Skip to main content
Log in

Hecke symmetries: an overview of Frobenius properties

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

This paper improves several previously known results. First, the results describing the R-skewsymmetric algebra and the quadratic dual of the R-symmetric algebra as Frobenius algebras are shown to be true with any restriction on the parameter q of the Hecke relation being removed. An even Hecke symmetry gives rise to a pair of graded Frobenius algebras. We describe interrelation between the Nakayama automorphisms of the two algebras. As an illustration of general technique we give full details of the verification that Artin–Schelter regular algebras of global dimension 3 and elliptic type A are not associated with any quantum GL(3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abella, A., Andruskiewitsch, N.: Compact quantum groups arising from the FRT-construction. Bol. Acad. Nac. Cienc. Córdoba 63, 15–44 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Andruskiewitsch, N.: An introduction to Nichols algebras, Quantization, Geometry and Noncommutative Structures in Mathematics and Physics. Springer, pp. 135–195 (2017)

  3. Artin, M., Schelter, W.F.: Graded algebras of global dimension \(3\). Adv. Math. 66, 171–216 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Artin, M., Tate, J., Van den Bergh, M.: Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift, Volume I. Birkhäuser, pp. 33–85 (1990)

  5. Artin, M., Tate, J., Van den Bergh, M.: Modules over regular algebras of dimension \(3\). Invent. Math 106, 335–388 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Springer, Berlin (2005)

    MATH  Google Scholar 

  7. Bondal, A.I., Polishchuk, A.E.: Homological properties of associative algebras: The method of helices(in Russian) Izv. Ross. Akad. Nauk Ser. Mat. 57 (2) 3–50,: Russian Acad. Sci. Izv. Math. 42(1994), 219–260 (1993)

  8. Brieskorn, E., Knörrer, H.: Plane Algebraic Curves. Birkhäuser, Basel (1986)

    Book  MATH  Google Scholar 

  9. Chirvasitu, A., Walton, C., Wang, X.: On quantum groups associated to a pair of preregular forms. J. Noncommut. Geom. 13, 115–159 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dubois-Violette, M.: Poincaré duality for Koszul algebras. In: Algebra, Geometry and Mathematical Physics, pp. 3–26. Springer (2014)

  11. Ewen, H., Ogievetsky, O.: Classification of the \(GL(3)\) quantum matrix groups. arxiv:9412009

  12. Fischman, D., Montgomery, S., Schneider, H.-J.: Frobenius extensions of subalgebras of Hopf algebras. Trans. Am. Math. Soc. 349, 4857–4895 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  14. Gelfand, I.M., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants, and Multidimensional Determinants. Birkhäuser, Basel (1994)

    Book  MATH  Google Scholar 

  15. Gurevich, D.I.: Algebraic aspects of the quantum Yang-Baxter equation(in Russian), Algebra i Analiz 2 4 119–148(1990). Leningrad Math. J. 2, 801–828 (1991)

    MathSciNet  Google Scholar 

  16. Hai, P.H.: Poincaré series of quantum spaces associated to Hecke operators. Acta Math. Vietnam 24, 235–246 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Heckenberger, I., Schneider, H.-J.: Hopf algebras and root systems Amer. Math, Soc (2020)

    Book  MATH  Google Scholar 

  18. Lyubashenko, V.V.: Vectorsymmetries, Reports Dept. Math. Univ. Stockholm , No. 19 (1987)

  19. Manin, Yu.: Quantum Groups and Non-Commutative Geometry, 2nd edn. Springer, Berlin (2018)

    Book  Google Scholar 

  20. Ohn, C.: Quantum \(SL(3,{\mathbb{C} })\)’s with classical representation theory. J. Algebra 213, 721–756 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ohn, C.: Quantum \(SL(3,{C })\)’s: the missing case Hopf Algebras in Noncommutative Geometry and Physics Marcel Dekker, pp. 245–255 (2005)

  22. Polishchuk, A., Positselski, L.: Quadratic Algebras. Am. Math, Soc (2005)

    Book  MATH  Google Scholar 

  23. Rosso, M.: Quantum groups and quantum shuffles. Invent. Math. 133, 399–416 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Skryabin, S.: On the graded algebras associated with Hecke symmetries. J. Noncommut. Geom. 14, 937–986 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Smith, S.P.: Some finite dimensional algebras related to elliptic curves. In: Representation Theory of Algebras and Related Topics. Am. Math. Soc., pp. 315–348 (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Skryabin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skryabin, S. Hecke symmetries: an overview of Frobenius properties. Sel. Math. New Ser. 29, 35 (2023). https://doi.org/10.1007/s00029-023-00843-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-023-00843-0

Keywords

Mathematics Subject Classification

Navigation