Skip to main content
Log in

Scattering theory for the subcritical wave equation with inverse square potential

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We consider the scattering theory for the defocusing energy subcritical wave equations with an inverse square potential. By employing the energy flux method we establish energy flux estimates on the light cone. Then by the characteristic line method and radiation theorem, we show that the radial finite-energy solutions scatter to free waves outside of light cones. Using Morawetz estimates we then obtain the scattering theory for radial solutions with finite weighted energy initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. One can also use the Strichartz estimates on \(L^2_t L^{\tfrac{2d}{d-2},2 }_x \) here but with radial assumption if \(d=3\). For the cases \(d\ge 4,\) we refer to [22]. If \(d=3\), this follows from the Strichartz estimates for radial data ( [42, Theorem 1.3]) and real interpolation estimates in [22, Section 6].

References

  1. Bak, J., Seeger, A.: Extensions of the Stein-Tomas theorem. Math. Res. Lett. 18(4), 767–781 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bahouri, H., Gérard, P.: High frequency approximation of solutions to critical nonlinear wave equations. Am. J. Math. 121, 131–175 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bahouri, H., Shatah, J.: Decay estimates for the critical semilinear wave equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 15(6), 783–789 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burq, N., Planchon, F., Stalker, J., Tahvildar-Zadeh, A.S.: Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential. J. Funct. Anal. 203(2), 519–549 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dodson, B.: Global well-posedness and scattering for the radial, defocusing, cubic wave equation with initial data in a critical Besov space. Anal. PDE 12(4), 1023–1048 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dodson, B.: Global well-posedness and scattering for the radial, defocusing, cubic nonlinear wave equation. arXiv Preprint arXiv:1809.08284

  7. Dodson, B.: Global well-posedness for the radial, defocusing, nonlinear wave equation for \(3< p< 5\). arXiv Preprint arXiv:1810.02879

  8. Dodson, B., Lawrie, A.: Scattering for the radial 3d cubic wave equation. Anal. PDE 8(2), 467–497 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dodson, B., Lawrie, A.: Scattering for radial, semi-linear, super-critical wave equations with bounded critical norm. Arch. Ration. Mech. Anal. 218(3), 1459–1529 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dodson, B., Lawrie, A., Mendelson, D., Murphy, J.: Scattering for defocusing energy subcritical nonlinear wave equations. arXiv Preprint arXiv:1810.03182

  11. Duyckaerts, T., Kenig, C.E., Merle, F.: Scattering profile for global solutions of the energy-critical wave equation. J. Eur. Math. Soc. 21(7), 2117–2162 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duyckaerts, T., Roy, T.: Blow-up of the critical Sobolev norm for nonscattering radial solutions of supercritical wave equations on \(\mathbb{R} ^3\). Bull. Soc. Math. Fr. 145(3), 503–573 (2017)

    Article  MATH  Google Scholar 

  13. Duyckaerts, T., Yang, J.: Blow-up of a critical Sobolev norm for energy-subcritical and energy-supercritical wave equations. Anal. PDE 11(4), 983–1028 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Foschi, D.: Inhomogeneous Strichartz estimates. J. Hyperbolic Differ. Equ. 2(1), 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Friedlander, F.: On the radiation field of pulse solutions of the wave equation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 269(1336), 53–65 (1962)

    MathSciNet  MATH  Google Scholar 

  16. Friedlander, F.: Radiation fields and hyperbolic scattering theory. Math. Proc. Camb. Philos. Soc. 88(3), 483–515 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ginibre, J., Velo, G.: Conformal invariance and time decay for non linear wave equations. I. Ann. l’IHP Phys. Théori. 47(3), 221–261 (1987)

    MATH  Google Scholar 

  18. Grillakis, M.: Regularity and asymptotic behavior of the wave equation with a critical nonlinearity. Ann. Math. 132(3), 485–509 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grillakis, M.: Regularity for the wave equation with a critical nonlinearity. Commun. Pure Appl. Math. 45(6), 749–774 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hidano, K.: Conformal conservation law, time decay and scattering for nonlinear wave equations. J. d’Analyse Math ématique 91(1), 269–295 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kalf, H., Schmincke, U.W., Walter, J., Wüst, R.: On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials. In: Spectral Theory and Differential Equations. Lect. Notes in Math, vol. 448, pp. 182–226. Springer, Berlin. MR0397192 (1975)

