Skip to main content
Log in

Representations of fusion categories and their commutants

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

A bicommutant category is a higher categorical analog of a von Neumann algebra. We study the bicommutant categories which arise as the commutant \({\mathcal {C}}'\) of a fully faithful representation \({\mathcal {C}}\rightarrow \textrm{Bim}(R)\) of a unitary fusion category \({\mathcal {C}}\). Using results of Izumi, Popa, and Tomatsu about existence and uniqueness of representations of unitary (multi)fusion categories, we prove that if \({\mathcal {C}}\) and \({\mathcal {D}}\) are Morita equivalent unitary fusion categories, then their commutant categories \({\mathcal {C}}'\) and \({\mathcal {D}}'\) are equivalent as bicommutant categories. In particular, they are equivalent as tensor categories:

$$\begin{aligned} \Big (\,\,{\mathcal {C}}\,\,\simeq _{\textrm{Morita}}\,\,{\mathcal {D}}\,\,\Big ) \qquad \Longrightarrow \qquad \Big (\,\,{\mathcal {C}}' \,\,\simeq _{\textrm{tensor}}\,\,{\mathcal {D}}'\,\,\Big ). \end{aligned}$$

This categorifies the well-known result according to which the commutants (in some representations) of Morita equivalent finite dimensional \(\textrm{C}^*\)-algebras are isomorphic von Neumann algebras, provided the representations are ‘big enough’. We also introduce a notion of positivity for bi-involutive tensor categories. For dagger categories, positivity is a property (the property of being a \(\textrm{C}^*\)-category). But for bi-involutive tensor categories, positivity is extra structure. We show that unitary fusion categories and \(\textrm{Bim}(R)\) admit distinguished positive structures, and that fully faithful representations \({\mathcal {C}}\rightarrow \textrm{Bim}(R)\) automatically respect these positive structures. This is the published version of arXiv:2004.08271.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the original definition of bicommutant categories [14], positive structures were not mentioned. We believe that this was a mistake. We fix this by slightly altering the definition.

  2. We omit various unitors and associators to keep the equations compact.

  3. We omit the structure isomorphisms \(\mu \) and i for better readability.

  4. Note that, by Lemma 3.4, such functors are almost always fully faithful.

  5. The equivalence between this definition and the one presented in [42, Definition 2.16] follows along the same lines as the proof of [28, Lemma 8.3].

  6. An endomorphism \(\rho \in {{\,\textrm{End}\,}}(R)\) has finite depth if the \(\textrm{C}^{*}\)-tensor category generated by \(\rho \) is fusion.

  7. Similarly to [18, Lemma 3.5] the collection of pairs \(({\mathcal {C}},X)\) forms a 2-category which is equivalent to a 1-category.

  8. The results in [1] are phrased in the context of von Neumann algebras with finite dimensional centers but extend verbatim to the case of von Neumann algebras with atomic centers.

  9. The letters cp stands for “completely positive”. We warn the reader that positive maps \(a\otimes \bar{a}\rightarrow a\otimes \bar{a}\) (i.e., maps which can be written as \(f^*{\circ } f\)) are typically not cp.

References

  1. Bartels, A., Douglas, C.L., Henriques, A.: Dualizability and index of subfactors. Quantum Topol. 5(3), 289–345 (2014). https://doi.org/10.4171/QT/53. arXiv:1110.5671

    Article  MathSciNet  MATH  Google Scholar 

  2. Connes, A.: Classification of injective factors. Cases \(II_{1}\), \(II_{\infty }\), \(III_{\lambda }\), \(\lambda \ne 1\). Ann. Math. (2) 104(1), 73–115 (1976)

    Article  MathSciNet  Google Scholar 

  3. Connes, A.: Noncommutative Geometry. Academic Press Inc., San Diego (1994)

    MATH  Google Scholar 

  4. Das, P., Ghosh, S.K., Gupta, V.P.: Perturbations of planar algebras. Math. Scand. 114(1), 38–85 (2014). arXiv:1009.0186

    Article  MathSciNet  MATH  Google Scholar 

  5. Egger, J.M.: On involutive monoidal categories. Theory Appl. Categ. 25(14), 368–393 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories, Volume 205 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2015). https://doi.org/10.1090/surv/205

    Book  MATH  Google Scholar 

  7. Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. (2) 162(2), 581–642 (2005). https://doi.org/10.4007/annals.2005.162.581. arXiv:0203060 [math.QA]

