.5), 
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where the summation sign extends from 1 to 00. Therefore, -E pf = � and the 
sum of the weights in (2.7) is one; the estimator Zr is, in this case, a weighted 
average of past and future values of the series. If the process is stationary, 
then 1C(I) > 0, from which it follows that 

and hence the estimator iT represents a shrinkage towards zero, the mean of 
the process. 
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4 Relationship with Signal Extraction 

Consider model (2.1) and assume we wish to decompose the series Zt into signal plus 
noise, as in 

(4.1) 

where tit "'"' niid (0, Vu), and St and tLt are mutually orthogonal. For period T, the 
MMSE estimator of the noise is the conditional expectation of tit given the series Zt. 

for a complete realization of the series, this estimator is given by [see, for example, 
Box, Hillmer and Tiao (1978)1 

il, = V. ,,(B) ,,(F) ZT, (4.2) 

and comparing (4.2) with (3.6) it is seen that, except for a scale factor, the filter 
that provides the estimator of the noise is identical to the filter that yields the 
estimator of the outlier effect. Furthermore, from (2.8) and (4.2) it is obtained that 
the estimator of the missing observation will satisfy the equality 

ZT = Z1' - kiLr, (4.3) 

where k = (V. VD)-I. Let V. denote the variance of�. From (4.2) and (2.2), 

and hence Vu = (Vu)2 VD. Therefore, the constant k can be alternatively expressed 
as 

k = V./V., 

i.e., as the ratio of the variances of the (theoretical) noise component and of its MMSE 
estimator. Since the estimator ur has always a smaller variance than the theoretical 
component 'Ut [see, for example, Maravall (1987)], the ratio k is always larger than 
one. Thus the smoothing implied by the estimation of a missing observation is 
equivalent to· extracting from the series a multiple of its noise component. In this 
sense, the missing observation estimator can be seen to be an underestimation of 
the signaL 

Assume that Z'r is properly generated by (2.1) but that it is nevertheless 
treated, first, as an outlier and, second, as a missing observation. The estima­
tors of the outlier effect, of the noise, of the missing observation and of the signal 
can be expressed as 

pD(B) ZT; 

(1 _pD(B)) Z·r; . 

il,· = .!. pD(B) z,. 
k 

s·r = 1 - � pD(B) Z·r. 
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Thus, estimation of an additive outlier, of a missing observation, of the signal and 
of the noise are performed, up to a scale factor, with a similar filtering procedure. 
In order to illustrate the relationship among the filters in (4.4), consider the same 
example of section 2, the Airline Model given by equation (2.10), with parameter 
values 9, = .4 and 9" = .6 (the particular values of the original Box and Jenkins 
example). The series can be decomposed into mutually orthogonals trend, seasonal, 
and white-noise irregular component [see Hillmer and Tiao (1982)1. In terms of 
the signal plus noise decomposition we are considering, the signal will be the sum 
of the first two components, and the noise will be the irregular component. The 
decomposition is identified by setting the variance of the noise equal to its maximum 
possible value, in which case the canonical decomposition is obtained. Let f denote 
frequency in radians, and g(f) the (pseudo)spectrum of z, [see, for example, Harvey 
(1989)1· The signal in the series will be associated with the peaks in g(f) for the 
trend and seasonal frequencies, and the spectrum of the noise is a constant, equal 
to .314 Va' F igure 2 displays g(f) and the frequency domain representation of the 
filters used. to obtain the signal and the missing observation, and figure 3 displays 
the spectrum of the inverse model [equal to l/g(f)J, and the frequency domain 
representation of the filters that provide the estimator of the noise component and 
of the outlier effect (of course, the maxima of the inverse model spectrum correspond 
to the minima of g(f) and vice-versa). It is seen that, as should be expected, the 
estimator of the signal filters the frequencies for which there is a large signal, and 
the estimator of the noise those for which the noise contribution is relatively more 
important (i.e., the minima of g(f)). In particular, for the trend and seasonal 
frequencies, the signal filters entirely the frequency, while the filter for the noise is 
zero. From the figures it is seen how the filters for estimating the missing observation 
and the outlier effect follow exactly the same principle: the missing observation is 
estimated by filtering the signal, while the outlier effect is obtained by filtering the 
noise. 

Notwithstanding the similarities between the filters, figures 2 and 3 clearly 
evidence a difference: more of the series variation is assigned to the signal than to 
the missing observation and, accordingly, less is assigned to the noise than to the 
outlier effect (despite the fact that the canonical decomposition has maximized the 
variance of the noise). This is a general result as is i.m.mediately seen by combining 
the first two expressions in (4.4). to yield w = kilt, and hence, 

V(w) � k'V. = k V. > V •. 

This has an interesting implication: Since model (2.1) is invertible, Vu and Vii. are 
positive. Assume that w = 0 but ZT is treated nevertheless as an outlier. Then the 
estimator of the (nonexistent) outlier effect would still be a multiple of the noise 
component that can be extracted from ZT. (For the previous example, this multiple 
k is close to 2, although for other models it may take much larger values). [n 
this sense one can speak of structural underestimation of the signal by the missing 
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observation estimator and of overestimation of the outlier effect. This is reflected 
in the negative value of the transfer function for the missing observation estimator 
in some frequency ranges (see figure 2), and has the effect of introducing a phase 
shift of 7r radians in the gain function of the interpolation filter for those frequency 
ranges, as evidenced in figure 4. 
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5 The Optimal Interpolator as a "Pooled" Esti­

mator 

Consider the problem of estimating a missing observation at time T for a series that 
follows the AR(2) model 

zt = <PI Z'_I + th z,_, + a,. (5.1) 

An obvious estimator of ZT is the one-period-ahead. forecast of the series ( .. " ZT-2, 
ZT_I). Deooting this estimator by 4, 

4 = <PI ZT-I + th ZT-', (5.2) 

and its MSE is given by MSE(4) = Mo = Vet = 1. This estimator ignores the 
information ZT+k, k > O. An alternative estimator that uses this information can he 
obtained by backcasting ZT in the SCQuence (Z'1'+I. Z1'+2, ... ) . This second estimator 
'* is given by 

zj. = (Z1"+' - <PI Zl·+.J/th, 

with associated MSE M, = 1/4>;. 

