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Abstract
A link at the origin of an isolated singularity of a two-dimensional semialgebraic
surface in R

4 is a topological knot (or link) in S3. We study the connection between
the ambient Lipschitz geometry of semialgebraic surface germs inR4 and knot theory.
Namely, for any knot K , we construct a surface XK in R

4 such that: the link at the
origin of XK is a trivial knot; the germs XK are outer bi-Lipschitz equivalent for all
K ; two germs XK and XK ′ are ambient semialgebraic bi-Lipschitz equivalent only if
the knots K and K ′ are isotopic. We show that the Jones polynomial can be used to
recognize ambient bi-Lipschitz non-equivalent surface germs in R

4, even when they
are topologically trivial and outer bi-Lipschitz equivalent.
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1 Introduction

We study the difference between the outer and ambient bi-Lipschitz equivalence of
semialgebraic surface germs at the origin in R

4. Two surface germs are outer bi-
Lipschitz equivalent if they are bi-Lipschitz equivalent as abstract metric spaces with
the outer metric d(x, y) = ‖x − y‖. Ambient bi-Lipschitz equivalence means that
there exists a germ of a bi-Lipschitz, orientation preserving, homeomorphism of the
ambient space mapping one of them to the other one. Note that in Singularity Theory
the homeomorphism is not required to be orientation preserving.We add this condition
to be consistent with the isotopy equivalence relation in Knot Theory. Also, to avoid
confusion between the Singularity Theory and Knot Theory notions of the link, we
always write “the link at the origin” speaking of the link of a surface germ.

If a surface germ inR4 with a connected link at the origin has an isolated singularity
then its link is a knot in S3. The results of [3] show that ambient equivalence is
different from outer equivalence even when there are no topological obstructions.
This phenomenon is called “metric knots.” We consider the following question: How
different are these equivalence relations? In the previous paper [3] we show that, for
any given ambient topological type of a surface germ, one can find infinitely many
equivalence classes with respect to ambient bi-Lipschitz equivalence. In this paper we
start by showing that the question becomes nontrivial evenwhen “there is no topology,”
i.e., for the germs with unknotted links at the origin. Universality Theorem (Theorem
3.1 below) implies that the ambient bi-Lipschitz classification in this case “contains
all of Knot Theory.”

More precisely, for any knot K , there exists a germ of a surface XK in R
4 such

that:

1. The link at the origin of XK is a trivial knot;
2. The germs XK are outer bi-Lipschitz equivalent for all K ;
3. Two germs XK and XK ′ are ambient semialgebraic bi-Lipschitz equivalent only

if the knots K and K ′ are isotopic.
In other words, although the links at the origin of all surface germs XK are trivial

knots, the map K �→ XK from the set of all isotopy classes of knots in S3 to the set
of ambient bi-Lipschitz equivalence classes of surface germs in R

4 is injective.
The second theorem (Theorem 3.5 below) states that, for each germ XK in

Universality Theorem, there are infinitely many semialgebraic surfaces XK ,i satis-
fying Universality Theorem, such that XK ,i and XK , j are semialgebraic ambient
bi-Lipschitz equivalent only if i = j .

The proofs are based on the following results of Sampaio [12] and Valette [13],
(see also [1] and [2]).

Theorem 1.1 ([12, Theorem 3.2]) If (X , 0) and (Y , 0) are ambient semialgebraic bi-
Lipschitz equivalent semialgebraic germs, then their tangent cones C0(X) and C0(Y )

are ambient semialgebraic bi-Lipschitz equivalent.

Theorem 1.2 ([13, Corollary 0.2]) If two semialgebraic germs (X , 0) and (Y , 0) are
semialgebraic bi-Lipschitz homeomorphic, then there is a semialgebraic bi-Lipschitz
homeomorphism h : (X , 0) → (Y , 0) preserving the distance to the origin.
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In Section 3 we define (β1, β2)-bridges and the saddle move, closely related to
the broken bridge construction in [3]. A one-bridge surface germ is a surface germ
containing a single (β1, β2)-bridge and metrically conical outside it. The saddle move
relates the metric problem of ambient semialgebraic bi-Lipschitz equivalence of two
one-bridge surface germs in R4 with the topological problem of isotopy of two knots
in S3 corresponding to the links at the origin of the surfaces obtained from these one-
bridge surface germs by the saddle moves (see Definition 3.3). That is why topological
knot invariants, such as the Jones polynomial, yield metric knot invariants, which can
be used to recognize ambient semialgebraic bi-Lipschitz non-equivalence of surface
germs.

Although one-bridge surface germs are the simplest examples of not Lipschitz
normally embedded surfaces, they have rather non-trivial ambient Lipschitz geometry.
Another version of Universality Theorem (Theorem 3.13 below) states that, for any
two knots K and L , one can construct a one-bridge surface germ XKL such that:

1. The link at the origin of XKL is isotopic to L;
2. For any knots K and L , all surface germs XKL are outer bi-Lipschitz equivalent;
3. Surface germs XK1L and XK2L are ambient semialgebraic bi-Lipschitz equivalent

only if the knots K1 and K2 are isotopic.

In Section 4 we consider the Jones polynomial of the link at the origin L = LS(X)

of a surface germ S(X) obtained from a one-bridge surface germ X by the saddle
move (see Definition 3.3). Since the isotopy class of L is an ambient semialgebraic
Lipschitz invariant, its Jones polynomial becomes an ambient Lipschitz invariant of
X . If X = X ′

K ,i is a “twisted” surface constructed in [3] (see also Theorem 3.5) and
K is a trivial knot, then L is a torus link. Its Jones polynomial is computed completely
(see Corollary 4.2 and Remark 4.3) and determines the number i of twists. This shows
that Jones polynomial can be used to prove ambient bi-Lipschitz non-equivalence of
metric knots.

