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Abstract

A link at the origin of an isolated singularity of a two-dimensional semialgebraic
surface in R* is a topological knot (or link) in S3. We study the connection between
the ambient Lipschitz geometry of semialgebraic surface germs in R* and knot theory.
Namely, for any knot K, we construct a surface Xx in R* such that: the link at the
origin of X is a trivial knot; the germs Xk are outer bi-Lipschitz equivalent for all
K; two germs X g and X g/ are ambient semialgebraic bi-Lipschitz equivalent only if
the knots K and K’ are isotopic. We show that the Jones polynomial can be used to
recognize ambient bi-Lipschitz non-equivalent surface germs in R*, even when they
are topologically trivial and outer bi-Lipschitz equivalent.
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1 Introduction

We study the difference between the outer and ambient bi-Lipschitz equivalence of
semialgebraic surface germs at the origin in R*. Two surface germs are outer bi-
Lipschitz equivalent if they are bi-Lipschitz equivalent as abstract metric spaces with
the outer metric d(x, y) = |lx — y|. Ambient bi-Lipschitz equivalence means that
there exists a germ of a bi-Lipschitz, orientation preserving, homeomorphism of the
ambient space mapping one of them to the other one. Note that in Singularity Theory
the homeomorphism is not required to be orientation preserving. We add this condition
to be consistent with the isotopy equivalence relation in Knot Theory. Also, to avoid
confusion between the Singularity Theory and Knot Theory notions of the link, we
always write “the link at the origin” speaking of the link of a surface germ.

If a surface germ in R* with a connected link at the origin has an isolated singularity
then its link is a knot in S3. The results of [3] show that ambient equivalence is
different from outer equivalence even when there are no topological obstructions.
This phenomenon is called “metric knots.” We consider the following question: How
different are these equivalence relations? In the previous paper [3] we show that, for
any given ambient topological type of a surface germ, one can find infinitely many
equivalence classes with respect to ambient bi-Lipschitz equivalence. In this paper we
start by showing that the question becomes nontrivial even when “there is no topology,”
i.e., for the germs with unknotted links at the origin. Universality Theorem (Theorem
3.1 below) implies that the ambient bi-Lipschitz classification in this case “contains
all of Knot Theory.”

More precisely, for any knot K, there exists a germ of a surface X in R* such
that:

1. The link at the origin of Xk is a trivial knot;

2. The germs Xk are outer bi-Lipschitz equivalent for all K;

3. Two germs Xk and X/ are ambient semialgebraic bi-Lipschitz equivalent only
if the knots K and K’ are isotopic.

In other words, although the links at the origin of all surface germs X ¢ are trivial
knots, the map K — X from the set of all isotopy classes of knots in S to the set
of ambient bi-Lipschitz equivalence classes of surface germs in R* is injective.

The second theorem (Theorem 3.5 below) states that, for each germ Xg in
Universality Theorem, there are infinitely many semialgebraic surfaces X ; satis-
fying Universality Theorem, such that Xg ; and Xk ; are semialgebraic ambient
bi-Lipschitz equivalent only if i = j.

The proofs are based on the following results of Sampaio [12] and Valette [13],
(see also [1] and [2]).

Theorem 1.1 ([12, Theorem 3.2]) If (X, 0) and (Y, 0) are ambient semialgebraic bi-
Lipschitz equivalent semialgebraic germs, then their tangent cones Co(X) and Cy(Y)
are ambient semialgebraic bi-Lipschitz equivalent.

Theorem 1.2 ([13, Corollary 0.2]) If two semialgebraic germs (X, 0) and (Y, 0) are
semialgebraic bi-Lipschitz homeomorphic, then there is a semialgebraic bi-Lipschitz
homeomorphism h: (X, 0) — (Y, 0) preserving the distance to the origin.
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In Section 3 we define (81, B2)-bridges and the saddle move, closely related to
the broken bridge construction in [3]. A one-bridge surface germ is a surface germ
containing a single (81, f2)-bridge and metrically conical outside it. The saddle move
relates the metric problem of ambient semialgebraic bi-Lipschitz equivalence of two
one-bridge surface germs in R* with the topological problem of isotopy of two knots
in $3 corresponding to the links at the origin of the surfaces obtained from these one-
bridge surface germs by the saddle moves (see Definition 3.3). That is why topological
knot invariants, such as the Jones polynomial, yield metric knot invariants, which can
be used to recognize ambient semialgebraic bi-Lipschitz non-equivalence of surface
germs.

Although one-bridge surface germs are the simplest examples of not Lipschitz
normally embedded surfaces, they have rather non-trivial ambient Lipschitz geometry.
Another version of Universality Theorem (Theorem 3.13 below) states that, for any
two knots K and L, one can construct a one-bridge surface germ X g such that:

1. The link at the origin of Xk is isotopic to L;

2. For any knots K and L, all surface germs X g are outer bi-Lipschitz equivalent;

3. Surface germs Xk, and X,;, are ambient semialgebraic bi-Lipschitz equivalent
only if the knots K| and K, are isotopic.

In Section 4 we consider the Jones polynomial of the link at the origin L = Lg(x)
of a surface germ S(X) obtained from a one-bridge surface germ X by the saddle
move (see Definition 3.3). Since the isotopy class of L is an ambient semialgebraic
Lipschitz invariant, its Jones polynomial becomes an ambient Lipschitz invariant of
X.IfX=X ’K’i is a “twisted” surface constructed in [3] (see also Theorem 3.5) and
K is a trivial knot, then L is a torus link. Its Jones polynomial is computed completely
(see Corollary 4.2 and Remark 4.3) and determines the number i of twists. This shows
that Jones polynomial can be used to prove ambient bi-Lipschitz non-equivalence of
metric knots.