(5.3) 

While 4 is computed as the last value of z in (5.1), i.c. by setting T = t, zi. is 
computed by setting T equal to the first clement in (5.1), i.e. T = t - 2. Equation 
(5.1) still offers" another possibility, namely, when z,. is in the middle. This will 
happen when t = T + 1 in (5.1) and, solving for Z'1', a third estimator is obtained: 

(5.4) 

with MSE M I = 1Nl. 
Since the three estimation errors are functions of aT, ar+1, and ar+2, re­

spectively, the three estimators are independent. A pooled estimator of Zr can be 
obtained as a weighted average of them, where the weights are proportional to their 
precision. If z!; denotes the pooled estimator, 

�. = h(4/Mo + z}/MI + z}/M,), 

where h-I = l/Mo + l/M, + l/M,. Considering (5.2)-(5.4) aod the values of Mo, 
Ml and Mz, after simplification, it is found that 

z!;. = 1 + <p� + 
<p! [<PI(1 - th) (Z1"_1 + ZT+I) + ¢,(ZT_' + ZT+,)] (5.5) 

or, considering the DACF of an AR(2) process, 
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the. same as expression (2.7). 
The previous result for the AR(2) model generalizes to any linear invertible 

(possibly nonstationary) model of the type (2.1). To see this, consider the pure 
autorcgr<'SSivc representation of the model: 

or. for t = T + j. (j = 0.1,2, ... ) . 

(5.6) 

:;T+j = 'lT1 ZT+j-l + 'lT2 ZT+j-2 + ... + 'lTj ZT + . .. + GT+j. (5.7) 

Using a notation similar to that used in thc AR(2) example, the estimator z? is 
givcn by 

(1/11';) (ZH; -11'1 " '+;-1 _ . . .  ) = 
(1/11';) (11'(8) F; + 11'j) 'T, 

(5.8) 

(for j = 0 we adopt the convention 'lTo = -I). and its MSE is Mj = 1/'lT;' Letting 
j = 0, I, 2, . . .  , the pooled estimator, zl}., is given by (all summation signs extend 

fromj=Otoj=oo) 

zI;. = h L 4/M;, 
; 

where h-I = 'f:.(I/Mj) = 'f:.11'J = VO Thu" using (5.8), 
, , 

.r (I/VD) L 11'j(11'(8) Fj + 11'j) "r = 
j 

(I/VD) (L 11']) ZT + (I/VD) L 11'j F; 11'(8) z,. = 
j j 

(5.9) 

and, considering (2.8), z�. = .iT, as claimed. Therefore, the optimal estimator of the 
missing observation can be seen as a weightl.>d average of thCl. estimators that are 
obtained. by assuming that the missing observation occupies all possible different 
positions for z in the autoregressive equation (2.2). 

As mentioned at the beginning of the section, for a long enough serics, an 
obvious (though inefficient) estimator of the missing observation Z1' is the one 
period ahead forecast of the series ;- . .  , Z'J'_2, ZT_l], i.e., of the series truncated at 
(T - 1) . Denote this forecast by z1'_1(1). Similarly" another obvious estimator is 
the one-··period behind backcast, obtained with the representation in F of process 

(2.1 ): 

¢(F) z, = O(F) e" 
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where et is a sequence of independent, identically, normally distributed variables, 
with zero mean and variance � = Vo = 1, applied to the series IZr+lI Zr+2, .. -j. 
Denote this estimator by 4+l( -1). 

Since the two estimators combined are based on the set of all available obser­
vations, Abraham (1981) proposed to use as interpolator a convex combination of 
the two: 

(5.10) 

where a: is chosen so as to minimize the MSE of the forecast Ifor a related approach, 
see also Damsleth (1980)1. Except for AR(l) model case, expression (5.10) will differ 
from (5.9), and does not provide, as a consequence, the minimum MSE estimator of 
ZT. For tbe AR(2) example of equation (5.1), expression (5.10) eventually yields 

different from the optimal estimator (5.5). 

The "pooling" interpretation of the estimator permits to decompose its MSE 
in an interesting way. Considering (5.7), the number of nonzero autoregressive 
coefficients determines the number of independent interpolators that can be pooled 
in (5.9), and tbe MSE of eacb interpolator 4. is given by (,,;)-'. Broadly, tbus, large 
AR processes with large coefficients (in absolute value) will provide interpolators 
with small estimation error. For example, for an AR(l) model, the minimum MSE is 
obtained for <P = 1, in which case MSE (2'1") = �. For an AR(2) model, the minimum 
MSE becomes �, and is obtained when the two roots of the AR polynomial are both 
equal to 1. 

Notice that the information about the missing point contained. in the forecast 
and in the backcast can be considerably different. For an AR(1) model, the informa­
tion about the missing observation ZT contained in the forecast (equal to 1) is larger 
than or equal to the information contained in the backcast (equal to ¢2). For an 
AR(2) mo,del, however, the information contained in the backcast (equal to ¢� + <p�) 
could be much larger than that contained in the forecast (still equal to 1). 
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6 Missing Observation Near the Two Extremes 

of the Series 

6.1 Preliminary Estimator 

The optimal estimator of a missing observation at time T, given by (2.7), is a 
symmetric filter centered at T. Although it extends theoretically from -00 to +00, 
invertibility of the series guarantees that the filter will converge towards zero, and 
hence that it can be truncated and applied to a finite length series. However 1 for 
T close enough to either end of the series, (2.7) cannot be used since observations 
needed to complete the filter will not be available. 

Let the missing observation be ZT, and the last observed value ZT+n. Assume 
that n is small enough so that the filter has not converged in the direction of the 
future and, in order to simplify the discussion, that the series is long enough so that 
the filter can be safely truncated in the direction of the past. To derive the optimal 
estimator of Z1' we usc the method employed in section 5. From expression (5.6), 
since Z1'+j for j > n has not been observed yet, only (n + 1) equations of the type 
(5.7) can be obtained, namely those corresponding to j = 0, 1, . . . , n. Therefore, 
expression (5.9) remains valid with the summation sign extending now from j = 0 
to j = n, and h -1 = Ej:::o 7rj. Denote by VnD the truncated variance of the dual 
process, 

tID 'rOn 2 vn = L..j=07rj, 

and by 1rn(F) the truncated AR polynomial 

1rn(F) = (I - 1r1 F - ... - "n F"). 