  22. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kenig, C., Merle, F.: Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications. Am. J. Math. 133(4), 1029–1065 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Killip, R., Miao, C., Visan, M., Zhang, Y., Zheng, J.: Sobolev spaces adapted to the Schrödinger operator with inverse-square potential. Math. Z. 288, 1273–1298 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Killip, R., Miao, C., Visan, M., Zhang, J., Zheng, J.: The energy-critical NLS with inverse-square potential. Discret. Contin. Dyn. Syst. 37(7), 3831–3866 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lindblad, H., Sogge, C.D.: On existence and scattering with minimal regularity for semilinear wave equations. J. Funct. Anal. 130(2), 357–426 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Miao, C., Murphy, J., Zheng, J.: The energy-critical nonlinear wave equation with an inverse-square potential. Annales de l’Institut Henri Poincaré C, Analyse non linéaire. 37(2), 417–456 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Miao, C., Yang, J., Zhao, T.: The global well-posedness and scattering for the \(5\)-dimensional defocusing conformal invariant NLW with radial initial data in a critical Besov space. Pac. J. Math. 305(1), 251–290 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Murphy, J.: The nonlinear Schrödinger equation with an inverse-square potential. To appear in AMS Contemporary Mathematics

  30. Rodriguez, C.: Scattering for radial energy-subcritical wave equations in dimensions \(4\) and \(5\). Commun. Partial Differ. Equ. 42(6), 852–894 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ruiz, A., Vega, L.: On local regularity of Schrödinger equations. Int. Math. Res. Not. IMRN 1993(1), 13–27 (1993)

    Article  MATH  Google Scholar 

  32. Shatah, J., Struwe, M.: Regularity results for nonlinear wave equations. Ann. Math. 138, 503–518 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shatah, J., Struwe, M.: Well-posedness in the energy space for semilinear wave equations with critical growth. Int. Math. Res. Not. IMRN 1994(7), 303–309 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shen, R.: On the energy subcritical, nonlinear wave equation in \(\mathbb{R} ^3\) with radial data. Anal. PDE 6(8), 1929–1987 (2014)

    Article  MATH  Google Scholar 

  35. Shen, R.: Scattering of solutions to the defocusing energy subcritical semi-linear wave equation in 3D. Commun. Partial Differ. Equ. 42(4), 495–518 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shen, R.: Morawetz estimates method for scattering of radial energy sub-critical wave equation. arXiv Preprint arXiv:1808.06763

  37. Shen, R.: Energy distribution of radial solutions to energy subcritical wave equation with an application on scattering theory. Trans. Am. Math. Soc

  38. Shen, R.: Scattering of solutions to NLW by inward energy decay. arXiv Preprint arXiv:1909.01881

  39. Shen. R.: Inward/outward energy theory of non-radial solutions to 3D semi-linear wave equation. Adv. Math. 374, 107384, 46 (2020)

  40. Shen, R.: Inward/outward energy theory of wave equation in higher dimensions. arXiv Preprint arXiv:1912.02428

  41. Shen, R.: Long time behaviour of finite-energy radial solutions to energy subcritical wave equation in higher dimensions. arXiv Preprint arXiv:1912.12913

  42. Sterbenz, J.: Angular regularity and Strichartz estimates for the wave equation. Int. Math. Res. Not. IMRN 2005(4), 187–231 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Strauss, W.: On continuity of functions with values in various Banach spaces. Pac. J. Math. 19(3), 543–551 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  44. Vasquez, J.L., Zuazua, J.L.: The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173, 103–153 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Visan, M.: The defocusing energy-critical nonlinear Schrodinger equation in higher dimensions. Duke Math. J. 138(2), 281–374 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yang, S.: Global behaviors of defocusing semilinear wave equations. arXiv Preprint 1908.00606

  47. Zhang, J., Zheng, J.: Scattering theory for nonlinear Schrödinger with inverse-square potential. J. Funct. Anal. 267, 2907–2932 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee and the associated editor for their invaluable comments which helped to improve the paper. This project was suppported by the National Key R &D program of China: No.2022YFA1005700. C. Miao is supported in part by the NSF of China under grant No.11831004. R. Shen is supported by the NSF of China under grant No.11771325, No. 12071339. T. Zhao is supported in part by the NSF of China under grant No. 12101040 and the Fundamental Research Funds for the Central Universities (FRF-TP-20-076A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changxing Miao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 A.1. The asymptotic behaviour of linear solution