If we do not suppose the surface germ to be a one-bridge surface germ, we obtain
a stronger version of Universality Theorem (Theorem 3.14 below). It states that, for
any two knots K and L, and any two rational numbers « > 1 and 8 > 1, one can

construct a surface germ X ‘Ixf 1. such that:

1. The link at the origin of X (;(ﬂ ; is isotopic to L;

2. For a fixed knot K, the tangent link of X (;(ﬂ 1 (.e., the intersection of the tangent
cone with the unit sphere) is isotopic to K;

3. All surface germs X ‘Ix(ﬂ ;. are outer bi-Lipschitz equivalent for fixed & and 8.

All sets, functions and maps in this paper are assumed to be real semialgebraic. We
use semialgebraic bi-Lipschitz equivalence, because we refer to the theorem of Valette
[13]. Our results are also true for subanalytic bi-Lipschitz equivalence of subanalytic
surface germs, and we expect them to remain true in any polynomially bounded o-
minimal structure over R. The Universality Theorem 3.1 was announced without a
proof in the expository paper [4].
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2 Definitions and notations

We consider germs at the origin of semialgebraic surfaces (two-dimensional semial-
gebraic sets) in R?.

Definition 2.1 A surface X can be considered as a metric space, equipped with either
the outer metric d(x, y) = ||x — y|| or the inner metric d; (x, y) defined as the minimal
length of a path in X connecting x and y. A germ X is Lipschitz normally embedded
if its inner and outer metrics are equivalent.

Definition 2.2 Two germs of semialgebraic sets (X,0) and (Y, 0) are outer bi-
Lipschitz equivalent if there exists a homeomorphism H: (X,0) — (Y, 0) bi-
Lipschitz with respect to the outer metric. The germs are semialgebraic outer
bi-Lipschitz equivalent if the map H can be chosen to be semialgebraic. The germs are
ambient bi-Lipschitz equivalent if there exists an orientation preserving bi-Lipschitz
homeomorphism H : (R4,O) — (R“,O), such that H (X)~= Y. The germs are
semialgebraic ambient bi-Lipschitz equivalent if the map H can be chosen to be
semialgebraic.

Definition 2.3 The link at the origin Lx of a germ X is the equivalence class of the
sets X N Sg’ . for small positive & with respect to the ambient bi-Lipschitz equivalence.
The tangent link of X is the link at the origin of the tangent cone of X.

Remark 2.4 By the finiteness theorems of Mostowski, Parusinski and Valette (see [10,
11, 14]) the link at the origin is well defined. We write “the link at the origin” speaking
of this notion of the link from Singularity Theory, reserving the word “link” for the
notion of the link in Knot Theory. If X has an isolated singularity at the origin then
each connected component of Ly is a knot in §3.

Definition 2.5 A semialgebraic germ (X,0) C R” is called outer metrically coni-
cal if there exists a germ of a bi-Lipschitz homeomorphism H: (X,0) — C(Ly),
where C(Ly) is a straight cone over Ly. The map H is called a conification map.
A germ (X, 0) is called ambient metrically conical if there exists a germ of a bi-
Lipschitz homeomorphism H:R" — R”, such that H (X,0) = C(Lx). The map
H is also called a conification map. A germ (X, 0) is called outer (ambient) semial-
gebraic metrically conical if a corresponding conification map can be chosen to be
semialgebraic.

Remark 2.6 Notice that the definition makes sense for semialgebraic germs of any
dimension, not only for surface germs.

Definition 2.7 An arc in a semialgebraic germ (X, 0) is a germ of a semialgebraic
embedding y : [0, €) — X such that y(0) = 0. Unless otherwise specified, arcs are
parameterized by the distance to the origin, i.e., ||y (¢)|| = t. We identify an arc with
its image in X.

Definition 2.8 Let f # 0 be (a germ at the origin of) a semialgebraic function defined
onan arc y. The order a of f on y (notation @ = ord,, f) is the value € Q such that
fly@®) =ct* +o(% ast — 0, where c #0.If f =0on y, we setord, f = oo.
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(-t,t) (1)  (-t%¢) (t*¢)
0,tk 0,tk

a) (0,¢%) (0,49 b) | ( )(0’_tﬁ)

(-t,-t) (t,-8) (-t%-t) (t%,-t)

Fig.1 a The set W;. b The set Wtaﬁ

For any two arcs ¥ and y’ in X one can define two orders of contact: inner and
outer.

Definition 2.9 The outer order of contact tord(y, y') is defined as ord, f, where
f@) = lly@®) —y'®ll. The inner order of contact itord(y, y’) is defined as ord, g,
where g(t) = d,(y (1), y'(t)). Here d), is a definable pancake metric (see [5]) equiv-
alent to the inner metric. These two orders of contact are rational numbers such that
1 <itord(y,y’) <tord(y,y’).

Definition 2.10 Let 8 > 1 be a rational number. Consider the space R? with coor-
dinates (x, y, z). For a fixed t > 0, let Z, = {|x| < t, |y| < t} be a square in the
xy-plane {z = r}andlet Z = | J,. Z;. Let W," be the subset of Z, bounded by the line
segment I, = {|x| <, y = t}and the union J;" of the two line segments connecting
the endpoints of ;" with the point (0, ##). Let W, = {(x, y) : (x, —y) € W,"} and
J7 ={(x,y): (x,—y) € J;'}.Let W, = W,* U W, (shaded area in Fig. 1a) and let
W = ,-o Wi C R3. A B-bridge is the surface germ Bg = | J,-qJ;" U J; . Note
that the tangent cone of W is the set {|x| < |y| < z} and the tangent cone of Bg is the
surface germ {|x| = |y| < z}.