Then, if z-r,n represents the estimator of a missing observation n periods before �hc 
end of the series, 

or 

n 
ir,n (I/VnD) � 1r;(1r(B) F; + 1r;) ZT = 

j=O 
n 

ZT - (I/V;') 1r(B) (� 1r; F;) ZT, 
;=0 

iT,n = (I - (I/VnD) 1r(B) 1rn(F)) Zr, 

where 1r(B) 1rn(F) is a "truncated" DACF, to be denoted pf?(B). 

(6.1) 

Following a derivation similar to the one in section 2, it is straightforward to 
find that, if an additive outlier is assumed n periods before the end of the series, the 
estimator of the corresponding dummy variable coefficient is given by 
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w. = (1/V;') ,,(B) ".(F) ZT = p;;(B) ZT (6.2) 

Since expression (6.1) does not depend on the value of the series at T, the estimator 
iT,n. can be rewritten 

(6.3) 

Expressions (6.2) and (6.3) are the analogue of expressions (3.7) and (3.8) for the 
case of a missing observation near the end of the series. Expression (6.1) provides 
an asymmetric filter. When n = 0 it yields the one-period-·ahead forecast of the 
series and when n --+ 00 it becomes the historical or final estimator given by (2.7). 

To illustrate the effect that the truncation induces on the filter, for the Airline 
Model example of section 4, figure 5 compares the complete symmetric filter for the 
final estimator with the one-sided filter of the onc-period-·ahcad forecast (i.e., the 
filter for ZT,O). and with the filter of the preliminary estimator after 12 additional 
periods have been observed (i.e., the filter for ZT,12)' The effect of the truncation is 
remarkable. 

6.2 Mean-Squared Error and Revisions 

When the last observation is for period ( T  +n), and for small enough n, the estimator 
iT,n given by (6 .1) is a preliminary estimator, that will be revised as new observations 
become available. Eventually, as n increases, the historical or final estimator 21', 
given by (2.7) will be obtained.. Let 6 and On denote the error in the historical and 
in the preliminary estimator, respectively. Thus: 

and, from (6.1), 

6 Zr - iT = W - w, 

6n ZT - iT,n = wn - w, 

o. = (1/V;') ,,(B) ".(F) ZT = (1/V;') ".(F) "'r, 
where the last equality makes use of (2.2). Considering that 

the MSE of the preliminary estimator is found to be 

• 

MSE (Zor,.) = MSE (w.) = lW;' = 1/ L "J 
;=0 

and hence equal to the inverse of the (appropriately) truncated variance of the dual 
process. 
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Table 2: Variance of the Total Revision in the Preliminary Estimator (*); 
Airline Model 

9" 
91 

-0.9 -0.6 -.3 0.0 0.3 0.6 0.9 

-0.9 0.995 0.983 0.973 0.964 0.958 0.953 0.950 
-0.6 0.990 0.960 0.930 0.900 0.870 0.840 0.810 
-0.3 0.982 0.930 0.877 0.825 0.772 0.720 0.667 
0.0 0.975 0.900 0.825 0.750 0.675 0.600 0.525 
0.3 0.967 0.870 0.772 0.675 0.577 0.480 0.382 
0.6 0.960 0.840 0.720 0.600 0.480 0.360 0.240 
0.9 0.954 0.814 0.674 0.532 0.390 0.246 0.099 
* ( ) as a fractIOn of the mnovatlon variance 

"Concurrent" �timation of a missing value (Le., when the missing observation 
occurs for the last period in the series) is obtained when n = 0 and, of course, is 
equal to the onc-·pcriod--ahead forecast, with estimation error variance Va = 1. As 
time passes and n increases, the MSE of the estimator will decrease from 1 to IjVD 
and, if r n denotes the differeol.'f! between the preliminary estimator and the final onc 

then 

1 1 
MSE(Tn) = \CD - VD· 

n 

Starting with concurrent estimation and moving to the final one, the variance of the 
total revision the estimator will undergo is equal to 1 - l/VD. 

To give an idea of the magnitude of the revision, table 2 displays its variance 
(as a fraction of the innovation variance Va) for the Airline Model and the parameter 
values considered in table 1. It is seen that for large negative values of (}l and (}12, 
historical estimation reduces drastically the uncertainty of the o�e-periQd-ahead 
forecast. On the contrary, as (}I and (}12 approach I, historical estimation improves 
little upon the one-period-ahead forecast. This was to be expected since, in the 
limit, whcn (}l and (}12 are 1, as noted earlier, the series becomes white-noise and 
hence no "future" observation ZT+k can be informative for estimating the missing 
value ZT. 

Besides the magnitude of the revision, it is of interest to know how long it takes 
for it to be completed; or, in other words, how distant the missing observation has 
to be from the end of the series for its estimator to be considered as (approximately) 
final .. Table 3 exhibits the number of periods it takes to remove 95% of the total 

-23-



Table 3: Length of the Revision (in months); Airline Model 

912 
91 

-0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 

-0.9 12 7 5 5 4 4 4 
-0.6 13 13 13 13 13 5 2 
-0.3 24 13 13 13 13 13 2 
0.0 25 13 13 13 13 24 1 
0.3 36 24 13 13 13 24 36 
0.6 36 24 13 13 24 26 72 
0.9 45 24 13 17 27 36 132 

rcvi�ion variance in table 2. For the vast majority of C8.')CS, this percentage is reached 
in less than 3 years and, except for some cases associated with close to noninvcrtible 
parameters. if the mi�ing observation or the outlier arc more than two years "old!; , 
the estimator can safely be taken as final. 

It is worth noticing that, comparing tables 2 and 3, a somewhat comforting 
result emerges: the revision lasts long when the revision error is small and hence of 
little importance; invcn;cly, when the revision error is large, convergence to the final 
estimator tends to be fast. 

