Skip to main content
Log in

Minuscule reverse plane partitions via quiver representations

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

A nilpotent endomorphism of a quiver representation induces a linear transformation on the vector space at each vertex. Generically among all nilpotent endomorphisms, there is a well-defined Jordan form for these linear transformations, which is an interesting new invariant of a quiver representation. If Q is a Dynkin quiver and m is a minuscule vertex, we show that representations consisting of direct sums of indecomposable representations all including m in their support, the category of which we denote by \(\mathcal C_{Q,m}\), are determined up to isomorphism by this invariant. We use this invariant to define a bijection from isomorphism classes of representations in \(\mathcal C_{Q,m}\) to reverse plane partitions whose shape is the minuscule poset corresponding to Q and m. By relating the piecewise-linear promotion action on reverse plane partitions to Auslander–Reiten translation in the derived category, we give a uniform proof that the order of promotion equals the Coxeter number. In type \(A_n\), we show that special cases of our bijection include the Robinson–Schensted–Knuth and Hillman–Grassl correspondences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. We recommend the pronunciation “en-ne” for .

References

  1. Assem, I., Skowronski, A., and Simson, D.: Elements of the Representation Theory of Associative Algebras: Volume 1: Techniques of Representation Theory, volume 65. Cambridge University Press (2006)

  2. Berenstein, A., Kirillov, A.N.: Groups generated by involutions, Gelfand-Tsetlin patterns, and combinatorics of young tableaux. Algebra i Analiz 7(1), 92–152 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Berenstein, A., Zelevinsky, A.: Tensor product multiplicities, canonical bases, and totally positive varieties. Inventiones Mathematicae 143, 77–128 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernstein, I.N., Gel’fand, I.M., Ponomarev, V.A.: Coxeter functors and Gabriel’s theorem. Russ. Math. Surv. 28(2), 17–32 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourbaki, N.: Lie groups and lie algebras. Springer, Cham (2008)

    MATH  Google Scholar 

  6. Britz, T., Fomin, S.: Finite posets and Ferrers shapes. Adv. Math. 158, 86–127 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dauvergne, D.: Hidden invariance of last passage percolation and directed polymers. Ann. Probab. 50(1), 18–60 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Derksen, H. and Weyman, J.: An Introduction to Quiver Representations. American Mathematical Society (2017)

  9. Einstein, D., Propp, J.: Combinatorial, piecewise-linear, and birational homomesy for products of two chains. Algebr. Combinator. 4(2), 201–224 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gabriel, P.: Auslander–Reiten sequences and representation-finite algebras. In: Representation theory I, pp. 1–71. Springer (1980)

  11. Gansner, E.R.: Acyclic digraphs, Young tableaux and nilpotent matrices. SIAM J. Algebr. Discr. Methods 2(4), 429–440 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gansner, E.R.: The Hillman–Grassl correspondence and the enumeration of reverse plane partitions. J. Comb. Theory Ser. A 30(1), 71–89 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garver, A., Patrias, R.: Greene-Kleitman invariants for Sulzgruber insertion. Electr. J. Combinator. 26(3), 25 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Green, R.M.: Combinatorics of Minuscule Representations, vol. 199. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  15. Greene, C., Kleitman, D.J.: The structure of Sperner \(k\)-families. J. Combinator. Theory Ser. A 20(1), 41–68 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grinberg, D., Roby, T.: Iterative properties of birational rowmotion II: rectangles and triangles. Electr. J. Combinator. 22(3), 3–40 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Happel, D.: Tilting sets on cylinders. Proc. Londn. Math. Soc. 3(1), 21–55 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hillman, A.P., Grassl, R.M.: Reverse plane partitions and tableau hook numbers. J. Combinator. Theory Ser. A 21(2), 216–221 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hopkins, S.: RSK via local transformations. available at http://samuelfhopkins.com/docs/rsk.pdf (2014)

  20. Kac, V.: Infinite root systems, representations of graphs and invariant theory. Inventiones Mathematicae 56, 57–92 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Keller, B.: On triangulated orbit categories. Documenta Mathematica 10, 551–581 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Knuth, D.: Permutations, matrices, and generalized Young tableaux. Pac. J. Math. 34(3), 709–727 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kraft, H. and Riedtmann, C.: Geometry of representations of quivers. In: Representations of algebras (Durham, 1985), volume 116 of London Math. Soc. Lecture Note Ser., pp. 109–145. Cambridge University Press (1986)

  24. Pak, I.: Hook length formula and geometric combinatorics. Séminaire Lotharingien de Combinatoire 46, 6 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Peng, L., Xiao, J.: Root categories and simple Lie algebras. J. Algebr. 198(1), 19–56 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Proctor, R.A.: Bruhat lattices, plane partition generating functions, and minuscule representations. Eur. J. Combinator. 5(4), 331–350 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ringel, C.M., Schmidmeier, M.: Invariant subspaces of nilpotent linear operators, I. J. Für Die Reine Angew. Math. (Crelles Journal) 2008(614), 1–52 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. de Robinson, G.B.: On the representations of the symmetric group. Am. J. Math. 745–760 (1938)

  29. Roby, T.: Dynamical algebraic combinatorics and the homomesy phenomenon. In: Beveridge, A., et al. (eds.) Recent Trends in Combinatorics, vol. 159, pp. 619–652. Springer, Cham (2016)

    Chapter  MATH  Google Scholar 

  30. Schensted, C.: Longest increasing and decreasing subsequences. Can. J. Math. 13, 179–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  32. Striker, J., Williams, N.: Promotion and rowmotion. Eur. J. Combinator. 33(8), 1919–1942 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sulzgruber, R.: Building reverse plane partitions with rim-hook-shaped bricks. Séminaire Lotharingien do Combinatoire 78(65), 12 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Sulzgruber, R.: Inserting rim-hooks into reverse plane partitions. J. Combinator. 11(2), 275–303 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wildberger, N.J.: Minuscule posets from neighbourly graph sequences. Eur. J. Combinator. 24(6), 741–757 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

AG was suppported by NSERC grant RGPIN/05999-2014 and the Canada Research Chairs program. AG thanks Gabe Frieden for useful discussions and helpful comments on an earlier version of the paper. BP was supported by NSERC, CRM-ISM, and the Canada Research Chairs program. HT was supported by an NSERC Discovery Grant and the Canada Research Chairs program. He thanks Arkady Berenstein and Steffen Oppermann for helpful discussions, and Guillaume Chapuy for an inspiring explanation of Robinson–Schensted–Knuth. He also thanks the Université Paris VII for the excellent working conditions under which part of the research was carried out. The authors thank Bernhard Keller for a comment on an earlier version of the paper and Robin Sulzgruber for sharing an early version of his paper [33], which was inspirational to the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Garver.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garver, A., Patrias, R. & Thomas, H. Minuscule reverse plane partitions via quiver representations. Sel. Math. New Ser. 29, 37 (2023). https://doi.org/10.1007/s00029-023-00831-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-023-00831-4

Mathematics Subject Classification

Navigation