Definition 2.11 Let 1 < B; < B, be two rational numbers. For a fixed r > 0, let
Zi ={lx| =t, |yl =t, z=t}and Z = |J,5¢ Z: be as in Definition 2.10. In the
xy-plane {z = t} consider the points (see Fig. 2)

pi(t) = (—t,1), pa(t) = (=P, 1), p3(t) = P, 172), pat) = (1, 1),
pLt) = (=t, —1), ph(t) = (=P, —tP), pi(t) = P, —1P2), pl(t) = (t, —1).

Let us connect the points p1(¢), p2(¢), p3(t), pa(t) by three line segments, and define
J;™ as the union of these three segments. Let U;” C Z, be the convex hull of J;". Let P,
be the segment connecting the points p> () and p3(z). Similarly, let J;~ be the union of
segments connecting the points p1(¢), p5(t), p5(t), p,(t), and let U, be the convex
hull of J,~ and P;” be the segment connecting p5(t) with p5(7). Let Py = PruUP”
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p1= (-t.,t) p4 = (1)

p2 = (-t&, tﬁZ)

Dy= (tP11%)
Py= ()

pé: (tﬁw,_tﬁz)

D; = (-t-1) D= (t-1)

Fig.2 The set U;

andlet P = (J,.o P C R3. Let U, = U;" U U, (shaded area in Fig. 2), and let
U = ,-oU: C R3. A (By, Bo)-bridge is the surface germ Bg,p, = | J,~( Ji» Where
Ji=J U

Note that the set U has the same tangent cone at the origin as W, while the tangent
cone at the origin of P is the positive z-axis. Note also that, for §; = B, = S, the
(B, B)-bridge is outer bi-Lipschitz equivalent to the §-bridge.

Definition 2.12 Let X be a semialgebraic surface germ in R* with the link at the origin
homeomorphic to a circle in S3. We say that X is a one-bridge surface germ if

1. There exists a semialgebraic bi-Lipschitz C! embedding ©: (Z,0) — (R*,0)
such that ®(Bg,s,) = X N O(Z).

2. The union X U®(Z) is Lipschitz normally embedded in R* and ambient semialge-
braic metrically conical: there exist a semialgebraic bi-Lipschitz homeomorphism
H: (R“, 0) — (R*, 0), such that H(X U ©(Z)) is a straight cone.

Definition 2.13 Leto > 1and 8 > 1 be rational numbers. Consider the space R> with
coordinates (x, y, z). Forafixedt > 0,let Z¥ = {|x| < t*, |y| <t} be arectangle in
the xy-plane {z = t}. Let W be the subset of the rectangle Z* bounded by the line
segment I;H' = {|x| < t*, y =t} and the union JZ‘H' of the line segments connecting
the endpoints of 2+ with the point (0, t#). Let W*™ = {(x, ) : (x, —y) € W* T} and
JET ={(x, ) : (x,—y) € J*F}). Let W¥ = W*T U W™ (shaded areas in Fig. 1b)
andlet W* = (J,., W¥ C R3. An (a, B)-wedge s the surface germ E%F = ., J2,
where J* = J¥T U J.

Note that the tangent cone at the origin of W¢ is the set {(x, y,z) : x = 0; |y| < z}.

Remark 2.14 We define a link diagram in the same way as it is done in Knot Theory,
choosing a generic projection of the topological link to some 2-dimensional plane in
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Fig. 3 Hornification of the cone over a knot

RR3 (see [8] for details). Two diagrams are equivalent if they can be related by a finite
sequence of Reidemeister moves.

The following result is a special case of the finiteness theorem of Hardt (see [6]).

Theorem 2.15 Let X be a semialgebraic surface germ. Then, for small t > 0 and for
any plane R?, such that the projections of the links X N S, are generic, the diagrams
of the links X N S; are equivalent.

Definition 2.16 Let Fx C S° be a smooth semialgebraic embedded surface diffeo-
morphic to §' x [—1, 1], such that the two components K and K’ of the boundary
0 Fk of Fk are isotopic to the same knot K and the linking number (see [9]) of the
components NE and Ig " is zero. The surface Fk is called a characteristic band of the
knot K. Let Yx and X g be the cones over Fx and d Fg, respectively. These cones are
called characteristic cones of the knot K.

Definition 2.17 Let (o, [), where p € Stand! € [—1, 1], be coordinates in Fg. Let
& = (po, 0) be an interior point of Fx. We define a slice Sk = {(p,]) € Fx, |p —

pol < €}.

Definition 2.18 Let 8 > 1 be a rational number. The standard S-horn in R?* is the
set Cg = {(x,y,z,1) € R* |t > 0, x2+ y2 + z2 = ?P}. The standard B-horn
like neighborhood of the positive t-axis is the set Vg = {(x,y,z,1t) € R4 | t >
0, x>+ y* + 2 < 1?8},

Ifg =1then C; = {t > 0, xz—i—yz—i—z2 = tz} isacone and V| = {r >
0, x? 4+ y? 4 z2 < %} is a conical neighborhood of the positive 7-axis.

The standard B-hornification Eg: Vi — Vg is defined as Eg(x,y,z,1) =
(xtB,yth, 2P 1).