The symmetric and centered character of the filter that yields the estimator w 
of the outlier effect or, equivalently, of the associated dummy variable coefficient, and 
the cxTh:tcncc, thus, of revisions in this estimator has some implication of interest 
in applied econometric work. First, what may seem at first an outlier may turn 
out not to be one, and viceversa; early detection of outliers can be considerably 
unreliable. Moreover, innovations are used in dynamic economic models to measure 
unanticipated changes. Often these models contain dummy variables to refiect, for 
example, "structural breaks" [see for example Winder and Palm (1989)J. Even if the 
model is assumed known and the period at which the structural break happens is 
instantly identified by the agent, the relevant series of innovations that approximate 
the agent's forecast error should be computed using the preliminary estimate of w 
and its successive revisions, and not as the residuals of the model · with the final 
estimator of w superimposed. 
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7 A Vector of Missing Observations 

7.1 Consecutive Periods 

Consider, first, a time series Zr, generated by model (2.1), with k + 1 consecutive 
missing observations at t = T, T - 1, " ' , T - k. We can always fill the holes with 
arbitrary numbers ZT, ZT-l o . . . , Zr-k. and define the observed series Zt as 

Z" 
ZT_j + Wj, 

t f T, · · · , T - k  

j = O, l, · · · , k, 

with unknown Wj' For the rest of this section, let j take the values 0; 1, " ' , k. 
Then, the set of dummy variables 

d{ = 0 for t f T + j; 

together with (2.2), yield the model 

,,(B) (Z, - L w; dll = a,. 
; 

The regression equation becomes 

Yt = L WjXjt + at, 
J 

(7.1) 

where Yt = 1[(8) Zt and Xjt = 71"(8) d{. Let w denote the vector of estimators 
(wo . . . Wk), Xj the column vector with element (xjd, and x the matrix (XO Xl . . . xo\:). 
From (7.1) 

w = (x' X)-1 x' y. 

Since, summing over t, it is obtained that 

E Xj_h,t Xjt 

,,(B) ,,(F) Z,_; 

VD 
� 

-7rI� + L 7rj 1fi+h If:, 
i=l 

(7.2) 

where 'Yf dcnotei the lag-h dual autocOV'dJ'iance, the matrix (x' x) is the (symmetric) 
dual autocovariance matrix nD: 
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vD 7i' 7i' 7f 
VD 7i' ...,f-l 

nD = x' x = (7.3) 

7i' 
VD 

truncated. to be of order k+ 1 .  Let RD denote the corresponding dual autocorrelation 
matrix 

1 pf Pi' Pi' 
1 Pi' Pf-l 

RD � (7.4) 

Pi' 

considering that nD = VD RD, if Z denote the vector of arbitrary numbers (Zr. · · ·  1 Zz'-k)', 
the estimator (7.2) can be expressed as 

(7.5) 

If z denotes the e£timator of the vector of missing observations, (ZT. " ' , £1'-.1:)', it 
can be then obtained through 

z = Z - w. (7.6) 

Equations (7.5) and (7.6) are the vector generalizations of (3.7) and (3.8). The 
missing observation estimators can be seen as the outcome of a similar procedure: 
First, filling the holes in the series with arbitrary numbers, which then arc treated 
as additive outliers. Removing from the arbitrary numbers the outlier effects, the 
missing observation estimators are obtained. 

Equation (7.5) provides another interesting expression for Z. Let wjll denote 
the estimator of Wj obtained by assuming that, in the series Zt, only Z" _j is arbitrary, 
and using the method of section 2 for the scalar case. Define the vector W(l) 
(wal) , " ' , Wil»),. Then, considering (3.7), (7.5) can be rewritten as 

(7.7) 

from which it is seen that, for the vcctor case, the estimator of the missing obser­
vation is a weighted average of the estimators obtained by treating each missing 
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observation as the only one that is missing; i.e., by applying the DACF to the arbi­
trarily filled series. The weights are the elements of the inverse dual autocorrelation 
matrix. [For stationary series, this inverse matrix may provide a crude approxima­
tion to the autocorrelation matrix; see Battaglia (1983)1. 

To see that expression (7.6) does not depend on the arbitrary vector Z, write 

where Z- and Z+ contain observations prior to T -k and posterior to T, respectively. 
(Thus Z- and Z+ are the available observations in the series Zt). The matrix B2 is 
easily seen to be equal to R D  - I, thus 

and, from (7.5), 

Plugging this expression in (7.6) it follows that the estimator z does not depend on 
Z, the vector of arbitrary numbers. 

Finally, since the MSE of w in (7.2) is the matrix (x' X)-l , from (7.3) it follows 
that 

where nD is the dual autocovariancc matrix. 

As an example, table 4 presents the MSE of the estimators of the missing 
observations in an AR(l) model for the case of a block of 3 and a block of 4 missing 
values. In the latter case the estimators have, naturally, larger MSE. As expected, 
the largest uncertainty (MSE) corresponds to the center observations. Also, as in 
the single missing observation case, the MSE are smallest and the estimator most 
precise when ¢ = 1. 
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Table 4: MSE of the Estimator for Blocks of Missing Observations('); 
AR(J) Model 

Block of 3 Block of 4 
1st MO 2nd MO 3rd MO 1st MO 2nd MO 3rd MO 4th MO 

AR(I) 0.750 1 0.750 0.8 
4> = 1  
AR(I) 0.988 1.176 0.988 0.997 
4> = 0.5 
,. ( ) as a fractIon of the mnovatlOD varIance 

7.2 Finite Series; the General Case 

1.2 1.2 0.8 

1.232 1.232 0.997 

Equations (7.5) and (7.6) were derived for a complete realization of the series Zt. 
with missing observations at periods T, T - 1 ,  . . .  , T - k. Assume now that, simil311y 
to section 5, the last observation available is for period T + n. Equations (7.6) and 
(7.7) remain unchanged except that w(i) becomes wl1), and contains now the vector 
of estimators obtained by assuming successively that each missing observation is the 
only missing one and applying equation (6.2). The matrix R� is given by 

1 pP,n pf.n Pen 
P�l,n+l 1 pP,n+! Pf'-l,n+l 

� =  (7.8) 

P�k,n+k pl!.k+l,nH . . . 1 

where pP,; is the coefficient of B' in (1/11;) ,,(B) "j(F). The MSE of the vector of 
missing observations becomes 

VRO '"Yen 

1'�l.n+l Vn�l 

where "Ie = Vl pp,;. The matrix n� is a symmetric matrix since 'Y':>;+j,n+i 
"f�j+i,�+j for i, j = 0, 1 ,  " ' , k. 
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Finally, assume in all generality, that the series Zt has k+ 1 missing observations 
for ·periods T, T -ml, T-fnl. " ' . T-mk. where ml < m2 < . . .  < m,\;. Proceeding 
as before. that is. by arbitrarily filling the holes in the series, treating these arbitrary 
numbers as outlier.; and removing their effect, the same equations (7.5) and (7.6) 
arc obtaiJl(.'(l. The matrix RD of (7.4) becomes 