If we do not suppose the surface germ to be a one-bridge surface germ, we obtain
a stronger version of Universality Theorem (Theorem 3.14 below). It states that, for
any two knots K and L , and any two rational numbers α > 1 and β > 1, one can
construct a surface germ Xαβ

K L such that:

1. The link at the origin of Xαβ
K L is isotopic to L;

2. For a fixed knot K , the tangent link of Xαβ
K L (i.e., the intersection of the tangent

cone with the unit sphere) is isotopic to K ;
3. All surface germs Xαβ

K L are outer bi-Lipschitz equivalent for fixed α and β.

All sets, functions and maps in this paper are assumed to be real semialgebraic. We
use semialgebraic bi-Lipschitz equivalence, because we refer to the theorem of Valette
[13]. Our results are also true for subanalytic bi-Lipschitz equivalence of subanalytic
surface germs, and we expect them to remain true in any polynomially bounded o-
minimal structure over R. The Universality Theorem 3.1 was announced without a
proof in the expository paper [4].
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2 Definitions and notations

We consider germs at the origin of semialgebraic surfaces (two-dimensional semial-
gebraic sets) in R4.

Definition 2.1 A surface X can be considered as a metric space, equipped with either
the outer metric d(x, y) = ‖x − y‖ or the inner metric di (x, y) defined as the minimal
length of a path in X connecting x and y. A germ X is Lipschitz normally embedded
if its inner and outer metrics are equivalent.

Definition 2.2 Two germs of semialgebraic sets (X , 0) and (Y , 0) are outer bi-
Lipschitz equivalent if there exists a homeomorphism H : (X , 0) → (Y , 0) bi-
Lipschitz with respect to the outer metric. The germs are semialgebraic outer
bi-Lipschitz equivalent if the map H can be chosen to be semialgebraic. The germs are
ambient bi-Lipschitz equivalent if there exists an orientation preserving bi-Lipschitz
homeomorphism ˜H : (R4, 0) → (R4, 0), such that ˜H(X) = Y . The germs are
semialgebraic ambient bi-Lipschitz equivalent if the map ˜H can be chosen to be
semialgebraic.

Definition 2.3 The link at the origin LX of a germ X is the equivalence class of the
sets X ∩ S30,ε for small positive ε with respect to the ambient bi-Lipschitz equivalence.
The tangent link of X is the link at the origin of the tangent cone of X .

Remark 2.4 By the finiteness theorems of Mostowski, Parusinski and Valette (see [10,
11, 14]) the link at the origin is well defined. We write “the link at the origin” speaking
of this notion of the link from Singularity Theory, reserving the word “link” for the
notion of the link in Knot Theory. If X has an isolated singularity at the origin then
each connected component of LX is a knot in S3.

Definition 2.5 A semialgebraic germ (X , 0) ⊂ R
n is called outer metrically coni-

cal if there exists a germ of a bi-Lipschitz homeomorphism H : (X , 0) → C(LX ),
where C(LX ) is a straight cone over LX . The map H is called a conification map.
A germ (X , 0) is called ambient metrically conical if there exists a germ of a bi-
Lipschitz homeomorphism ˜H : Rn → R

n , such that ˜H(X , 0) = C(LX ). The map
˜H is also called a conification map. A germ (X , 0) is called outer (ambient) semial-
gebraic metrically conical if a corresponding conification map can be chosen to be
semialgebraic.

Remark 2.6 Notice that the definition makes sense for semialgebraic germs of any
dimension, not only for surface germs.

Definition 2.7 An arc in a semialgebraic germ (X , 0) is a germ of a semialgebraic
embedding γ : [0, ε) → X such that γ (0) = 0. Unless otherwise specified, arcs are
parameterized by the distance to the origin, i.e., ‖γ (t)‖ = t . We identify an arc with
its image in X .

Definition 2.8 Let f �≡ 0 be (a germ at the origin of) a semialgebraic function defined
on an arc γ . The order α of f on γ (notation α = ordγ f ) is the value α ∈ Q such that
f (γ (t)) = ctα + o(tα) as t → 0, where c �= 0. If f ≡ 0 on γ , we set ordγ f = ∞.
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Fig. 1 a The set Wt . b The set Wαβ
t

For any two arcs γ and γ ′ in X one can define two orders of contact: inner and
outer.

Definition 2.9 The outer order of contact tord(γ, γ ′) is defined as ordγ f , where
f (t) = ‖γ (t) − γ ′(t)‖. The inner order of contact i tord(γ, γ ′) is defined as ordγ g,
where g(t) = dp(γ (t), γ ′(t)). Here dp is a definable pancake metric (see [5]) equiv-
alent to the inner metric. These two orders of contact are rational numbers such that
1 ≤ i tord(γ, γ ′) ≤ tord(γ, γ ′).

Definition 2.10 Let β > 1 be a rational number. Consider the space R
3 with coor-

dinates (x, y, z). For a fixed t ≥ 0, let Zt = {|x | ≤ t, |y| ≤ t} be a square in the
xy-plane {z = t} and let Z = ⋃

t≥0 Zt . LetW
+
t be the subset of Zt bounded by the line

segment I+
t = {|x | ≤ t, y = t} and the union J+

t of the two line segments connecting
the endpoints of I+

t with the point (0, tβ). Let W−
t = {(x, y) : (x,−y) ∈ W+

t } and
J−
t = {(x, y) : (x,−y) ∈ J+

t }. Let Wt = W+
t ∪ W−

t (shaded area in Fig. 1a) and let
W = ⋃

t≥0 Wt ⊂ R
3. A β-bridge is the surface germ Bβ = ⋃

t≥0 J
+
t ∪ J−

t . Note
that the tangent cone of W is the set {|x | ≤ |y| ≤ z} and the tangent cone of Bβ is the
surface germ {|x | = |y| ≤ z}.
Definition 2.11 Let 1 < β1 ≤ β2 be two rational numbers. For a fixed t ≥ 0, let
Zt = {|x | ≤ t, |y| ≤ t, z = t} and Z = ⋃

t≥0 Zt be as in Definition 2.10. In the
xy-plane {z = t} consider the points (see Fig. 2)

p1(t) = (−t, t), p2(t) = (−tβ1 , tβ2), p3(t) = (tβ1 , tβ2), p4(t) = (t, t),

p′
1(t) = (−t,−t), p′

2(t) = (−tβ1 ,−tβ2), p′
3(t) = (tβ1,−tβ2), p′

4(t) = (t,−t).