For an arc ¥ C R*, a conical neighborhood of y is the image Vi (y) of a semialge-
braic bi-Lipschitz map ®: V; — R* such that y is the image of the positive ¢-axis.
A B-horn like neighborhood of y is Vg(y) = ®(Vp), and a B-hormnification to y is
the map Wg: Vi(y) — Vp(y) defined as Wg = $ o Eg o @1 (see Fig. 3). We may
assume, by Valette’s theorem, that Wg preserves the distance to the origin. For a subset
S of Vi(y), the set Wg(S) is called a B-hornification of S to y.

) Birkhauser
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3 Metric knots

Theorem 3.1 (Universality Theorem) Let K C S° be a knot. Then one can associate
to K a semialgebraic one-bridge surface germ (Xg,0) in R* so that the following
holds:

1. The link at the origin of each germ X i is a trivial knot;

2. All germs X g are outer bi-Lipschitz equivalent;

3. Two germs Xk, and Xk, are ambient semialgebraic bi-Lipschitz equivalent only
if the knots K| and K> are isotopic.

Proof Let Fx C S3 be a characteristic band of the knot K, and let 171( and X x be the
corresponding characteristic cones (see Definition 2.16). Let Sx¢ C Fk be a slice (see
Definition 2.17). Let ¢g : Sk — Z1, where Z; is the set Z; in Definition 2.10 with
t = 1, be a semialgebraic bi-Lipschitz homeomorphism (p, /) — ((p — po)/€, ).
Let Mk ={toc :t >0, 0 € Sg} C R* be the cone over Sgx. We define a mapping
®g: Mg — Z C R3 as the corresponding mapping of the cones:

Ok (to) =tpk (o) for o € Sk. (1)

Note that ® is a bi-Lipschitz homeomorphism. Let W C R3 be the set in Definition
2.10, and let

VKZ‘IDEI(W), YKZ(YK\MK)UVK, Xg =0Yk. ()

Then Xk is a one-bridge surface germ, part of the surface germ Xk inside Mg being
replaced by a B-bridge Bg (see Fig. 4). Let us show that X g satisfies the conditions
of Theorem 3.1.

1) The link at the origin of Xk is a trivial knot, because it bounds the closure of
Fk \ Sk homeomorphic to a disk.

2) Let K; and K> be any two knots. Let W : Y, K — Y, K, be a semialgebraic
bi-Lipschitz map sending each point (p, [/, ) € 171(1 to the point (p,/,?) € 171(2. By
definition W (Mk,) = Mk,. By the definition of the maps ® g, and P, (see (1)) we
have W (Yk,) = Yk, and ¥(Xg,) = Xk,.

3) Note that, for any knot K, the link of the tangent cone CoX g of the set Xk
is the union of two knots isotopic to K, with a single common point. Thus if K
and K> are not isotopic, then the tangent cones Co Xk, and CoX, are not ambient
topologically equivalent. This contradicts Sampaio’s theorem [12] (see also Theorem
1.1) which implies that tangent cones of ambient Lipschitz equivalent semialgebraic
sets are ambient Lipschitz equivalent. In our case, the links of the tangent cones are
not even ambient topologically equivalent.

This concludes the proof of Theorem 3.1. O

Definition 3.2 A surface germ X g obtained by the above construction is called a band-
bridge surface germ corresponding to the knot K and a 8-bridge (or a (81, B2)-bridge
as in the proof of Theorem 3.5 below).
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Xk =0Yk

/\ W
Fig.4 The links of the sets Xy = 0Yk and W in the proof of Theorem 3.1

Definition 3.3 Consider the (Bi, B2)-bridge Bg,g, = U,>0J_t (see Definition
2.11). The set J;, has two components J; and J~, each of them consist-
ing of three line segments connecting the points pi(t), p2(t), p3(t), pa(t) and
1), p5(1), p5(t), p,(t), respectively (see Fig. 2). Let J; be the set obtained by
replacing the line segments [p2(¢), p3(#)] and [p/z(t), pg ()] in J; with the line seg-

ments [p2(t), p5(t)] and [p3(t), p5(1)] (see Fig. 5a). Let Sg,5, = UJ,~¢ Ji. Let X be
a one-bridge surface germ (see Definition 2.12). Replacing B = O(Bg,g,) C X with
S = ©(S8p,,), we obtain a new surface germ S(X). This defines the saddle move
operation applied to X.

Lemma3.4 Let X and X, be semialgebraic ambient bi-Lipschitz equivalent one-
bridge surface germs. Then the surface germs S(X1) and S(X37), obtained by the
saddle move applied to X| and X», are ambient topologically equivalent, the links at
the origin Ls(x,y and Lsx,) are isotopic as topological links in S°, and the diagrams
of the links Lg(x,) and Ls(x,) are equivalent.

Proof Let Z C R3 be as in Definitions 2.10 and 2.11. Let ®;: Z — R* and
®,: Z - R*be bi-Lipschitz embeddings such that §1 = 01(Bgg,) C X and
Ez = ©2(Bg,,) C X». Since X; and X, are one-bridge surfaces, we can suppose
that X1 U®;(Z) and X, U ®,(Z) are straight cones over their links. Let H : R* > R*
be a bi-Lipschitz homeomorphism isotopic to identity such that H(X;) = X;. By
Valette’s Theorem [13] (see also Theorem 1.2) we may suppose that H preserves the

) Birkhauser



43 Page 10 0f 20 L. Birbrair et al.

a)
P, P, ><
24 p —
b)
P, P,
P p —

Fig.5 a The saddle move. b The crossing move

distance to the origin, and that the maps ®; and ®, send each section Z; of Z to the
sphere S; of radius 7 centered at the origin.