1 P�t P:;!2 p:;!,. 
1 P�2-"'t p�,.-rnt 

1 p�,.-m2 
RD = (7.9) 

1 

where pf denotes the coefficient of Bi in the polynomial pD(B), and the subindices 
of the dual autocorrelations in (7.9) rc�eet the time distances betwccn each pair of 
missing obscI'V"dtions. The MSE of the estimator is equal to the inverse of the dual 
autocovariance matrix associated with (7.9). If the last observation of the series is 
for period T + n, the autocorrelations PP in row j of the matrix RD in (7.9) would 
be replaced by PPn+i-l ' the coefficient of Bi in the expression (l/Vn�i_d I1(B) 
nn+j-l(F). 

To illustrate (7.9), assume the series Zt has missing observations for t = T, T+ 
1 and T + 4. The matrix RD is then equal to 

� - ( 
1 pf pf 

) pf 1 pf 
pf pf 1 

and W = (Wo, WI . w,) is given by 

, -
,
�

)-' "., ,
., [ 

z,. 

1 ZT+l (7.10) 

ZT+4 

Dropping, for notational simplicity, the superscript "D" from the dual autocor­
relations, the estimator Wo is found to be Wo = IRI-I [(1 - Pl) p(B) ZT - (PI -
P3 P.) p(B) ZT+I + (PI P3 - P.) p(B) ZT+'[. 
where 
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Since the coefficient of ZT in p(B) ZT, p(B) Zr+l, and p(B) Zr+< is, respec­
tively, 1, PI and p" it is easily seen that the coefficient of ZT in (7.10) is 1. Similarly, 
the coefficients of Zr+1 and ZTH are seen to be zero, so that the estimator of Zr 

does not depend on the three arbitrary numbers Zr, ZT+l >  and ZTH-
As a final example, a particular case of estimating sequences of missing obser­

vations is the problem of interpolation when there is only available one observation 
at equally spaced intervals. Consider interpolation of quarterly data generated. from 
a random walk when only onc observation per year is available. The models for the 
series and its dual are given by 

zi' = (1 - B) a" 

so that the dual autocorrelations are PI = - .5 and Pk = 0, k =I- 0, 1. The matrix 
RD of (7.9) is seen to be block diagonal, where the blocks are all equal to the (3 x 3) 
symmetric matrix 

�{ 
- .5 0 

1 1 - .5 

1 

Expression (7.5) consists of a set of uncoupled sy8tems of 3 equations, COfrt.'­
sponding to the 3 holes in each year. Let Zo and Z4 denote two successive annual 
observations (Le" Zo = Zo, Z4 = Z4), and Z = (Zl' Z2, Z3)' denote the vector' of 
arbitrary numbers that fill the unobserved quarters, Each system of equations is of 
the form 

w = (Rf)-l (Z - v), 

where v is a vector with the jth element given by (Zj_l +Zj+l)/2, j = 1, 2, 3, From 
i = Z - w it is then obtained: 

" 

'3 
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1/2 ZQ 
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+ 
+ 
+ 

:�; :: I ' 
3/4 z, 



which is the linear interpolation formula obtained by Nerlove, Grether and Carvalho 
(1979, pp. 101 102). Since the variance of z{' is VD = 2, th� MSE of z, equal to 
(VD RP)-l , becomes the symmetric matr-ix 

.75 .50 .25 

MSE (2) = 1 .50 

.75 
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8 An Application 

When the model is known, estimation of the missing observations by regression with 
additive outliers, as described in the previous sections, can be seen as a method to 
compute the conditional expectation of the missing value given the available observa­
tions. It provides thus an alternative procedure to the fixed point smoother used in 
the standaxd approach to missing observations estimation [see Anderson and Moore 
(1979), and Harvey and Pierse (1984) for its extension to nonstationary seriesJ . In 
practice, when the model is not known, the regression parameters associated with 
the outlier effects are typically concentrated out of the likelihood. As a consequence, 
one may wonder whether, when the model is not known, the two approaches: 

(a) Maximization of an appropriately defined likelihood function with the Kalman 
filter and application of the fixed point smoother; 

(b) Estimation of missing obselV'cltions by regression, filling the holes with additive 
outliers; 

may still yield results that are reasonably close. Notice that the outlier approach is 
a particularly simple case of the so called Intervention Analysis models of Box and 
Tiao (1975). 

Differences between the two procedures would be mostly due to differences 
between the "missing observation" likelihood and the "additive outlier" likelihood. 
Comparing the two likelihoods [Ljung (1989), Pena (1987)1. the term comprising 
the sum of squares can be seen to be, in both cases, the same; what differs is a 
determinant. This difference, however, becomes smaller and smaller as the length of 
the series increases relative to the number of missing observations. Moreover, since 
the determinant in question is readily obtained, the additive outlier likelihood can 
be corrected by this factor, so as to obtain the likelihood of the missing observations 
case. 

To compare the two approaches, we consider the same series as Harvey and 
Pierse (1984) and Kohn and Ansley (1986), the series of airlines passengers anal­
ysed by Box and Jenkins (1970). It consists of 144 monthly observations, for which 
a model of the type (2.10) is appropriate for the logs. Our aim is to compare the 
standard approach to missing observations estimation represented by the method 
of Kohn and Ansley (1986), with the additive outlier regression approach with 
and without the correction in the determinant mentioned above. The three ap­
proaches will be denoted, respectively,' the Fixed-Point-Smoother /Missing Obser­
vation (Fps/Mo) approach, the Additive Outlier/Missing Observation (Ao/Mo) 
approach, and the Additive Outlier/Regression (Ao/REG) approach. 