Let us connect the points p1(t), p2(t), p3(t), p4(t) by three line segments, and define
J̄+
t as the union of these three segments. LetU+

t ⊂ Zt be the convex hull of J̄
+
t . Let P+

t
be the segment connecting the points p2(t) and p3(t). Similarly, let J̄−

t be the union of
segments connecting the points p1(t), p′

2(t), p′
3(t), p′

4(t), and letU
−
t be the convex

hull of J̄−
t and P−

t be the segment connecting p′
2(t) with p′

3(t). Let Pt = P+
t ∪ P−

t



43 Page 6 of 20 L. Birbrair et al.

Fig. 2 The set Ut

and let P = ⋃

t≥0 Pt ⊂ R
3. Let Ut = U+

t ∪ U−
t (shaded area in Fig. 2), and let

U = ⋃

t≥0Ut ⊂ R
3. A (β1, β2)-bridge is the surface germ Bβ1β2 = ⋃

t≥0 J̄t , where
J̄t = J̄+

t ∪ J̄−
t .

Note that the setU has the same tangent cone at the origin as W , while the tangent
cone at the origin of P is the positive z-axis. Note also that, for β1 = β2 = β, the
(β, β)-bridge is outer bi-Lipschitz equivalent to the β-bridge.

Definition 2.12 Let X be a semialgebraic surface germ inR4 with the link at the origin
homeomorphic to a circle in S3. We say that X is a one-bridge surface germ if

1. There exists a semialgebraic bi-Lipschitz C1 embedding � : (Z , 0) → (R4, 0)
such that �(Bβ1β2) = X ∩ �(Z).

2. The union X ∪�(Z) is Lipschitz normally embedded inR4 and ambient semialge-
braic metrically conical: there exist a semialgebraic bi-Lipschitz homeomorphism
˜H : (R4, 0) → (R4, 0), such that ˜H(X ∪ �(Z)) is a straight cone.

Definition 2.13 Let α > 1 and β > 1 be rational numbers. Consider the spaceR3 with
coordinates (x, y, z). For a fixed t ≥ 0, let Zα

t = {|x | ≤ tα, |y| ≤ t} be a rectangle in
the xy-plane {z = t}. Let Wα+

t be the subset of the rectangle Zα
t bounded by the line

segment I α+
t = {|x | ≤ tα, y = t} and the union Jα+

t of the line segments connecting
the endpoints of I α+

t with the point (0, tβ). LetWα−
t = {(x, y) : (x,−y) ∈ Wα+

t } and
Jα−
t = {(x, y) : (x,−y) ∈ Jα+

t }. Let Wα
t = Wα+

t ∪ Wα−
t (shaded areas in Fig. 1b)

and letWα = ⋃

t≥0 W
α
t ⊂ R

3. An (α, β)-wedge is the surface germ Eαβ = ⋃

t≥0 Jα
t ,

where Jα
t = Jα+

t ∪ Jα−
t .

Note that the tangent cone at the origin ofWα is the set {(x, y, z) : x = 0; |y| ≤ z}.
Remark 2.14 We define a link diagram in the same way as it is done in Knot Theory,
choosing a generic projection of the topological link to some 2-dimensional plane in
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Fig. 3 Hornification of the cone over a knot

R
3 (see [8] for details). Two diagrams are equivalent if they can be related by a finite

sequence of Reidemeister moves.

The following result is a special case of the finiteness theorem of Hardt (see [6]).

Theorem 2.15 Let X be a semialgebraic surface germ. Then, for small t > 0 and for
any plane R2, such that the projections of the links X ∩ St are generic, the diagrams
of the links X ∩ St are equivalent.

Definition 2.16 Let FK ⊂ S3 be a smooth semialgebraic embedded surface diffeo-
morphic to S1 × [−1, 1], such that the two components ˜K and ˜K ′ of the boundary
∂FK of FK are isotopic to the same knot K and the linking number (see [9]) of the
components ˜K and ˜K ′ is zero. The surface FK is called a characteristic band of the
knot K . Let ˜YK and ˜XK be the cones over FK and ∂FK , respectively. These cones are
called characteristic cones of the knot K .

Definition 2.17 Let (ρ, l), where ρ ∈ S1 and l ∈ [−1, 1], be coordinates in FK . Let
ξ = (ρ0, 0) be an interior point of FK . We define a slice SK = {(ρ, l) ∈ FK , |ρ −
ρ0| ≤ ε}.
Definition 2.18 Let β > 1 be a rational number. The standard β-horn in R

4 is the
set Cβ = {(x, y, z, t) ∈ R

4 | t ≥ 0, x2 + y2 + z2 = t2β}. The standard β-horn
like neighborhood of the positive t-axis is the set Vβ = {(x, y, z, t) ∈ R

4 | t ≥
0, x2 + y2 + z2 ≤ t2β}.

If β = 1 then C1 = {t ≥ 0, x2 + y2 + z2 = t2} is a cone and V1 = {t ≥
0, x2 + y2 + z2 ≤ t2} is a conical neighborhood of the positive t-axis.

The standard β-hornification �β : V1 → Vβ is defined as �β(x, y, z, t) =
(xtβ, ytβ, ztβ, t).

For an arc γ ⊂ R
4, a conical neighborhood of γ is the image V1(γ ) of a semialge-

braic bi-Lipschitz map � : V1 → R
4 such that γ is the image of the positive t-axis.