Let P; = Ol(P) and P, = @2(P) where P = U,>0 P, C B/gllg2 (see Definition
2.11) and let Pl(t) =01(P) = Pl N S; and Pz(l) = Oy(Py) = P2 nsS;. Slnce the
tangent cone CoP of P is the positive z-axis, the tangent cones Cy P1 and Cy Pz of
P1 and P2 are rays in R4 For a small positive €, let Ny C S; be a ball of radius e
centered at the point Cy P2 NS;,and let N = U,>0 N; be a conical e-neighbourhood
of Coﬁz. Note that ﬁz CNNX, C Ez for small € > 0.

Let pa(t), p5(t), p3(t), p5(t) be the boundary points of P; (see Definition 2.11).
Let g2(t) = O1(p2(1)), g5(t) = O1(p5(1)), g3(1) = O1(p3(1)), g5(t) = O1(p5(1))
be the boundary points of Pj(¢), and let v2(f) = O2(pa(t)), vi(t) = O2(p5(1)),
v3(1) = O2(p3(1)), v5(t) = O2(p5(1)) be the boundary points of P> (¢). Then g»(r) =
H(q2(1)), 33() = H(g5(1). 3(5) = H(gs(1)). G5(1) = H(g}(1)) are the boundary
points of H(P;(t)). ~

The saddle move operation applied to X replaces Py with Q = ;- Qr, where
Or = 02(t) U Q3(1), Q2(1) = O1([p2(1), p5(D]), O3(t) = O1([p3(1), p5()]).
The saddle move operation applied to X» replaces P> with V = |J,., V:, where
Vi = Va(t) U Va(1), Va(t) = Oa([p2(t), p5()]D), V3(t) = Oa2([p3(t), p5)D.
Let 0 = H(Q), Q2 = H(Q2), 03 = H(Q3). Note that the boundary points
q2(t), q5(1), g3(t), q5(t) of Q; are the same as the boundary points of H(Py(t)),
and the boundary points vo (1), vz(t) v3(t), v3 (t) of V; are the same as the boundary
points of 2 (t). In particular, all these points belong to the bridge B> of X,, and to the
et-ball N; (see Fig. 6).

Note that tord(Qz, Q3)—t0rd(V2, ) =p and tord(Qz, Vz)—l‘ord(Q3, Vi) =
B2.Considerdiam (V2 (1)), diam(V3(t)), dlam(Qz(t)) dzam(Qg(t))asfunctlonsof
t. Note that the order of all of these functions at the origin is 8. Let N> be the family of

W Birkhauser
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Fig.6 The images by the map H in the proof of Lemma 3.4

balls N2 ; on S; centered at v2(¢) with the radius tﬁ for ,3 € (B1, B2), and let N3 be the
family of balls N3,; on S; centered at vz(t) with the radius tﬁ Clearly N2, NN3; =0
and also Q2(f) C Nas, Va(t) C Nay, Q3(1) C N3y, Va(r) C N3

Since Qz(t), Q3(£), Va(t), V3(¢t) are homeomorphic to segments, there exists a
homeomorphism H,: N; — Nj isotopic to identity, such that :

1. 1?2 maps the sections z = ¢ to the sections z = t.
2. H, is identity on the boundary of Nj.

3. Hz(H(Qz)) =V
4. The bridge 32 = H(B) is invariant under H.

Similarly, there exists a homeomorphism H3: N> — N, isotopic to identity, such
that :

1. I‘:Ig, maps the sections z = ¢ to the sections z = 7.
2. Hj is identity on the boundary of N».

3. Hy(H(03) = V5. _
4. The bridge B2 = H(B)) is invariant under Hs.

Then we define a homeomorphism H’: R* — R* to be equal to H out-
side H~'(Ny U N»), to Hy o H on H-'(N}) and to H3 o H on H'(N,), thus
H'(S(X1)) = S(X3). This proves that S(X1) and S(X;) are ambient topologically
equivalent, and the links at the origin Lg(x,) and Lg(x,) are isotopic as topological
links. O

Theorem 3.5 For any knot K C S> and all integers i > 0, there exist semialgebraic
surface germs (XY ., 0) in R* such that:

1. The tangent cones at the origin of all X' ; are topologically equivalent to the cone
over two knots isotopic to K with a single common point.

2. All X'y ; are outer bi-Lipschitz equivalent.

3. X/KJ. and X/K,j are semialgebraic ambient bi-Lipschitz equivalent only when i =

j-
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Xko =6YI;,0

Fig.7 The links of the surface X/K,O = 8Y1’<,0 and U in the proof of Theorem 3.5

Proof Con51der a characteristic band Fx C S°, a slice Sk C Fx, and characteristic
cones Y x and X k (see Definitions 2.16 and 2.17). We construct a band-bridge surface
germ with a (81, B2)-bridge corresponding to K as follows. Let Mx = {to : t >
0, 0 € Sk} C R* be the cone over Sk (asin Theorem 3.1). Let &g : Mx — Z C R3
be the map defined in (1):

O (to) =typk (o) foro € Sk. 3)

Note that @ is a bi-Lipschitz homeomorphism. For I < B; < B, let U C R> be the
set in Definition 2.11. We define

Vo=@ (U), Yiko= Yk, \Mk)UVg o Xko=Yk,. )

The set YI’{’0 is obtained by replacing the set W (see Definition 2.10) with the set
U in construction of the set Xk in the proof of Theorem 3.1. Let X /K,() = 3Y}<,0
be its boundary (see Fig. 7). This construction replaces a B-bridge in Theorem 3.1
by a (B, B2)-bridge. In particular, the one-bridge surface germ (X /K,O’ 0) satisfies
conditions of Theorem 3.1.