In order to homogenize comparisions, all computations have been made with 
a program named T RAM ( "Time Series Regression with Arima Noise and Missing 
Observations" ) ,  written in Fortran, and described in Gomez and Maravall (1992b). 
(The program, together with the necessary documentation, is a�lable from the 
authors upon request.) Very briefly the three approaches of interest are handled by 
TRAM in the following way: 
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(a) The Fps/MO method produces the missing observations estimators of Kohn 
and Ansley (1986) and of Harvey and Pierse (1984), when the latter is appli­
cable. Only the available observations are used to define the likelihood and, 
once the model has been estimated, missing observations are obtained through 
the fixed point smoother. The method in TRAM is based on an alternative 
definition of the likelihood, which permits a direct and standard state space 
representation of the (original) nonstationary series. In this way, the ordi­
nary Kalman filter and ordinary fixed-point-smoother are efficiently used for 
estimation, forecasting, and interpolation. The methodology is described in 
Gomez and Maravall (1992a); Bell and Hillmer (1991) have also shown how 
suitable initialization of the ordin� Kalman filter can yield the same results 
ru; the complex approach of Kohn and Ansley (1986). 

(b) The Ao /Mo method fills the holes in the series corresponding to the miss­
ing observations with initial values. Each one of these values is then treated 
as an additive outlier, that is, as a regression dummy variable. The fitted 
value in the regression is the missing observation estimator. The regression 
parameters are concentrated out of the likelihood, and are estimated by using, 
first, a Cholcsky decomposition of the error covariance matrix to transform the 
regression equation (the Kalman filter provides an efficient algorithm to com­
pute the variables in this new regression) .  Then, the resulting least-squares 
problem is solved by orthogonal matrix factorization using the Householder 
transformation. This procedure yields a numerically stable method to com­
pute GLS estimators of the regression parameters, which avoids matrix inver­
sion. At each iteration, the likelihood is computed with the ordinary Kalman 
filter, and then corrected by the appropriate determinantal factor, so that it 
becomes the missing observation likelihood. 

(c) The Ao/REG method for estimating missing observa;tions is the same as the 
Ao/Mo one, except that no correction to the likelihood is made, and hence 
the additive outlier. likelihood is maximized. 

Some comments are in order: 

The Additive Outlier formulation would a priori seem inefficient since the ad­
dition of regression variables increases the size of the model. Besides, the Additive 
Outlier approach requires the specification of initial values for the missing observa­
tions, which is not required in the Fps/Mo approach. On the other hand, since it 
only implies the estimation of (impulse) dummy variables, it offers the advantage 
of its simplicity. Moreover, since by filling the holes in the series with initial val­
ues it becomes possible to difference the series, the algorithm of Morf, Sidhu and 
Kailath (1974) can be employed, which implies a gain· in computational efficiency. 
Furthermore, one by·-product of the Additive Outlier approach is the computation 
of the entire matrix of MSE for the vector of missing observations estimators, and 
not simply the MSE of each individual interpolator. This full matrix of MSE is of 
applied importance since, for example, it is required in order to compute confidence 
intervals for the rates of growth of the interpolated series, when there are several 
missing. observations that arc not too distant. The ordinary fixed point smoother 
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Table 5: Example 1 (One Missing Observation). Estimation Results 

Removed 
observation FpsjMo AojMo AojREG 

Period Value 
103 6.142 6.156 (0.028) 6.156 (0.028) 6.156 (0.028) 

Model parameters 
6, = 0.402 (0.080) 0.401 (0.080) 0.401 (0.080) 0.399 (0.080) 
6" = 0.557 (0.084) 0.556 (0.084) 0.556 (0.084) 0.555 (0.085) 
V, = 0.00137 0.00138 0.00138 0.00138 

Time (in sec.) 16.3 7.8 7.3 

(The standard errors are gIVen III parentheslS) 

docs not offer this possibility since the cQvariances between estimators are not ob­
tained; this limitation can be overcome by, for example, using the results on the 
matrixes of MSE obtained from the DACF, as explained in the previous sections. 
Doing so, however, increases the complexity of the Fps/Mo approach. 

Back to the Airline Model example, the first case we consider consists of one 
isolated missing observation for period T = 103 (July 1957). Table 5 presents 
the estimation results obtained with the three methods. In the two Ao methods, 
the initial value of the missing observation has been set equal to .5 of the sum 
of the two adjacent observations. It is seen that the two methods Fps/Mo and 
Ao/Mo yield the same results, which are very close to those obtained with the 
Ao/REG method. The column "time" indicates the time needed for a 486 PC with 
33 Mh to run the program (compiled with Microsoft Fortran compiler). Although 
an important percentage of this time is spent on additional operations that the 
program TRAM performs; these were practically identical for the three methods 
under comparison. In summary, for the case of a single missing observation, the 
Additive Outlier approach is as precise as the Fps/Mo one, and certainly faster. 

An application of the results obtained in the previous sections concerns the 
selection of the initial value when an Additive Outlier approach is used. Obviously, 
an optimal. choice would be to use expression (2.7) for £103, with the DACF estimated 
from the available series. This procedure, however, involves nontrivial additional 
computations and, since the variability of the series is heavily dominated by the 
nonstationary autoregressive roots, a reasonable approximation, trivial to comput.e, 
is to simply use the filter associated with those unit roots. In this case, the function 

pD (B) becomes that of the model 

z{' = (1 - B) (1 - B") at, (8.1) 
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Table 6: Example 2 (Five Missing Observations). Estimation Results 

Removed 
observations FpS/MO Ao/Mo Ao/Rm 

Period Value 
7 4.997 5.013 (0.031) 5.013 (0.031) 5.013 (0.031) 

102 6.045 6.024 (0.030) 6.024 (0.030) 6.024 (0.030) 
103 6.142 6.147 (0.031) 6.147 (0.031) 6.148 (0.031) 
104 6.146 6.148 (0.030) 6.148 (0.030) 6.148 (0.030) 
139 6.433 6.409 (0.032) 6.409 (0.032) 6.409 (0.032) 

Model parameters 

91 0.405 0.405 0.397 
912 0.566 0.566 0.562 
V. 0.00140 0.00140 0.00140 

Time (in sec.) 18 10.2 9.8 

(The standard errors arc given In parenthesls) 

and hence the filter has only a few nonzero terms and docs not involve any unknown 
parameter. This procedure is equivalent to running the fixed point smoother on the 
model 

. 

For the first example, however, the selection of the initial value had practically no 
effect on the estimation results. 