A β-horn like neighborhood of γ is Vβ(γ ) = �(Vβ), and a β-hornification to γ is
the map β : V1(γ ) → Vβ(γ ) defined as β = � ◦ �β ◦ �−1 (see Fig. 3). We may
assume, by Valette’s theorem, thatβ preserves the distance to the origin. For a subset
S of V1(γ ), the set β(S) is called a β-hornification of S to γ .
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3 Metric knots

Theorem 3.1 (Universality Theorem) Let K ⊂ S3 be a knot. Then one can associate
to K a semialgebraic one-bridge surface germ (XK , 0) in R

4 so that the following
holds:

1. The link at the origin of each germ XK is a trivial knot;
2. All germs XK are outer bi-Lipschitz equivalent;
3. Two germs XK1 and XK2 are ambient semialgebraic bi-Lipschitz equivalent only

if the knots K1 and K2 are isotopic.

Proof Let FK ⊂ S3 be a characteristic band of the knot K , and let ˜YK and ˜XK be the
corresponding characteristic cones (see Definition 2.16). Let SK ⊂ FK be a slice (see
Definition 2.17). Let ϕK : SK → Z1, where Z1 is the set Zt in Definition 2.10 with
t = 1, be a semialgebraic bi-Lipschitz homeomorphism (ρ, l) �→ ((ρ − ρ0)/ε, l).
Let MK = {tσ : t ≥ 0, σ ∈ SK } ⊂ R

4 be the cone over SK . We define a mapping
�K : MK → Z ⊂ R

3 as the corresponding mapping of the cones:

�K (tσ) = tϕK (σ ) for σ ∈ SK . (1)

Note that �K is a bi-Lipschitz homeomorphism. Let W ⊂ R
3 be the set in Definition

2.10, and let

VK = �−1
K (W ), YK = (

˜YK \ MK
) ∪ VK , XK = ∂YK . (2)

Then XK is a one-bridge surface germ, part of the surface germ ˜XK insideMK being
replaced by a β-bridge Bβ (see Fig. 4). Let us show that XK satisfies the conditions
of Theorem 3.1.

1) The link at the origin of XK is a trivial knot, because it bounds the closure of
FK \ SK homeomorphic to a disk.

2) Let K1 and K2 be any two knots. Let  : ˜YK1 → ˜YK2 be a semialgebraic
bi-Lipschitz map sending each point (ρ, l, t) ∈ ˜YK1 to the point (ρ, l, t) ∈ ˜YK2 . By
definition (MK1) = MK2 . By the definition of the maps �K1 and �K2 (see (1)) we
have (YK1) = YK2 and (XK1) = XK2 .

3) Note that, for any knot K , the link of the tangent cone C0XK of the set XK

is the union of two knots isotopic to K , with a single common point. Thus if K1
and K2 are not isotopic, then the tangent cones C0XK1 and C0XK2 are not ambient
topologically equivalent. This contradicts Sampaio’s theorem [12] (see also Theorem
1.1) which implies that tangent cones of ambient Lipschitz equivalent semialgebraic
sets are ambient Lipschitz equivalent. In our case, the links of the tangent cones are
not even ambient topologically equivalent.

This concludes the proof of Theorem 3.1. ��
Definition 3.2 Asurface germ XK obtained by the above construction is called a band-
bridge surface germ corresponding to the knot K and a β-bridge (or a (β1, β2)-bridge
as in the proof of Theorem 3.5 below).
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Fig. 4 The links of the sets XK = ∂YK and W in the proof of Theorem 3.1

Definition 3.3 Consider the (β1, β2)-bridge Bβ1β2 = ⋃

t≥0 J̄t (see Definition
2.11). The set J̄t has two components J̄+

t and J̄−
t , each of them consist-

ing of three line segments connecting the points p1(t), p2(t), p3(t), p4(t) and
p′
1(t), p′

2(t), p′
3(t), p′

4(t), respectively (see Fig. 2). Let Ĵt be the set obtained by
replacing the line segments [p2(t), p3(t)] and [p′

2(t), p
′
3(t)] in J̄t with the line seg-

ments [p2(t), p′
2(t)] and [p3(t), p′

3(t)] (see Fig. 5a). Let Sβ1β2 = ⋃

t≥0 Ĵt . Let X be
a one-bridge surface germ (see Definition 2.12). Replacing ˜B = �(Bβ1β2) ⊂ X with
˜S = �(Sβ1β2), we obtain a new surface germ S(X). This defines the saddle move
operation applied to X .

Lemma 3.4 Let X1 and X2 be semialgebraic ambient bi-Lipschitz equivalent one-
bridge surface germs. Then the surface germs S(X1) and S(X2), obtained by the
saddle move applied to X1 and X2, are ambient topologically equivalent, the links at
the origin LS(X1) and LS(X2) are isotopic as topological links in S3, and the diagrams
of the links LS(X1) and LS(X2) are equivalent.

Proof Let Z ⊂ R
3 be as in Definitions 2.10 and 2.11. Let �1 : Z → R

4 and
�2 : Z → R

4 be bi-Lipschitz embeddings such that ˜B1 = �1(Bβ1β2) ⊂ X1 and
˜B2 = �2(Bβ1β2) ⊂ X2. Since X1 and X2 are one-bridge surfaces, we can suppose
that X1∪�1(Z) and X2∪�2(Z) are straight cones over their links. Let H : R4 → R

4

be a bi-Lipschitz homeomorphism isotopic to identity such that H(X1) = X2. By
Valette’s Theorem [13] (see also Theorem 1.2) we may suppose that H preserves the
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Fig. 5 a The saddle move. b The crossing move

distance to the origin, and that the maps �1 and �2 send each section Zt of Z to the
sphere St of radius t centered at the origin.

Let ˜P1 = �1(P) and ˜P2 = �2(P), where P = ⋃

t≥0 Pt ⊂ Bβ1β2 (see Definition
2.11) and let ˜P1(t) = �1(Pt ) = ˜P1 ∩ St and ˜P2(t) = �2(Pt ) = ˜P2 ∩ St . Since the
tangent cone C0P of P is the positive z-axis, the tangent cones C0 ˜P1 and C0 ˜P2 of
˜P1 and ˜P2 are rays in R

4. For a small positive ε, let Nt ⊂ St be a ball of radius εt
centered at the point C0 ˜P2 ∩ St , and let N = ⋃

t≥0 Nt be a conical ε-neighbourhood
of C0 ˜P2. Note that ˜P2 ⊂ N ∩ X2 ⊂ ˜B2 for small ε > 0.