Let now F1/< ; be the set obtained by removing the slice Sk from Fg, making i
complete twists and adding Sk back (see Fig. 8a—d). Let Y ;(,i be the set obtained from
the cone over F 1/(,1' by replacing the set Mg (the cone over Sk ) with the set U (see
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Fig.8 Cut and twist in the proof of Theorem 3.5

Fig. 8e) and let X, . = dY} ; be its boundary. The same arguments as in the proof of
Theorem 3.1 show that the hnk of X ; is a trivial knot and the tangent cone of X'
is a cone over the union of two knots 1s0t0p1c to K, pinched at one point.

We are going to prove that X/ k.; and X "~ . are not semialgebraic ambient bi-
Lipschitz equivalent if i # j. The result of the ‘saddle move applied to each of these
surface germs is a surface germ such that its tangent link is the union of two copies of the
knot K, with the linking number of the two copies being twice the number of complete
twists. Thus the links S(X ) and S(X ;) are not isotopic when i # j. It follows
from Lemma 3.4 that surface germs X s and X ’K j are not ambient semialgebraic
bi-Lipschitz equivalent when i # j.

Note that the topology of the tangent link of X /K ; does notdepend on i. The tangent
link is formed by two copies of K pinched at one point. O

Remark 3.6 Let X /K ; be the surface germ constructed in the proof of Theorem 3.5.
Then the link at the origin of the surface germ S(X ’K ;) obtained from X ’K ; by the
saddle move, is a subset of F}, ; isotopic to d F, ;

Proposition 3.7 Let X’K’i be a surface germ constructed in Theorem 3.5, and let
S(X/K’i) be the surface germ obtained by a saddle move applied to X/Kl If K is
a trivial knot, then the link at the origin of S(X/K,i) is a torus link.
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Proof For a small € > 0, the boundary of the e-neighbourhood of K is an unknotted
two-dimensional torus Tx C S>. One can define coordinates (¢, ¥) on Tk, where
¢ €K, ye S sothatthecurves K = {¢p € K, ¥ = O}andlg’ ={pek, vy =m}
have the linking number zero. Then Fx = {¢p € K,0 < ¢ < 7w} C Tg is a
characteristic band of the knot K (see Definition 2.16) bounded by the curves K and
K'.If X k.o is the surface germ constructed in Theorem 3.5, then the link at the origin
of S(X /K o) isotopic to the union of K and K', is a trivial torus link.

The surgery for constructing a surface germ X/ k.; in Theorem 3.5 (see Fig. 8)
corresponds to the choice of a coordinate system (¢, ;) on TK such that the band
Fgi={$¢ €K, 0<y; <m} C Tk is bounded by the curves K; = {¢ € K, ¥; =
0} and K ! ={¢ € K, ¥; = m} with the linking number 2i. Since the link at the origin

of S(X /K ;) is isotopic to the union of IZ,- and K l/ (see Remark 3.6) it is a torus link. O

Proposition 3.8 Let X| and X2 be two one-bridge surface germs. If the germs are
ambient bi-Lipschitz equivalent, then the links of the origin Lsx,) and Lsx,) are
isotopic.

Remark 3.9 Saddle move on the level of knot diagrams is described as follows: <X>
is replaced by < > < >

Here we are going to define the crossing move, that will be useful for further
calculations.

Definition 3.10 We proceed in a similar way to the definition of the saddle move.
Consider the subset B of a one-bridge surface X outer bi-Lipschitz equivalent
to a (B, fo)-bridge Bpp, = Ur=o J; (see Definition 2.11). The set J; has two
components J," and J,~, cons1st1ng of three line segments connecting the points
p1(1), p2(1), p3(1), pa(r) and p|(r), p5(1), p5(1), p4(t) respectively, in the plane
{z =1, w = 0} (see Fig. 2). Let us embed this set to R* with coordinates (x,y,z, w).
Replacing the line segments [p2(7), p3(7)] and [p(r), p5(1)] with the line segment
[p2(2), p5(1)] and a circle arc in the half-space {w > 0} with the ends at p)(¢) and
p3(t), orthogonal to the plane {w = 0} (see Fig. 5b), we replace the set J; with the

set J;. Let §ﬂ1ﬂz = U0 Ji. Note that the surface germs Bg, g, and §ﬂ152 have the
same boundary arcs. Replacing the subset B of X with the subset B outer bi-Lipschitz

equivalent to B 616,50 that B and B have the same boundary arcs, we get a new surface
germ C(X). This defines a crossing move operation applied to X.

Remark 3.11 Crossing move on the level of knot diagrams is described as follows:

<>\/> is replaced by <\/>

Remark 3.12 One can show that, for the fixed orientation on Ly, the isotopy class
of the resulting knot or link is an ambient bi-Lipschitz invariant. However, in what
follows we do not need this result.
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Fig.9 Construction of X g7

The next statement is a modification of the Universality Theorem.

Theorem 3.13 For any two knots K and L, there exists a germ of a semialgebraic
one-bridge surface germ X g1 such that:

1. The link of Xk at the origin is isotopic to L.

2. Forafixed knot K all surface germs X 1 have isotopic tangent links. In particular,
surface germs Xk, 1, and X i, are ambient semialgebraic bi-Lipschitz equivalent
only if the knots K| and K, are isotopic.

