Skip to main content
Log in

A KAM Theorem with Large Twist and Finite Smooth Large Perturbation

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We study non-degenerate Hamiltonian systems of the form

$$\begin{aligned} H(\theta ,t,I)=\frac{H_0(I)}{\varepsilon ^{a}}+\frac{P(\theta ,t,I)}{\varepsilon ^{b}}, \end{aligned}$$

where \((\theta ,t,I)\in \mathbf {{T}}^{d+1}\times [1,2]^d\) (\(\mathbf {{T}}:=\mathbf {{R}}/{2\pi {\textbf{Z}}}\)), ab are given positive constants with \(a>b\), \(H_0:[1,2]^d\rightarrow \textbf{R}\) is real analytic and \(P:{\textbf{T}}^{d+1}\times [1,2]^d\rightarrow {\textbf{R}}\) is \(C^{\ell }\) with \(\ell =\frac{2(d+1)(5a-b+2ad)}{a-b}+\mu \), \(0<\mu \ll 1\). We prove that, for the above Hamiltonian system, if \(\varepsilon \) is sufficiently small, there is an invariant torus with given Diophantine frequency vector which obeys conditions (1.7) and (1.8). As for application, a finite network of Duffing oscillators with periodic external forces possesses Lagrange stability for almost all initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chatterjee, A.K., Kundu, A., Kulkarni, M.: Spatiotemporal spread of perturbations in a driven dissipative Duffing chain: an out-of-time-ordered correlator approach. Phys. Rev. E 102(5), 052103 (2020)

    Article  MathSciNet  Google Scholar 

  2. Chierchia, L.: Kolmogorov-Arnold-Moser (KAM) Theory. Mathematics of Complexity and Dynamical Systems, vol. 1–3, pp. 810–836. Springer, New York (2012)

    Google Scholar 

  3. Dieckerhoff, R., Zehnder, E.: Boundedness of solutions via the twist theorem. Ann. Sc. Norm. Super. Pisa 14(1), 79–95 (1987)

    MathSciNet  MATH  Google Scholar 

  4. Graef, J.R.: On the generalized Lienard equation with negative damping. J. Differ. Equ. 12, 34–62 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jiao, L., Piao, D., Wang, Y.: Boundedness for the general semilinear Duffing equations via the twist theorem. J. Differ. Equ. 252(1), 91–113 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kiss, I.Z., Zhai, Y.M., Hudson, J.L.: Resonance clustering in globally coupled electrochemical oscillators with external forcing. Phys. Rev. E 77(4), 046204 (2008)

    Article  Google Scholar 

  7. Kovaleva, A.: Capture into resonance of coupled Duffing oscillators. Phys. Rev. E 92(2), 022909 (2015)

    Article  MathSciNet  Google Scholar 

  8. Laederich, S., Levi, M.: Invariant curves and time-dependent potential. Ergod. Theory Dyn. Syst. 11(2), 365–378 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Levinson, N.: On the existence of periodic solutions for second order differential equations with a forcing term. J. Math. Phys. 32, 41–48 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, J., Qi, J., Yuan, X.: KAM theorem for reversible mapping of low smoothness with application (2019). arXiv:1910.08214v1 [math.DS]

  11. Liu, B.: Boundedness for solutions of nonlinear Hill’s equations with periodic forcing terms via Moser’s twist theorem. J. Differ. Equ. 79(2), 304–315 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, B.: Boundedness for solutions of nonlinear periodic differential equations via Moser’s twist theorem. Acta Math. Sin. (N.S.) 8(1), 91–98 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Morris, G.R.: A case of boundedness of Littlewood’s problem on oscillatory differential equations. Bull. Aust. Math. Soc. 14(1), 71–93 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Moser, J.: On invariant curves of area-preserving mapping of annulus. Nachr. Akad. Wiss. Gottingen Math. Phys. 2, 1–20 (1962)

    MathSciNet  MATH  Google Scholar 

  15. Moser, J.: Stable and Random Motion in Dynamical Systems. Annals of Mathematics Studies. Princeton University Press, Princeton (1973)

    Google Scholar 

  16. Peng, Y., Piao, D., Wang, Y.: Longtime closeness estimates for bounded and unbounded solutions of non-recurrent Duffing equations with polynomial potentials. J. Differ. Equ. 268(2), 513–540 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pöschel, J.: A lecture on the classical KAM theorem. Proc. Symp. Pure Math. 69, 707–732 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Reuter, G.E.H.: A boundedness theorem for nonlinear differential equations of the second order. Proc. Camb. Philos. Soc. 47, 49–54 (1951)

    Article  MATH  Google Scholar 

  19. Rüssmann, H.: On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus. In: Dynamical Systems, Theory and Applications, pp. 598–624 . Springer(1975)

  20. Rüssmann, H.: On the existence of invariant curves of twist mappings of an annulus. In: Geometric Dynamics, pp. 677–718. Springer (1983)

  21. Salamon, D.A.: The Kolmogorov-Arnold-Moser theorem. Math. Phys. Electron. J. 10(3), 1–37 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Sarkar, P., Ray, D.S.: Vibrational antiresonance in nonlinear coupled systems. Phys. Rev. E 99(5), 052221 (2019)

    Article  Google Scholar 

  23. Shena, J., Lazarides, N., Hizanidis, J.: Multi-branched resonances, chaos through quasiperiodicity, and asymmetric states in a superconducting dimer. Chaos 30(12), 123127 (2020)

    Article  MathSciNet  Google Scholar 

  24. Wang, Y.: Unboundedness in a Duffing equation with polynomial potentials. J. Differ. Equ. 160(2), 467–479 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yuan, X.: Invariant tori of Duffing-type equations. J. Differ. Equ. 142(2), 231–262 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yuan, X.: Lagrange stability for Duffing-type equations. J. Differ. Equ. 160(1), 94–117 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yuan, X.: Boundedness of solutions for Duffing equation with low regularity in time. Chin. Ann. Math. Ser. B 38(5), 1037–1046 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yuan, X., Chen, L., Li, J.: The KAM theorem with a large perturbation and application to the network of Duffing oscillators. Sci. China Math. 66(3), 457–474 (2023)

    MathSciNet  MATH  Google Scholar 

  29. Zehnder, E.: Generalized implicit function theorems with applications to some small divisor problems I and II. Comm. Pure Appl. Math. 28, 91–140 (1975); 29(1), 49–111 (1976)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the Doctoral Starting Foundation of Quzhou University (No. BSYJ202115).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L. A KAM Theorem with Large Twist and Finite Smooth Large Perturbation. Qual. Theory Dyn. Syst. 22, 101 (2023). https://doi.org/10.1007/s12346-023-00799-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00799-8

Keywords

Mathematics Subject Classification

Navigation