Let p2(t), p′
2(t), p3(t), p′

3(t) be the boundary points of Pt (see Definition 2.11).
Let q2(t) = �1(p2(t)), q ′

2(t) = �1(p′
2(t)), q3(t) = �1(p3(t)), q ′

3(t) = �1(p′
3(t))

be the boundary points of ˜P1(t), and let v2(t) = �2(p2(t)), v′
2(t) = �2(p′

2(t)),
v3(t) = �2(p3(t)), v′

3(t) = �2(p′
3(t)) be the boundary points of ˜P2(t). Then q̃2(t) =

H(q2(t)), q̃ ′
2(t) = H(q ′

2(t)), q̃3(t) = H(q3(t)), q̃ ′
3(t) = H(q ′

3(t)) are the boundary
points of H(˜P1(t)).

The saddle move operation applied to X1 replaces ˜P1 with Q = ⋃

t≥0 Qt , where
Qt = Q2(t) ∪ Q3(t), Q2(t) = �1([p2(t), p′

2(t)]), Q3(t) = �1([p3(t), p′
3(t)]).

The saddle move operation applied to X2 replaces ˜P2 with V = ⋃

t≥0 Vt , where
Vt = V2(t) ∪ V3(t), V2(t) = �2([p2(t), p′

2(t)]), V3(t) = �2([p3(t), p′
3(t)]).

Let ˜Q = H(Q), ˜Q2 = H(Q2), ˜Q3 = H(Q3). Note that the boundary points
q̃2(t), q̃ ′

2(t), q̃3(t), q̃
′
3(t) of ˜Qt are the same as the boundary points of H(˜P1(t)),

and the boundary points v2(t), v′
2(t), v3(t), v′

3(t) of Vt are the same as the boundary
points of ˜P2(t). In particular, all these points belong to the bridge ˜B2 of X2, and to the
εt-ball Nt (see Fig. 6).

Note that tord(˜Q2, ˜Q3)= tord(V2, V3)=β1 and tord(˜Q2, V2)= tord(˜Q3, V3) =
β2. Consider diam(V2(t)), diam(V3(t)), diam(˜Q2(t)), diam(˜Q3(t)) as functions of
t . Note that the order of all of these functions at the origin is β2. Let N2 be the family of
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Fig. 6 The images by the map H in the proof of Lemma 3.4

balls N2,t on St centered at v2(t) with the radius t β̃ for β̃ ∈ (β1, β2), and let N3 be the

family of balls N3,t on St centered at v3(t) with the radius t β̃ . Clearly N2,t ∩ N3,t = ∅
and also ˜Q2(t) ⊂ N2,t , V2(t) ⊂ N2,t , ˜Q3(t) ⊂ N3,t , V2(t) ⊂ N3,t .

Since ˜Q2(t), ˜Q3(t), V2(t), V3(t) are homeomorphic to segments, there exists a
homeomorphism H̄2 : N1 → N1 isotopic to identity, such that :

1. H̄2 maps the sections z = t to the sections z = t .
2. H̄2 is identity on the boundary of N1.
3. H̄2(H(˜Q2)) = V2.
4. The bridge ˜B2 = H(˜B1) is invariant under H̄2.

Similarly, there exists a homeomorphism H̄3 : N2 → N2 isotopic to identity, such
that :

1. H̄3 maps the sections z = t to the sections z = t .
2. H̄3 is identity on the boundary of N2.
3. H̄3(H(˜Q3)) = V3.
4. The bridge ˜B2 = H(˜B1) is invariant under H̄3.

Then we define a homeomorphism H ′ : R4 → R4 to be equal to H out-
side H−1(N1 ∪ N2), to H̄2 ◦ H on H−1(N1) and to H̄3 ◦ H on H−1(N2), thus
H ′(S(X1)) = S(X2). This proves that S(X1) and S(X2) are ambient topologically
equivalent, and the links at the origin LS(X1) and LS(X2) are isotopic as topological
links. ��
Theorem 3.5 For any knot K ⊂ S3 and all integers i ≥ 0, there exist semialgebraic
surface germs (X ′

K ,i , 0) in R
4 such that:

1. The tangent cones at the origin of all X ′
K ,i are topologically equivalent to the cone

over two knots isotopic to K with a single common point.
2. All X ′

K ,i are outer bi-Lipschitz equivalent.
3. X ′

K ,i and X ′
K , j are semialgebraic ambient bi-Lipschitz equivalent only when i =

j .
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Fig. 7 The links of the surface X ′
K ,0 = ∂Y ′

K ,0 and U in the proof of Theorem 3.5

Proof Consider a characteristic band FK ⊂ S3, a slice SK ⊂ FK , and characteristic
cones ˜YK and ˜XK (see Definitions 2.16 and 2.17). We construct a band-bridge surface
germ with a (β1, β2)-bridge corresponding to K as follows. Let MK = {tσ : t ≥
0, σ ∈ SK } ⊂ R

4 be the cone over SK (as in Theorem 3.1). Let�K : MK → Z ⊂ R
3

be the map defined in (1):

�K (tσ) = tϕK (σ ) for σ ∈ SK . (3)

Note that �K is a bi-Lipschitz homeomorphism. For 1 < β1 ≤ β2, letU ⊂ R
3 be the

set in Definition 2.11. We define

V ′
K ,0 = �−1

K (U ), Y ′
K ,0 = (

˜YK , \MK
) ∪ V ′

K ,0 X ′
K ,0 = ∂Y ′

K ,0. (4)

The set Y ′
K ,0 is obtained by replacing the set W (see Definition 2.10) with the set

U in construction of the set XK in the proof of Theorem 3.1. Let X ′
K ,0 = ∂Y ′

K ,0
be its boundary (see Fig. 7 ). This construction replaces a β-bridge in Theorem 3.1
by a (β1, β2)-bridge. In particular, the one-bridge surface germ (X ′

K ,0, 0) satisfies
conditions of Theorem 3.1.