Proof We use the construction from the proof of Theorem 3.1. Consider a characteristic
band Fg, the characteristic cones Yx and Xk (see Definition 2.16). Consider the
surface germ Xk defined in (2) for the knot K. Let y C Xk be an arc not tangent
to the set Vg defined in (2) (i.e., tord(y’, y) = 1 for any ¥’ C Vg). Let V(y) be a
small conical neighbourhood of y in R?, such that V (y) N Xk is a Holder triangle.
Let us embed the straight cone Z; over L inside V (y) so that its image Z 1. does not
intersect X g, and its is ambient topologically equivalent to L. Let us choose two arcs
y1and 2 in Xx NV (y), and two arcs y| and y, in ZNV(y), satisfying the following
conditions:

a. tord(y1, y2) = tord(y{, ;) = 1.

b. Replacing the union of the Holder triangles 7' (y1, y2) C Xk and T'(yy{, y3) C Z
with the union of Holder triangles 7' (y1, y{) C V(y)and T (y2, y,) C V(y),as shown
in Fig. 9, we obtain a semialgebraic set X g7 such that Xxr N V(y) is conical and its
link is isotopic to the connected sum of K and L. Note that construction of Xk is
similar to the saddle move construction in Definition 3.3.
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Let us check that the surface germ X g satisfies conditions of Theorem 3.13.

1. Since the link of Xk is unknotted, the connected sum is isotopic to L.

The proof of the fact that, for a fixed knot L, all surface germs Xk are outer
bi-Lipschitz equivalent is the same as the proof that all surface germs Xk are outer
bi-Lipschitz equivalent in the proof of Theorem 3.1.

2.Since X g is a one-bridge surface germ, its tangent link is the union of two knots
with a single common point. One of these two knots is isotopic to K, and the other
one is isotopic to the connected sum of K and L. Since the first knot is isotopic to K,
condition 2 is satisfied. O

The next result is another modification of the Universality Theorem. In contrast
to the previous results, we consider surface germs with the metric structure more
complicated than one-bridge.

Theorem 3.14 For any two knots K and L, and for any two rational numbers o and
B such that 1 < a < B, there exists a semialgebraic surface germ X‘;‘(ﬁ 1 such that:

1. For any knots K and L, the link at the origin of XOI;ﬁL is isotopic to L.
2. For any knots K and L, the tangent link ofX‘;(ﬁL is isotopic to K.
3. For fixed « and B, all surface germs X ‘3 are outer bi-Lipschitz equivalent.

Proof Let Fx C S3 be the characteristic band of a knot K (see Deﬁmtlon 2.16). It
is diffeomorphic to S' x [—1, 1], and its boundary has two components K and K K’
isotopic to K. Let (p, 1), where p € § V'and [ € [—1, 1], be coordinates in Fg. Let Y, K
and X k be the corrgspondmg characteristic cones (see Deﬁmtlon~ 2.16). Then (p, [ R, t)
are coordinates in Y, where ¢ is the distance to the origin. Let YI% be a subset of Yx
deﬁned as follows:

Y,"(‘ = {(p, 1, 1) : |l] <t*}. The set Y,% is called a-contraction of Yk . Notice that
the tangent link of ¥ 1‘? is a knot isotopic to K.

Let Sk = {(p,]) : |p — po| < €} be a slice of Fx (see Definition 2.17) for a
small € > 0, and let Mg be the cone over Sk. Let M = {(p,[,1) : pp —€ < p <
po + €, |I] < t%} be a-contraction of Mg . Replacing Mg by the («, 8)-wedge wep
(see Definition 2.13 and Fig. 1b) as in the proof of Theorem 3.1, we get the set Ygﬁ .
Let X ‘Ix{ﬁ be the boundary of Y};ﬁ )

Lety C X‘;{ﬁ be an arc far from the set W8, i.e., tord(y,y’) = 1 for any arc
y' C W% Let Z; be the straight cone over L. Let Va(y) C R* be a B-horn like
neighbourhood of y. Let Z’B Ly = =Wg(Z) C VA (y) be a B-hornification of Z; to y
(see Definition 2.18 and Fig. 3) Let us choose two arcs y; and y, in X g N Vg(y), and
two arcs y; and y; in Z f’y N Vg (y) satisfying the following conditions:

a.tord(y, y2) = B, tord(y{,y;) = B.

b. If we remove from X g the Holder triangle bounded by the arcs y; and y», remove
from Z f y the Holder triangle bounded by the arcs y| and y,, and add to the set X g U V4

the Holder triangle obtained as the union of line segments connecting y; (¢) and y; (),
and the Holder triangle obtained as the union of line segments connecting y;(¢) and

¥, (1), we obtain a semialgebraic set X ‘;(ﬂ 1, with the link isotopic to the connected sum
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of the links of X and Z Ly (see Fig. 9). Note that construction of X 7, 18 similar to
construction of X g, in the proof of Theorem 3.13 and to the saddle move construction
in Definition 3.3.

Let us check that the surface germ X (f(ﬂ ; satisfies conditions of Theorem 3.14.

—_

Since X‘;(ﬁ has a trivial link, the connected sum is isotopic to L.

2. Since Zj, is a subset of a B-horn neighbourhood of y, it corresponds to a single
point in the tangent link. Thus the tangent link of X ';(ﬂ ; is the same as the tangent
link of X%, which is isotopic to K .

