Skip to main content
Log in

Twisted Schubert polynomials

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We prove that twisted versions of Schubert polynomials defined by \(\widetilde{\mathfrak S}_{w_0} = x_1^{n-1}x_2^{n-2} \cdots x_{n-1}\) and \(\widetilde{\mathfrak S}_{ws_i} = (s_i+\partial _i)\widetilde{\mathfrak S}_w\) are monomial positive and give a combinatorial formula for their coefficients. In doing so, we reprove and extend a previous result about positivity of skew divided difference operators and show how it implies the Pieri rule for Schubert polynomials. We also give positive formulas for double versions of the \(\widetilde{\mathfrak S}_w\) as well as their localizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aluffi, P., Mihalcea, L.C.: Chern–Schwartz–MacPherson classes for Schubert cells in flag manifolds. Compos. Math. 152(12), 2603–2625 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aluffi, P., Mihalcea, L.C., Schuermann, J., Su, C.: Shadows of characteristic cycles, Verma modules, and positivity of Chern–Schwartz–MacPherson classes of Schubert cells (2017). Preprint arXiv:1709.08697

  3. Bergeron, N., Billey, S.: RC-graphs and Schubert polynomials. Exp. Math. 2(4), 257–269 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Billey, S.C.: Kostant polynomials and the cohomology ring for \(G/B\). Duke Math. J. 96(1), 205–224 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Billey, S.C., Jockusch, W., Stanley, R.P.: Some combinatorial properties of Schubert polynomials. J. Algebraic Combin. 2(4), 345–374 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Graduate Texts in Mathematics, vol. 231. Springer, New York (2005)

    MATH  Google Scholar 

  7. Buch, A.S.: Mutations of puzzles and equivariant cohomology of two-step flag varieties. Ann. Math. (2) 182(1), 173–220 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coskun, I.: A Littlewood-Richardson rule for two-step flag varieties. Invent. Math. 176(2), 325–395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fomin, S., Stanley, R.P.: Schubert polynomials and the nil-Coxeter algebra. Adv. Math. 103(2), 196–207 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goresky, M., Kottwitz, R., MacPherson, R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131(1), 25–83 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huh, J.: Positivity of Chern classes of Schubert cells and varieties. J. Algebraic Geom. 25(1), 177–199 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kirillov, A.N.: Skew divided difference operators and Schubert polynomials. SIGMA Symmetry Integr. Geom. Methods Appl. 3, 14 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Kirillov, A.N.: Notes on Schubert, Grothendieck and key polynomials. SIGMA Symmetry Integr. Geom. Methods Appl. 12, 56 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Lascoux, A., Leclerc, B., Thibon, J.-Y.: Twisted action of the symmetric group on the cohomology of a flag manifold. In: Parameter spaces (Warsaw, 1994), volume 36 of Banach Center Publ., pp. 111–124. Polish Acad. Sci. Inst. Math., Warsaw (1996)

  15. Lascoux, A., Leclerc, B., Thibon, J.-Y.: Flag varieties and the Yang–Baxter equation. Lett. Math. Phys. 40(1), 75–90 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lascoux, A., Schützenberger, M.-P.: Polynômes de Schubert. C. R. Acad. Sci. Paris Sér. I Math. 294(13), 447–450 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Lee, S.J.: Chern class of Schubert cells in the flag manifold and related algebras. J. Algebraic Combin. 47(2), 213–231 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, R.I.: Positive expressions for skew divided difference operators. J. Algebraic Combin. 42(3), 861–874 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Macdonald, I.G.: Schubert polynomials. In: Surveys in Combinatorics, 1991 (Guildford, 1991), Volume 166 of London Math. Soc. Lecture Note Ser., pp. 73–99. Cambridge University Press, Cambridge (1991)

  20. Maulik, D., Okounkov, A.: Quantum Groups and Quantum Cohomology (2012). Preprint arXiv:1211.1287

  21. Postnikov, A.: On a quantum version of Pieri’s formula. In: Advances in Geometry, Volume 172 of Progr. Math., pp. 371–383. Birkhäuser, Boston (1999)

  22. Rimányi, R., Varchenko, A.: Equivariant Chern–Schwartz–MacPherson classes in partial flag varieties: interpolation and formulae. In: Schubert varieties, equivariant cohomology and characteristic classes—IMPANGA 15, EMS Ser. Congr. Rep., pp. 225–235. Eur. Math. Soc., Zürich (2018)

  23. Sottile, F.: Pieri’s formula for flag manifolds and Schubert polynomials. Ann. Inst. Fourier (Grenoble) 46(1), 89–110 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stryker, J.P., III.: Chern–Schwartz–MacPherson classes of graph hypersurfaces and Schubert varieties. ProQuest LLC, Ann Arbor, MI (2011). Ph. D. thesis, The Florida State University

  25. Su, C.: Restriction formula for stable basis of the Springer resolution. Sel. Math. (N.S.) 23(1), 497–518 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Alexander Yong for suggesting this line of inquiry and insightful conversations, as well as the organizers of the “Positivity in Algebraic Combinatorics” workshop at the Korea Institute for Advanced Study in June 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricky Ini Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is partially supported by a National Science Foundation Grant (DMS 1700302/2204415).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R.I. Twisted Schubert polynomials. Sel. Math. New Ser. 28, 87 (2022). https://doi.org/10.1007/s00029-022-00802-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-022-00802-1

Mathematics Subject Classification

Navigation