Let now F ′
K ,i be the set obtained by removing the slice SK from FK , making i

complete twists and adding SK back (see Fig. 8a–d). Let Y ′
K ,i be the set obtained from

the cone over F ′
K ,i by replacing the set MK (the cone over SK ) with the set U (see
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Fig. 8 Cut and twist in the proof of Theorem 3.5

Fig. 8e) and let X ′
K ,i = ∂Y ′

K ,i be its boundary. The same arguments as in the proof of
Theorem 3.1 show that the link of X ′

K ,i is a trivial knot and the tangent cone of X
′
K ,i

is a cone over the union of two knots isotopic to K , pinched at one point.
We are going to prove that X ′

K ,i and X ′
K , j are not semialgebraic ambient bi-

Lipschitz equivalent if i �= j . The result of the saddle move applied to each of these
surface germs is a surface germsuch that its tangent link is the unionof two copies of the
knot K , with the linking number of the two copies being twice the number of complete
twists. Thus the links S(X ′

K , j ) and S(X ′
K ,i ) are not isotopic when i �= j . It follows

from Lemma 3.4 that surface germs X ′
K ,i and X ′

K , j are not ambient semialgebraic
bi-Lipschitz equivalent when i �= j .

Note that the topology of the tangent link of X ′
K ,i does not depend on i . The tangent

link is formed by two copies of K pinched at one point. ��
Remark 3.6 Let X ′

K ,i be the surface germ constructed in the proof of Theorem 3.5.
Then the link at the origin of the surface germ S(X ′

K ,i ), obtained from X ′
K ,i by the

saddle move, is a subset of F ′
K ,i isotopic to ∂F ′

K ,i .

Proposition 3.7 Let X ′
K ,i be a surface germ constructed in Theorem 3.5, and let

S(X ′
K ,i ) be the surface germ obtained by a saddle move applied to X ′

K ,i . If K is
a trivial knot, then the link at the origin of S(X ′

K ,i ) is a torus link.
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Proof For a small ε > 0, the boundary of the ε-neighbourhood of K is an unknotted
two-dimensional torus TK ⊂ S3. One can define coordinates (φ,ψ) on TK , where
φ ∈ K , ψ ∈ S1, so that the curves K̃ = {φ ∈ K , ψ = 0} and K̃ ′ = {φ ∈ K , ψ = π}
have the linking number zero. Then FK = {φ ∈ K , 0 ≤ ψ ≤ π} ⊂ TK is a
characteristic band of the knot K (see Definition 2.16) bounded by the curves K̃ and
K̃ ′. If X ′

K ,0 is the surface germ constructed in Theorem 3.5, then the link at the origin

of S(X ′
K ,0), isotopic to the union of K̃ and K̃ ′, is a trivial torus link.

The surgery for constructing a surface germ X ′
K ,i in Theorem 3.5 (see Fig. 8)

corresponds to the choice of a coordinate system (φ,ψi ) on TK such that the band
FK ,i = {φ ∈ K , 0 ≤ ψi ≤ π} ⊂ TK is bounded by the curves K̃i = {φ ∈ K , ψi =
0} and K̃ ′

i = {φ ∈ K , ψi = π}with the linking number 2i . Since the link at the origin
of S(X ′

K ,i ) is isotopic to the union of K̃i and K̃ ′
i (see Remark 3.6) it is a torus link. ��

Proposition 3.8 Let X1 and X2 be two one-bridge surface germs. If the germs are
ambient bi-Lipschitz equivalent, then the links of the origin LS(X1) and LS(X2) are
isotopic.

Remark 3.9 Saddlemoveon the level of knot diagrams is described as follows:

〈 〉

is replaced by

〈 〉

.

Here we are going to define the crossing move, that will be useful for further
calculations.

Definition 3.10 We proceed in a similar way to the definition of the saddle move.
Consider the subset B of a one-bridge surface X outer bi-Lipschitz equivalent
to a (β1, β2)-bridge Bβ1β2 = ⋃

t≥0 J̄t (see Definition 2.11). The set J̄t has two
components J̄+

t and J̄−
t , consisting of three line segments connecting the points

p1(t), p2(t), p3(t), p4(t) and p′
1(t), p′

2(t), p′
3(t), p′

4(t), respectively, in the plane
{z = t, w = 0} (see Fig. 2). Let us embed this set to R4 with coordinates (x, y, z, w).
Replacing the line segments [p2(t), p3(t)] and [p′

2(t), p
′
3(t)] with the line segment

[p2(t), p′
3(t)] and a circle arc in the half-space {w ≥ 0} with the ends at p′

2(t) and
p3(t), orthogonal to the plane {w = 0} (see Fig. 5b), we replace the set J̄t with the

set Ĵt . Let ̂Bβ1β2 = ⋃

t≥0 Ĵt . Note that the surface germs Bβ1β2 and ̂Bβ1β2 have the
same boundary arcs. Replacing the subset B of X with the subset ̂B outer bi-Lipschitz

equivalent to ̂Bβ1β2 , so that B and ̂B have the same boundary arcs, we get a new surface
germ C(X). This defines a crossing move operation applied to X .

Remark 3.11 Crossing move on the level of knot diagrams is described as follows:
〈 〉

is replaced by

〈 〉

.

Remark 3.12 One can show that, for the fixed orientation on LX , the isotopy class
of the resulting knot or link is an ambient bi-Lipschitz invariant. However, in what
follows we do not need this result.
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Fig. 9 Construction of XK L

The next statement is a modification of the Universality Theorem.

Theorem 3.13 For any two knots K and L, there exists a germ of a semialgebraic
one-bridge surface germ XK L such that:

1. The link of XK L at the origin is isotopic to L.
2. For a fixed knot K all surface germs XK L have isotopic tangent links. In particular,

surface germs XK1L and XK2L are ambient semialgebraic bi-Lipschitz equivalent
only if the knots K1 and K2 are isotopic.