Example 2 is the same as the one called Data Set 3 in Kohn and Ansley 
(1986). From the airline passenger series, five observations are removed for periods 
T � 7, 102, 103, 104, and139 (July 1949, June, July and August 1957, and July 
1960). Table , 6  presents the estimation results using the three methods. In the 
Additive Outlier cases, the initial values have been set equal to .5 of the sum of the 
two closest observations at both sides (the "naive" initialization) .  As in example 1 ,  
the Fps/Mo and Ao/Mo methods yield identical interpolators, associated MSE, 
and parameter estimates (identical also to the values reported by Kohn and Ansley). 
These values are again very close to the ones obtained with the Ao/REG method. 
As in example 1, the Additive Outlier approach is as precise and considerably faster 
than the standard (Fps/Mo) approach. 

The third example is the same as Data Set 4 in Kohn and Ansley (1986), and 
is as example 2 with all the July V'cUues removed. As seen in Kohn and Ansley, 
in this case the first missing observation (Z7) cannot be estimated and becomes a 
free parameter. All the July interpolations depend on this free parameter; the only 
estimable missing obervations "are those for T = 102 and T = 104. Table 7 displays 
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Table 7: Example 3 (Fourteen Missing Observations; Two Estimable 
ones). Estimation Results 

Removed 
observations Fps/Mo Ao/Mo Ao/REG 

Period Value 
102 6.045 6.023 (0.030) 6.023 (0.030) 6.024 (0.030) 
104 6.146 6.147 (0.030) 6.147 (0.030) 6.148 (0.030) 

Model parameters 
91 0.430 0.430 0.393 
912 0.573 0.573 0.571 

V. 0.00140 0.00140 0.00140 

Time (in sec.) 15 19.4 21.6 

(The standard errors are gIVen ill parentheSlS) 

the estimation results. The 14 missing values (all the months of July, plus Z102 
and ZI04) are filled with the naive initialization (one half of the sum of the closest 
values at both sides). As before, the Fps/Mo and AO/MO methods yield the same 
results, equal also to those reported by Kohn and Ansley. The Ao/REG method 
provides results that are considerably close. However, the increase in the number of 
missing observations and hence in the number of regression variables in the Additive 
Outlier approach implies that the use of a corrected or uncorrected likelihood has 
an effect (although small) on parameter estimation. As for computational efficiency, 
the Additive Outlier approach becomes now slower than the Fps/Mo approach. 

The fourth example is similar to Data Set 2 of Kohn and Ansley (1986) [it is 
also the exarople considered by Harvey and Pierse (1984)J, although the total number 
of missing observations has been reduced. It consists of the airline passenger series 
with the months February to November removed from the last two years of the 
series (1959 and 1960). There are, thus, 20 missing observations: two arrays of 10 
consecutive missing observations, separated by December and January values. 

As mentioned earlier, the Additive Outlier approach requir� initial values to 
fill the missing observations holes. In the Ao /Mo case, since the likelihood is that 
of the missing observations case (and hence equal to the Fps/Mo likelihood), and 
the regression parameters are concentrated out of the likelihood, the parameters 
of the ARIMA model will not depend on the chosen initial values. Further, since 
the conditional expoctation that provides the missing observations estimators is a 
function of the ARIMA model parameters, it follows that the interpolators will not 
be affected by the choice of the initial values. It can be seen that, for the Ao/REG 
case (that is, when the likelihood is not corrected) , the effect of using better initial 
values (such as the ones obtained from the DACF expressions) is negligible. Thus, 
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in the Ao/Mo and Ao/REG methods, naive initialization is used: the February to 
November values for 1959 are set equal to the average of the January and December 
1959 valuesj similarly, the missing observations for 1960 are filled with the average 
of the January and December 1960 values. 

Figure 6 displays the 20 interpolators obtained with the Fps/Mo method, the 
95% confidence interval, and the actual values of the (removed) series. The interp<r 
lator is seen to perform well, and all 20 values of the series lie comfortably within the 
confidence intervaL Table 8 presents the results obtained with the three methods 
(the last column displays the standard error of the Fps/Mo interpolator; differences 
in the standard errors computed with the three methods were minor). It is seen how 
the Fps/Mo method and the Ao/Mo method yield exactly the same results. Use 
of the (uncorrected) Additive Outlier likelihood (i.e., the Ao/REG method) yields 
slightly different estimates of the ARIMA model parameters, which translates into 
very small differences in the missing observations interpolators (although the root­
mean-squared error remains practically unchanged). 

Figure 7 displays the three series of interpolators: they arc virtually indis­
tinguishable. However, as evidenced in table 8, for this example with 20 missing 
observations, the Fps/Mo method is markedly faster. 

In summary, the examples we have discussed suggest the following: 

(a) the standard approach to missing observations estimation, based on the Kalman 
filter computation of a likelihood function defined for the observed values, and 
on the fixed point smoother, apd 

(b) the Additive Outlier approach to missing observations estimation, 

yield interpolators with very similar degrees of precision; this is particularly true 
when the likelihood in the Additive Outlier case is corrected by the determinant 
factor, so that it becomes equal to the missing observation likelihood. 

When the number of missing observations is small, the Additive Outlier ap­
proach provides a computationally faster procedure. However, as the number of 
missing observations increases, the standard (Kalman filter-fixed point smoother) 
approach becomes relatively faster. 

Since the differences in computing time are nevertheless moderate and would 
not be a major concern in most applications, the Additive Outlier approach seems 
to offer a valid alternative to the standard Kalman filter- fixed point smoother ap­
proach to missing observations estimation in time series. (Incidentally, the Additive 
Outlier method can be enforced with the widely aV'dilable Intervention Analysis 
methodology. ) 

An advantage of the Additive Outlier approach is that, as mentioned previ­
ously, it provides an estimator of the full matrix of MSE for the estimators; this 
information is important in order to construct, for example, confidence intervals 
for the rates of growth of the interpolated series. Besides, unless one has available 
proper software (sucii as the program TRAM), the Additive Outlier specification 
is conceptually simpler. For example, estimating coefficient of dummy variables 
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Table 8: Example 4 (Twenty Missing Observations). Estimation Results 

Removed 
observations 

Period Value 
122 5.835 
123 6.006 
124 5.981 
125 6.040 
126 6.157 
127 6.306 
128 6.326 
129 6.138 
130 6.009 
131 5.892 

. . . . . . . .  . .  
134 5.969 
135 6.038 
136 6.133 
137 6.157 
138 6.282 
139 6.433 
140 6.407 
141 6.231 
142 6.133 
143 5.966 

RMSE 

Model 
parameters 

8, 
8" 
Va 

Time (in sec.) 