Let u be a finite-energy radial solution to the linear wave equation with an inverse-square potential

$$\begin{aligned} \left\{ \begin{array}{l} u_{tt} +\Big (- \Delta + \frac{a}{|x|^2} \Big ) u = 0, \qquad (x,t)\in {{\mathbb {R}}}^d \times {{\mathbb {R}}},\\ (u,u_t)|_{t=0} = (u_0,u_1) \in {\dot{H}}^1 \times L^2. \end{array}\right. \end{aligned}$$

Here \(d \ge 3\) and \(a > -\tfrac{(d-2)^2}{4}\). We prove that there exists a free wave v, i.e., a solution to the linear wave equation \(\partial _t^2 v - \Delta v = 0\), so that

$$\begin{aligned} \lim _{t \rightarrow +\infty } \Vert (u(\cdot ,t), u_t(\cdot ,t)) - (v(\cdot ,t), v_t(\cdot ,t))\Vert _{{\dot{H}}^1 \times L^2 } = 0. \end{aligned}$$
(A.1)

The proof of (A.1) divides into three steps. We first prove a few estimates in step 1. Following the same argument as in Lemma 6.1, one can obtain

$$\begin{aligned}&\int _{|x|>|t|+r} \Big (|\nabla u(x,t)|^2 + \frac{|u(x,t)|^2}{|x|^2} + |u_t(x,t)|^2\Big ) dx \lesssim E_{0,r}, \end{aligned}$$
(A.2)
$$\begin{aligned}&|u(x,t)| \lesssim E_{0,r}^{1/2} |x|^{-\frac{d-2}{2}}, \quad |x|\ge r+|t| \end{aligned}$$
(A.3)

such that

$$\begin{aligned} E_{0,r} = \int _{|x|>r/2} \Big (|\nabla u_0(x)|^2 + |u_1(x)|^2\Big ) dx \rightarrow 0, \quad \hbox {as}\; r\rightarrow \infty . \end{aligned}$$
(A.4)

We may combine (A.2) with the universal estimate \(|u(x,t)| \lesssim |x|^{-\frac{d-2}{2}}\) and obtain

$$\begin{aligned} \lim _{t\rightarrow +\infty } \int _{|x|>t} \frac{|u(x,\pm t)|^2}{|x|^2} dx = 0. \end{aligned}$$
(A.5)

We also have by a direct computation

$$\begin{aligned} |u(r_1,t) - u(r_2,t)|&= \int _{r_1}^{r_2} |u_r (r,t)| dr \\&\lesssim \Big (\int _{r_1}^{r_2} r^{d-1} |u_r(r,t)|^2 dr\Big )^{1/2} \Big (\int _{r_1}^{r_2} r^{-(d-1)} dr\Big )^{1/2} \\&\lesssim (r_2-r_1)^{1/2} r_1^{-\frac{d-1}{2}}. \end{aligned}$$

Thus if \((1-\delta )|t|\le r\le |t|+r_0\le (1+\delta )|t|\) with a small constant \(\delta \ll 1\), then we have

$$\begin{aligned} |u(r,t)| \le |u(|t|+r_0,t)| + |u(r,t)- u(|t|+r_0,t)| \lesssim (E_{0,r_0}^{1/2} + \delta ^{1/2}) r^{-\frac{d-2}{2}}.\nonumber \\ \end{aligned}$$
(A.6)

It immediately follows that

$$\begin{aligned} \limsup _{t\rightarrow +\infty } \int _{|x|= (1-\delta ) t} \frac{|u(x,t)|^2}{|x|} dS(x) \lesssim \delta . \end{aligned}$$
(A.7)

In step 2 we prove that there exists a finite-energy free wave v, so that for \(0<\delta <1\),

$$\begin{aligned} \limsup _{t \rightarrow +\infty } \int _{|x|>(1-\delta )t} \Big (|\nabla u(x,t) - \nabla v(x,t)|^2 + |u_t(x,t)-v_t(x,t)|^2\Big ) dx \lesssim \delta .\nonumber \\ \end{aligned}$$
(A.8)

Define \(w = r^{\frac{d-1}{2}} u(r,t)\), then w satisfies

$$\begin{aligned} (\partial _t^2 -\partial _r^2)w = -(\lambda _d+a) r^{\frac{d-5}{2}} u. \end{aligned}$$
(A.9)