Proof Weuse the construction from the proof ofTheorem3.1.Consider a characteristic
band FK , the characteristic cones ˜YK and ˜XK (see Definition 2.16). Consider the
surface germ XK defined in (2) for the knot K . Let γ ⊂ XK be an arc not tangent
to the set VK defined in (2) (i.e., tord(γ ′, γ ) = 1 for any γ ′ ⊂ VK ). Let V (γ ) be a
small conical neighbourhood of γ in R

4, such that V (γ ) ∩ XK is a Hölder triangle.
Let us embed the straight cone ZL over L inside V (γ ) so that its image Z̃ L does not
intersect XK , and its is ambient topologically equivalent to L . Let us choose two arcs
γ1 and γ2 in XK ∩V (γ ), and two arcs γ ′

1 and γ ′
2 in Z̃ ∩V (γ ), satisfying the following

conditions:
a. tord(γ1, γ2) = tord(γ ′

1, γ
′
2) = 1.

b. Replacing the union of the Hölder triangles T (γ1, γ2) ⊂ XK and T (γ ′
1, γ

′
2) ⊂ Z̃

with the union ofHölder triangles T (γ1, γ
′
1) ⊂ V (γ ) and T (γ2, γ

′
2) ⊂ V (γ ), as shown

in Fig. 9, we obtain a semialgebraic set XKL such that XKL ∩ V (γ ) is conical and its
link is isotopic to the connected sum of K and L . Note that construction of XKL is
similar to the saddle move construction in Definition 3.3.
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Let us check that the surface germ XKL satisfies conditions of Theorem 3.13.
1. Since the link of XK is unknotted, the connected sum is isotopic to L .
The proof of the fact that, for a fixed knot L , all surface germs XKL are outer

bi-Lipschitz equivalent is the same as the proof that all surface germs XK are outer
bi-Lipschitz equivalent in the proof of Theorem 3.1.

2. Since XKL is a one-bridge surface germ, its tangent link is the union of two knots
with a single common point. One of these two knots is isotopic to K , and the other
one is isotopic to the connected sum of K and L . Since the first knot is isotopic to K ,
condition 2 is satisfied. ��

The next result is another modification of the Universality Theorem. In contrast
to the previous results, we consider surface germs with the metric structure more
complicated than one-bridge.

Theorem 3.14 For any two knots K and L, and for any two rational numbers α and
β such that 1 ≤ α ≤ β, there exists a semialgebraic surface germ Xαβ

K L such that:

1. For any knots K and L, the link at the origin of Xαβ
K L is isotopic to L.

2. For any knots K and L, the tangent link of Xαβ
K L is isotopic to K .

3. For fixed α and β, all surface germs Xαβ
K L are outer bi-Lipschitz equivalent.

Proof Let FK ⊂ S3 be the characteristic band of a knot K (see Definition 2.16). It
is diffeomorphic to S1 × [−1, 1], and its boundary has two components ˜K and ˜K ′
isotopic to K . Let (ρ, l), where ρ ∈ S1 and l ∈ [−1, 1], be coordinates in FK . Let ˜YK

and ˜XK be the corresponding characteristic cones (see Definition 2.16). Then (ρ, l, t)
are coordinates in ˜YK , where t is the distance to the origin. Let ˜Y α

K be a subset of ˜YK

defined as follows:
˜Y α
K = {(ρ, l, t) : |l| ≤ tα}. The set ˜Y α

K is called α-contraction of ˜YK . Notice that
the tangent link of ˜Y α

K is a knot isotopic to K .
Let SK = {(ρ, l) : |ρ − ρ0| ≤ ε} be a slice of FK (see Definition 2.17) for a

small ε > 0, and let MK be the cone over SK . Let Mα
K = {(ρ, l, t) : ρ0 − ε ≤ ρ ≤

ρ0 + ε, |l| ≤ tα} be α-contraction of MK . Replacing Mα
K by the (α, β)-wedge Wαβ

(see Definition 2.13 and Fig. 1b) as in the proof of Theorem 3.1, we get the set Y αβ
K .

Let Xαβ
K be the boundary of Y αβ

K .

Let γ ⊂ Xαβ
K be an arc far from the set Wαβ , i.e., tord(γ, γ ′) = 1 for any arc

γ ′ ⊂ Wαβ . Let ZL be the straight cone over L . Let Vβ(γ ) ⊂ R
4 be a β-horn like

neighbourhood of γ . Let Zβ
L,γ = β(ZL) ⊂ V β(γ ) be a β-hornification of ZL to γ

(see Definition 2.18 and Fig. 3). Let us choose two arcs γ1 and γ2 in XK ∩Vβ(γ ), and

two arcs γ ′
1 and γ ′

2 in Zβ
L,γ ∩ Vβ(γ ) satisfying the following conditions:

a. tord(γ1, γ2) = β, tord(γ ′
1, γ

′
2) = β.

b. If we remove from XK the Hölder triangle bounded by the arcs γ1 and γ2, remove
from Zβ

L,γ the Hölder triangle bounded by the arcs γ ′
1 and γ ′

2, and add to the set XK ∪ Z̃
the Hölder triangle obtained as the union of line segments connecting γ1(t) and γ ′

1(t),
and the Hölder triangle obtained as the union of line segments connecting γ1(t) and
γ ′
2(t), we obtain a semialgebraic set Xαβ

K L with the link isotopic to the connected sum
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of the links of XK and Zβ
L,γ (see Fig. 9). Note that construction of Xαβ

K L is similar to
construction of XKL in the proof of Theorem 3.13 and to the saddle move construction
in Definition 3.3.

Let us check that the surface germ Xαβ
K L satisfies conditions of Theorem 3.14.

1. Since Xαβ
K has a trivial link, the connected sum is isotopic to L .

2. Since ZL is a subset of a β-horn neighbourhood of γ , it corresponds to a single
point in the tangent link. Thus the tangent link of Xαβ

K L is the same as the tangent

link of Xαβ
K , which is isotopic to K .