    Article  MathSciNet  MATH  Google Scholar 

  8. Etingof, P., Nikshych, D., Ostrik, V.: Fusion categories and homotopy theory. Quantum Topol. 1(3), 209–273 (2010). With an appendix by Ehud Meir, https://doi.org/10.4171/QT/6. arXiv:0909.3140

  9. Falguières, S., Raum, S.: Tensor \({\rm C}^{*}\)-categories arising as bimodule categories of \({\rm II}_{1}\) factors. Adv. Math. 237, 331–359 (2013). https://doi.org/10.1016/j.aim.2012.12.020. arXiv:1112.4088v2

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghez, P., Lima, R., Roberts, J.E.: \(W^{\ast }\)-categories. Pac. J. Math. 120(1), 79–109 (1985)

    Article  MATH  Google Scholar 

  11. Haagerup, U.: The standard form of von Neumann algebras. Math. Scand. 37(2), 271–283 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haagerup, U.: Connes’ bicentralizer problem and uniqueness of the injective factor of type \({\rm III}_{1}\). Acta Math. 158(1–2), 95–148 (1987). https://doi.org/10.1007/BF02392257

    Article  MathSciNet  MATH  Google Scholar 

  13. Haagerup, U.: On the uniqueness of injective \({\rm III}_1\) factor (2016). arXiv:1606.03156

  14. Henriques, A.G.: What Chern–Simons theory assigns to a point. Proc. Natl. Acad. Sci. USA 114(51), 13418–13423 (2017). https://doi.org/10.1073/pnas.1711591114. arXiv:1503.06254

    Article  MathSciNet  MATH  Google Scholar 

  15. Hiai, F., Izumi, M.: Amenability and strong amenability for fusion algebras with applications to subfactor theory. Int. J. Math. 9(6), 669–722 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hiai, F.: Minimizing indices of conditional expectations onto a subfactor. Publ. Res. Inst. Math. Sci. 24(4), 673–678 (1988). https://doi.org/10.2977/prims/1195174872

    Article  MathSciNet  MATH  Google Scholar 

  17. Henriques, A., Penneys, D.: Bicommutant categories from fusion categories. Sel. Math. (N.S.) 23(3), 1669–1708 (2017). https://doi.org/10.1007/s00029-016-0251-0. arXiv:1511.05226

    Article  MathSciNet  MATH  Google Scholar 

  18. Henriques, A., Penneys, D., Tener, J.E.: Planar algebras in braided tensor categories (2016). arXiv:1607.06041, to appear Mem. Amer. Math. Soc

  19. Izumi, M.: Canonical extension of endomorphisms of type III factors. Am. J. Math. 125(1), 1–56 (2003). arXiv:0104228 [math]

    Article  MathSciNet  MATH  Google Scholar 

  20. Izumi, M.: A Cuntz algebra approach to the classification of near-group categories. In: Proceedings of the 2014 Maui and 2015 Qinhuangdao Conferences in Honour of Vaughan F. R. Jones’ 60th Birthday, Volume 46 of Proc. Centre Math. Appl. Austral. Nat. Univ., pp. 222–343. Austral. Nat. Univ., Canberra (2017). arXiv:1512.04288

  21. Jones, V.: Planar algebras. N. Z. J. Math. 52, 1–107 (2021). arXiv:9909027 [math.QA]

    Article  MathSciNet  MATH  Google Scholar 

  22. Jones, C., Penneys, D.: Operator algebras in rigid \({\rm C}^*\)-tensor categories. Commun. Math. Phys. 355(3), 1121–1188 (2017). https://doi.org/10.1007/s00220-017-2964-0. arXiv:1611.04620

    Article  MathSciNet  MATH  Google Scholar 

  23. Joyal, A., Street, R.: The geometry of tensor calculus. I. Adv. Math. 88(1), 55–112 (1991). https://doi.org/10.1016/0001-8708(91)90003-P

    Article  MathSciNet  MATH  Google Scholar 

  24. Kosaki, H., Longo, R.: A remark on the minimal index of subfactors. J. Funct. Anal. 107(2), 458–470 (1992). https://doi.org/10.1016/0022-1236(92)90118-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Longo, R.: Index of subfactors and statistics of quantum fields. I. Commun. Math. Phys. 126(2), 217–247 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Longo, R., Roberts, J.E.: A theory of dimension. K-Theory 11(2), 103–159 (1997). https://doi.org/10.1023/A:1007714415067. arXiv:9604008 [funct-an]