Note that \(|u(r,t)| \lesssim r^{-\frac{d-2}{2}}\), applying method of characteristic lines, we can obtain \(g_+, g_- \in L^2 ({{\mathbb {R}}})\) such that

$$\begin{aligned}&|(w_t+w_r)(r,t)-2g_-(r+t)| \lesssim r^{-1/2},{} & {} r>1;&\\&|(w_t-w_r)(r,t)-2g_+(t-r)| \lesssim r^{-1/2},{} & {} r>1.&\end{aligned}$$

Thus we have (\(\delta \ll 1\), \(R>0\) are constants)

$$\begin{aligned} \limsup _{t\rightarrow +\infty } \int _{(1-\delta )t}^{t+R} (|w_t(r,t)-g_+(t-r)|^2 + |w_r(r,t)+g_+(t-r)|^2) dr \lesssim \delta . \end{aligned}$$

By the identity \(w_r = r^{\frac{d-1}{2}} u_r + \frac{d-1}{2} r^{\frac{d-3}{2}} u\) and the upper bound

$$\begin{aligned} \limsup _{t\rightarrow +\infty } \int _{(1-\delta )t}^{t+R} r^{d-3} |u(r,t)|^2 dr \lesssim \limsup _{t\rightarrow +\infty } \int _{(1-\delta )t}^{t+R} \frac{1}{r} dr \lesssim \delta . \end{aligned}$$

We have

$$\begin{aligned} \limsup _{t\rightarrow +\infty } \int _{(1-\delta )t}^{t+R} (|r^{\frac{d-1}{2}} u_t(r,t)-g_+(t-r)|^2 + |r^{\frac{d-1}{2}} u_r(r,t)+g_+(t-r)|^2) dr \lesssim \delta . \end{aligned}$$

By radiation fields, there exists a free wave v so that

$$\begin{aligned} \limsup _{t \rightarrow +\infty } \int _{(1-\delta )t<|x|<t+R} \Big (|\nabla u(x,t) - \nabla v(x,t)|^2 + |u_t(x,t)-v_t(x,t)|^2\Big ) dx \lesssim \delta . \end{aligned}$$

Combining this with (A.2), we obtain (A.8).

In step 3 we show

$$\begin{aligned} \limsup _{t \rightarrow +\infty } \int _{|x|<(1-\delta )t} \Big (|\nabla u(x,t) - \nabla v(x,t)|^2 + |u_t(x,t)-v_t(x,t)|^2\Big ) dx \lesssim \delta .\nonumber \\ \end{aligned}$$
(A.10)

We follow a similar argument to Proposition 4.2 and Corollary 4.3 (simply ignore the terms involving \(|u|^{p+1}\)), and obtain a Morawetz-type estimate

$$\begin{aligned} \int _{|x|<t} J_u^+(x,t) dx&\lesssim \frac{1}{t}\int _{-t}^t \int _{|x|> t} \Big (|\nabla u|^2 + |u_t|^2 \Big ) dxdt' + \sum _{\pm } \int _{|x|>t} \frac{|u(x,\pm t)|^2}{2|x|^2} dx. \end{aligned}$$

We claim that the right hand side converges to zero as \(t\rightarrow +\infty \). In fact we may show the convergence of the first term in the same way as in Proposition 6.3 by (A.2). The convergence of the second term has been known (A.5). As a result

$$\begin{aligned} \lim _{t\rightarrow +\infty } \int _{|x|<t} J_u^+(x,t) dx = 0. \end{aligned}$$

We recall the definition of \(J_u^+\) and obtain

Next we combine these estimates with (A.7), Proposition 5.2, and Lemma 4.1 to complete the proof of (A.10), as we did in the proof of Proposition 6.3. Finally we combine (A.8) and (A.10) to conclude

$$\begin{aligned} \limsup _{t \rightarrow +\infty } \int _{{{\mathbb {R}}}^d} \Big (|\nabla u(x,t) - \nabla v(x,t)|^2 + |u_t(x,t)-v_t(x,t)|^2\Big ) dx \lesssim \delta . \end{aligned}$$

We then finish the proof by letting \(\delta \rightarrow 0^+\).