3. The proof of the fact that the surface germs Xαβ
K L are outer bi-Lipschitz equivalent

for a fixed L is the same as the proof that all surfaces XKL are outer bi-Lipschitz
equivalent in the proof of Theorem 3.13.

��

4 Knot invariants

In this section we make slight changes of notations. In the previous sections we used
the notation LX for the link at the origin of a surface germ X . Here we are going to
use the notation KX if the link at the origin of X is a knot, and LX if it is a topological
link with more than one component.

Let us first recall the definition of the Jones polynomial J (L) of a link L via
Kauffman bracket polynomial 〈DL〉, where DL is a link diagram of L . Kauffman
bracket polynomial [8] is a polynomial in a variable A which is uniquely determined
by the following properties:

(1) Kauffman bracket on the trivial diagram equals one, i.e., 〈O〉 = 1

(2) Skein relation

〈 〉

= A

〈 〉

+ A−1

〈 〉

(3) For any link diagram DL ′ we have 〈O ∪ DL ′ 〉 = (−A2 − A−2) 〈DL ′ 〉
The Jones polynomial of an oriented link L can be defined as

J (L) = (−A3)−ω(DL ) 〈DL〉 ,

after the substitution A = t− 1
4 . Here ω(DL) is the writhe number of the diagram DL ,

i.e., the number of positive crossings minus the number of negative crossings in DL .

Proposition 4.1 Let X be a one bridge surface such that the link of X at the origin is
a knot KX . Let KC(X) be the knot, obtained from K (X) by the crossing move. Let Y
be a one-bridge germ such that the link at the origin of Y is the same knot KY = KX

as the link at the origin of X. Let S(Y ) be a germ obtained from Y by the saddle move.
Suppose that Y is such that the link at the origin of the surface S(Y ) is a 2-component
link LS(Y ). If the Jones polynomial J (KC(X)) of the knot KC(X) satisfies

J (KC(X)) �= −t
1
2 J (LS(Y )) + (−1)ω(DK ′ )−ω(DK ) t

3(ω(DK ′ )−ω(DK ))+1
4 J (K ),
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Fig. 10 The Saddle move and the Crossing move

where DK is a diagramof a knot K determinedby X, and DK ′ is a diagram (determined
by the crossing move) of a knot KC(X) then X and Y are not semialgebraic ambient
bi-Lipschitz equivalent.

Proof Let DK be a diagram of a knot K (X) determined by X and let DK ′ be a
diagram of a knot KC(X). Let us orient DK in an arbitrary way. We orient DK ′ so that
the intersection, corresponding to the crossing move (see Fig. 10) on the diagram is

positive, i.e., it looks like

( )

. Let S(X) be a germ of a surface obtained from

X by a saddle move. Let DL be the corresponding diagram of the characteristic link
LS(X). We orient DL such that the part, corresponding to the saddle move (see Fig.

10) looks like

(

0

)

. Before the substitution A = t− 1
4 we have

〈DK ′ 〉 = (−A3)ω(DK ′ ) J (KC(X)) 〈DL〉 = (−A3)ω(DL ) J (LS(X)).

Now it follows from the condition (2) of the Kauffman bracket that

(−A3)ω(DK ′ ) J (KC(X)) = A(−A3)ω(DL ) J (LS(X)) + A−1(−A3)ω(DK ) J (K ).
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Using the fact that ω(DK ′) = ω(DL) + 1 and after the substitution A = t− 1
4 we get

J (KC(X)) = −t
1
2 J (LS(X)) + (−1)ω(DK ′ )−ω(DK ) t

3(ω(DK ′ )−ω(DK ))+1
4 J (K ). (5)

Recall that Proposition 3.8 implies that if the link LS(X) is not isotopic to the link
LS(Y ), then X and Y are not semi-algebraic ambient bi-Lipschitz equivalent. Hence
if J (LS(X)) �= J (LS(Y )), then X and Y are not semialgebraic ambient bi-Lipschitz
equivalent. Now equality (5) yields the proof of the proposition. ��
Corollary 4.2 If K is a trivial knot and LS(Y ) is (2, 2m)-torus link L(2, 2m), where
m is a non-negative integer, then we get the following closed formula: If the Jones
polynomial J (KC(X)) of the knot KC(X) satisfies

J (KC(X)) �= tm + tm+2
(

1 + t2m−1

1 + t

)

+ (−1)ω(DK ′ )−ω(DK ) t
3(ω(DK ′ )−ω(DK ))+1

4 , (6)

then X and Y are not semialgebraic ambient bi-Lipschitz equivalent.

Proof Recall that for each n the Jones polynomial of the torus knot K (2, 2n + 1)
equals

J (K (2, 2n + 1)) = tn
1 − t3 − t2n+2 + t2n+3

1 − t2
,

see e.g. [7]. The skein relation for the Jones polynomial together with the above
equality yield

J (L(2, 2m)) = −t
2m−1

2 − t
2m+3

2

(

1 + t2m−1

1 + t

)

. (7)

Noting that if K is a trivial knot, then its Jones polynomial J (K ) = 1, and applying
equalities (5) and (7) we obtain the proof of the corollary. ��
Remark 4.3 The above proposition has two advantages: it has a computational value,
and as its immediate corollary we obtain the main result of Birbrair-Gabrielov [3,
Theorem 4.1]. Let us illustrate this on the following example. Let X be such that
it determines a knot diagram DK which has no intersections, and after the crossing
move the diagram DK ′ has exactly one positive intersection. It follows that ω(DK ′)−
ω(DK ) = 1, and J (KC(X)) = 1 since KC(X) is a trivial knot. Let Y be such that it
determines a trivial knot diagram presented in Fig. 10a. The diagram of the link LS(Y )

is presented in Fig. 10b. Note that it is a (2, 2)-torus link (Hopf link). The diagram
of the knot KC(Y ) is presented in Fig. 10c. Note that it is a trefoil knot. Noting that
m = 1 the right hand side of equation (6) equals t3. Hence J (KC(X)) �= t3 and thus
X and Y are not semialgebraic ambient bi-Lipschitz equivalent.
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