3. The proof of the fact that the surface germs X (;(ﬂL are outer bi-Lipschitz equivalent

for a fixed L is the same as the proof that all surfaces X g are outer bi-Lipschitz

equivalent in the proof of Theorem 3.13.

m}

4 Knot invariants

In this section we make slight changes of notations. In the previous sections we used
the notation Ly for the link at the origin of a surface germ X. Here we are going to
use the notation Ky if the link at the origin of X is a knot, and L if it is a topological
link with more than one component.

Let us first recall the definition of the Jones polynomial J(L) of a link L via
Kauffman bracket polynomial (Dr), where Dy is a link diagram of L. Kauffman
bracket polynomial [8] is a polynomial in a variable A which is uniquely determined
by the following properties:

(1) Kauffman bracket on the trivial diagram equals one, e, (0)=1

@ Skeinrelation< / > <><>+A < >

(3) For any link diagram D;, we have (O U Dy/) = ( A2 — A7 (Dp)

The Jones polynomial of an oriented link L can be defined as
J(L) = (=A%) ~PDy),

o _1 . . .
after the substitution A = ¢~ 4. Here w(Dy) is the writhe number of the diagram Dy,
i.e., the number of positive crossings minus the number of negative crossings in Dy .

Proposition 4.1 Let X be a one bridge surface such that the link of X at the origin is
a knot Kx. Let Kc(x) be the knot, obtained from K (X) by the crossing move. Let Y
be a one-bridge germ such that the link at the origin of Y is the same knot Ky = Kx
as the link at the origin of X. Let S(Y) be a germ obtained from Y by the saddle move.
Suppose that Y is such that the link at the origin of the surface S(Y) is a 2-component
link Lsy). If the Jones polynomial J(Kc(x)) of the knot Kcx) satisfies

3@(Dg)-w(Dg))+1

J(Ke) # —12(Lsqr) + (=@ Pxn=oDr) =K==y gy,
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(a)

Saddle move Crossing move

Fig. 10 The Saddle move and the Crossing move
where Dk is a diagram of aknot K determined by X, and Dk is a diagram (determined

by the crossing move) of a knot Kc(x) then X and Y are not semialgebraic ambient
bi-Lipschitz equivalent.

Proof Let Dk be a diagram of a knot K(X) determined by X and let Dg: be a
diagram of a knot K¢ (x). Let us orient D in an arbitrary way. We orient D so that
the intersection, corresponding to the crossing move (see Fig. 10) on the diagram is

positive, i.e., it looks like x ] . Let S(X) be a germ of a surface obtained from

X by a saddle move. Let Dy, be the corresponding diagram of the characteristic link
Ls(x). We orient Dy, such that the part, corresponding to the saddle move (see Fig.

10) looks like <> <> Before the substitution A = t_% we have

(D) = (—AH?Pr) J(Kexy) (D) = (=A%) P J(Lgxy).
Now it follows from the condition (2) of the Kauffman bracket that
(=AH?Pr) J(Kexy)) = A=A LD T (Lgixy) + A7 (=A% PR J(K).
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1

Using the fact that w (Dg/) = w(Dp) + 1 and after the substitution A =t~ 4 we get
3(@(Dgr)—w(Dg))+1
J(Keon) = =130 (L) + (— 1) Pr) =@ =555 p gy - (5)

Recall that Proposition 3.8 implies that if the link Lg(x) is not isotopic to the link
Lg(y), then X and Y are not semi-algebraic ambient bi-Lipschitz equivalent. Hence
if J(Lsx)) # J(Lsy)), then X and Y are not semialgebraic ambient bi-Lipschitz
equivalent. Now equality (5) yields the proof of the proposition. O

Corollary 4.2 If K is a trivial knot and Lsy) is (2, 2m)-torus link L(2, 2m), where
m is a non-negative integer, then we get the following closed formula: If the Jones
polynomial J(Kc(x)) of the knot K¢ (x) satisfies

142!
1 +1

3@ (D g )~ (Dg )+
7

J(Keexy) # " 4 1" 2 ( ) + (= 1)@ (DxD—0Dk) UKD )

then X and Y are not semialgebraic ambient bi-Lipschitz equivalent.

Proof Recall that for each n the Jones polynomial of the torus knot K (2,2n + 1)
equals

13 _ t2n+2 4 t2n+3

1—1¢2

J(KQ2,2n+ 1)) ="

bl

see e.g. [7]. The skein relation for the Jones polynomial together with the above
equality yield

2m—1 a3 1+ ¢2m—1
J(L22,2 =—t 2 —t 2 [—— ). 7
(L(2,2m)) ( 141 ) @)

Noting that if K is a trivial knot, then its Jones polynomial J(K) = 1, and applying
equalities (5) and (7) we obtain the proof of the corollary. O

Remark 4.3 The above proposition has two advantages: it has a computational value,
and as its immediate corollary we obtain the main result of Birbrair-Gabrielov [3,
Theorem 4.1]. Let us illustrate this on the following example. Let X be such that
it determines a knot diagram Dg which has no intersections, and after the crossing
move the diagram D has exactly one positive intersection. It follows that w (Dg/) —
w(Dg) =1, and J(Kc(x)) = 1 since Kc(x) is a trivial knot. Let Y be such that it
determines a trivial knot diagram presented in Fig. 10a. The diagram of the link L g(y)
is presented in Fig. 10b. Note that it is a (2, 2)-torus link (Hopf link). The diagram
of the knot K¢ (y) is presented in Fig. 10c. Note that it is a trefoil knot. Noting that
m = 1 the right hand side of equation (6) equals 3. Hence J(Kcx)) # #3 and thus
X and Y are not semialgebraic ambient bi-Lipschitz equivalent.
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