    Article  MathSciNet  MATH  Google Scholar 

  27. Lusztig, G.: Leading coefficients of character values of Hecke algebras. In: The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Volume 47 of Proc. Sympos. Pure Math., pp. 235–262. Amer. Math. Soc., Providence (1987)

  28. Masuda, T., Tomatsu, R.: Classification of minimal actions of a compact Kac algebra with amenable dual. Commun. Math. Phys. 274(2), 487–551 (2007). https://doi.org/10.1007/s00220-007-0269-4. arXiv:0604348 [math]

    Article  MathSciNet  MATH  Google Scholar 

  29. Masuda, T., Tomatsu, R.: Approximate innerness and central triviality of endomorphisms. Adv. Math. 220(4), 1075–1134 (2009). https://doi.org/10.1016/j.aim.2008.10.005. arXiv:0802.0344

    Article  MathSciNet  MATH  Google Scholar 

  30. Müger, M.: From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories. J. Pure Appl. Algebra 180(1–2), 81–157 (2003). https://doi.org/10.1016/S0022-4049(02)00247-5. arXiv:0111204 [math.CT]

    Article  MathSciNet  MATH  Google Scholar 

  31. Murray, F.J., von Neumann, J.: On rings of operators. IV. Ann. Math. 2(44), 716–808 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  32. Penneys, D.: Unitary dual functors for unitary multitensor categories. High. Struct. 4(2), 22–56 (2020). arXiv:1808.00323

    Article  MathSciNet  MATH  Google Scholar 

  33. Popa, S.: Classification of subfactors: the reduction to commuting squares. Invent. Math. 101(1), 19–43 (1990). https://doi.org/10.1007/BF01231494

    Article  MathSciNet  MATH  Google Scholar 

  34. Popa, S.: An axiomatization of the lattice of higher relative commutants of a subfactor. Invent. Math. 120(3), 427–445 (1995). https://doi.org/10.1007/BF01241137

    Article  MathSciNet  MATH  Google Scholar 

  35. Popa, S.: Classification of Subfactors and Their Endomorphisms, Volume 86 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC (1995)

  36. Popa, S., Vaes, S.: Representation theory for subfactors, \(\lambda \)-lattices and \({\rm C}^*\)-tensor categories. Commun. Math. Phys. 340(3), 1239–1280 (2015). https://doi.org/10.1007/s00220-015-2442-5. arXiv:1412.2732

    Article  MathSciNet  MATH  Google Scholar 

  37. Sauvageot, J.-L.: Sur le produit tensoriel relatif d’espaces de Hilbert. J. Oper. Theory 9(2), 237–252 (1983)

    MathSciNet  MATH  Google Scholar 

  38. Selinger, P.: Dagger compact closed categories and completely positive maps: (extended abstract). In: Proceedings of the 3rd International Workshop on Quantum Programming Languages (QPL 2005), Volume 170, pp. 139–163 (2007). https://doi.org/10.1016/j.entcs.2006.12.018

  39. Selinger, P.: A survey of graphical languages for monoidal categories. In: New Structures for Physics, Volume 813 of Lecture Notes in Phys., pp. 289–355. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-12821-9_4

  40. Sawada, Y., Yamagami, S.: Notes on the bicategory of \({\rm W}^*\)-bimodules (2017). arXiv:1705.05600

  41. Takesaki, M.: Theory of Operator Algebras. II, Volume 125 of Encyclopaedia of Mathematical Sciences. Springer, Berlin (2003). Operator Algebras and Non-commutative Geometry, 6

  42. Tomatsu, R.: Centrally free actions of amenable \({\rm C}^*\)-tensor categories on von Neumann algebras. Commun. Math. Phys. 383(1), 71–152 (2021). https://doi.org/10.1007/s00220-021-04037-7. arXiv:1812.04222

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Reiji Tomatsu for helping us understand his article [42]. We thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme Operator Algebras: Subfactors and their Applications where work on this paper was undertaken. This work was supported by EPSRC grant no EP/K032208/1. André Henriques was supported by the Leverhulme trust and the EPSRC grant “Quantum Mathematics and Computation”. David Penneys was partially supported by NSF DMS grants 1500387/1655912 and 1654159.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Penneys.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henriques, A., Penneys, D. Representations of fusion categories and their commutants. Sel. Math. New Ser. 29, 38 (2023). https://doi.org/10.1007/s00029-023-00841-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-023-00841-2

Mathematics Subject Classification

Navigation