1.2 A.2 Square function estimates

In this subsection, employing the Stein-Tomas restriction theorem in Lorentz space, we show

$$\begin{aligned} \Big \Vert \int _{{{\mathbb {R}}}} e^{is|\nabla |} F(\cdot ,s) ds \Big \Vert _{\dot{H}^{-\frac{1}{2}({{\mathbb {R}}}^d)}} \le C \Vert F\Vert _{L^{\tfrac{2d}{d+2},2 }_x L^2_t({{\mathbb {R}}}\times {{\mathbb {R}}}^d) }, \end{aligned}$$
(A.11)

for radial function \(F\in {L^{\tfrac{2d}{d+2},2 }_x L^2_t({{\mathbb {R}}}\times {{\mathbb {R}}}^d) }\).

Proof

The proof follows the arguments of [31]. By duality, it suffices to show

$$\begin{aligned} \Vert |\nabla |^{-\gamma }e^{it|\nabla |} f \Vert _{L^{q,2}_x L^2_t({{\mathbb {R}}}\times {{\mathbb {R}}}^d)} \le C \Vert f\Vert _{L^2({{\mathbb {R}}}^d)}, \end{aligned}$$
(A.12)

where \(\gamma =\frac{d}{2}-\frac{1}{2}-\frac{d}{q}\) and \(q\ge \frac{2(d+1)}{d-1}\). Utilizing the polar coordinates, we have

$$\begin{aligned} |\nabla |^{-\gamma }e^{it|\nabla |} f(x) =\int _0^\infty e^{it r} r^{-\gamma } \int _{|\xi |=r} e^{ix \xi } {{\hat{f}}}(\xi ) d\sigma ^{n-1}_r(\xi ) dr. \end{aligned}$$

By Plancherel theorem with respective to variable t, we have

$$\begin{aligned} \Vert |\nabla |^{-\gamma }e^{it|\nabla |} f(x) \Vert _{L^{q,2}_xL^2_t} =&\Big \Vert \Big ( \int _0^\infty \Big | \int _{|\xi |=r} e^{ix \xi } {{\hat{f}}}(\xi ) d\sigma ^{n-1}_r(\xi ) \Big |^2 r^{-2\gamma } dr \Big )^\frac{1}{2}\Big \Vert _{L^{q,2}_x}\\ \le&\Big ( \int _0^\infty \Big \Vert \int _{|\xi |=r} e^{ix \xi } {{\hat{f}}}(\xi ) d\sigma ^{n-1}_r(\xi ) \Big \Vert _{L^{q,2}_x}^2 r^{-2\gamma } dr \Big )^\frac{1}{2} \\ \le&\Big ( \int _0^\infty \int _{|\xi |=r} | {{\hat{f}}}(\xi ) |^2 d\sigma ^{n-1}_r(\xi ) dr \Big )^\frac{1}{2} \\ =&\Vert f\Vert _{L^2_x({{\mathbb {R}}}^d)}. \end{aligned}$$

where we used the Stein-Tomas restriction theorem of the Lorentz spaces in [1] and the following Minkowski inequality.

$$\begin{aligned} \Vert f(x,y)\Vert _{L^{p,r}_x L^r_y} \le \Vert f(x,y)\Vert _{ L^r_y L^{p,r}_x}, \;\; 1\le r< p <\infty . \end{aligned}$$
(A.13)

This completes the proof the square function estimate in Lorentz space.

For the sake of completeness, we give a proof of the Minkowski inequalities in Lorentz space. In fact, for \(1\le r< p<\infty \), we have

$$\begin{aligned} \Vert f(x,y)\Vert _{L^{p,r}_x L^r_y} =&\Big \Vert |f(x,y)|^r \Big \Vert ^{\frac{1}{r}}_{L^{\frac{p}{r},1}_x L^1_y} \\ \approx&\Big ( \sup _{\Vert g\Vert _{L^{(\frac{p}{r})',\infty }} \le 1 } \int |g(x)|\int |f(x,y)|^r dy dx \Big )^\frac{1}{r} \\ =&\Big ( \sup _{\Vert g\Vert _{L^{(\frac{p}{r})',\infty }} \le 1 } \int \int |f(x,y)|^r |g(x)| dx dy \Big )^\frac{1}{r} \\ \le&\Vert |f|^r\Vert _{L^1_y L^{\frac{p}{r},1}_x}^\frac{1}{r} = \Vert f(x,y)\Vert _{ L^r_y L^{p,r}_x}. \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, C., Shen, R. & Zhao, T. Scattering theory for the subcritical wave equation with inverse square potential. Sel. Math. New Ser. 29, 44 (2023). https://doi.org/10.1007/s00029-023-00846-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-023-00846-x

Mathematics Subject Classification

Navigation