Fps/Mo 

5.836 
5.988 
5.967 
6.001 
6.175 
6.294 
6.308 
6.142 
6.017 
5.887 

. . . . . . . .  . 
5.980 
6.125 
6.097 
6.123 
6.290 
6.402 
6.409 
6.236 
6. 104 
5.966 

0.0275 

0.356 
0.557 
0.00140 

16.1 

SE of 
Ao/Mo Ao/REG interpolator 

5.836 5.837 0.036 
5.988 5.989 0.041 
5.967 5.968 0.044 
6.001 6.001 0.046 
6.175 6.174 0.047 
6.294 6.294 0.047 
6.308 6.307 0.046 
6.142 6.143 0.044 
6.017 6.017 0.041 
5.887 5.887 0.036 

. . .  . . . . . . .  . . . . . . .  . . .  . . . . . . . . . . .  
5.980 5.981 0.040 
6.125 6.126 0.045 
6.097 6.098 0.049 
6.123 6.123 0.051 
6.290 6.289 0.053 
6.402 6.401 0.053 
6.409 6.408 0.052 
6.236 6.236 0.050 
6.104 6.103 0.046 
5.966 5.966 0.041 

0.0275 0.0276 

0.355 0.334 
0.557 0.570 
0.00140 0.00140 

22.6 22.2 

- 38 -



in (stationary or not) autoregressive models, which ultimately can be done simply 
by OLS, is certainly easier than moving to a state space representation, setting up 
the proper initialization of the filter, running the Kalman filter, maximizing the 
likelihood, and using a fixed point smoother. 
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9 Summary 

\\'C' han' l'onsidC'n'Ci t.he problem of estimating missing observations in time series 
that follow gt'IH'fCU nonstatiollaxy ARIMA models. Section 1 presents some back­
groHud <Hid II H'yiC'w of du.' literature most relevant to our discussion. In the first 
part of thl' papl'f the paramctl'.fs of the ARIMA model arc assumed known. The op­
timal estimator is th£' cOllditional expectation of the missing observations given the 
available Ollt':-i and w(' concern ourselves with obtaining expressions for that expec­
t.ation that ('xplil'itiy show its dependence on the stochastic structure of the series; 
it::; relationship with other important statistical problems is also considered. 

Stx,tion 2 presents the case of a single missing observatiQll in a complete real­
ization of tIl{' St'ries and relates the optimal interpolator and its mean-squared-crror 
to the Inverse or Dual Autocorrelation Function of the series. Section 3 shows how 
the filter that yields the missing observation estimator is identical to the one that 
removes the effect of an additive outlier, and in section 4 it is seen how, up to a pro-­
portionality factor, the filter that estimates the outlier effect is the same as the one 
that estimates the noise. Accordingly, the missing observation estimator is obtained 
by filtering the signal, in the signal plus noise decomposition of the series. 

Section 5 presents an alternative derivation of the conditional expectation as a 
pooled estimator, and this is used in section 6 to obtain expressions for the estimator 
and its mean-squared error for the case of an observation near one of the extremes of 
the series (i.e., the case of a finite realization).  Preliminary estimation and revisions 
are then discussed. It is seen, for example, how preliminary estimators that will 
suffer large revisions tend to converge fast to the final estimator, while slow conver­
gence is associated with small revision errors. Section 7 extends the results, first, to 
a vector of consecutive observations and, finally, to the general case of any number 
of sequences of any length of missing observations (a particular case is interpolation 
of high frequency data when only low frequency data is observed). 

It is shown how the optimal estimator can always be expressed, in a compact 
way, in terms of the (perhaps truncated) dual autocorrelation function; the mean­
squared estimation error is equal to the inverse of the (appropriately chosen) dual 
autocovariance matrix. The estimator can also be seen as the result of the following 
procedure: First, fill the holes in the series with arbitrary numbers; then estimate 
each missing observation as if it was the only missing value in the arbitrarily filled 
series; and finally compute a weighted average of those estimates, where the weights 
are elements of the inverse dual autocorrelation matrix. 

The la.-;t part of the paper -, section 8 _. considers an application where the 
ARIMA model parameters are not known. For a well-known example, three ways 
of estimating different patterns of missing observations arc compared; two of the 
methods are based on an Additive Outlier (regression) approach, and the third onc 
is the standard approach whereby the Kalman filter is used to compute an appropri-
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ately defined likelihood, and the fixl.'<i point-smoother provides the illtt·rpolators. 
The comparison indicates that the three methods. have similar precision in estimat­
ing missing values. When the number of missing observations is relatively small, 
the Additive Outlier methods provide a more efficient procedure, while the opp<r 
site is true when the number of missing values becomes large. Some additional 
advantages/disadvantages of the different approaches are also discussed. 
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Fig.la: HISTORICAL Fll..TER: AIRLINE MODEL (!hI - -.6 !h12 - .3) 
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Fig.2 : ESTIMATION Fll..TERS FOR THE SIGNAL AND FOR A MISSING OBS 
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Fig.3 : ESTIMATION Fll..TERS FOR THE NOISE AND FOR AN OUTLIER EFFECT 
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Fig.4 : FILTER GAIN : SIGNAL AND MISSING OBSERVATION ESTIMATORS 
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0.6 Fi • .5.: HISTORICAL FILTER: AIRLINE MODEL (0 - Inf.) 

0.4 

0.2 I I 0 1 I .,1 Ih. I 1 , ·11· ·1 1· 

-0.2 
0 20 40 60 80 100 120 

0.6 Fi • .5b: PRELIMINARY FILTER: AIRLINE MODEL (0 - 12) 

0.4 

o 1 I I ., . ,. 'I" I'· 

0.2 

-0.2 
o 20 40 60 80 100 120 

0.6 Fi •. 5c: ONE-SIDED FILTER: AIRLINE MODEL (0 -Ol 

0.4 

0.2 

o 1 1 I ,iI ., 'I ·1 'II 
-0.2 

o 20 40 60 80 100 120 

- 46 -



Fig.6 : STANDARD FPS/MO INTERPOLATION 
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