Skip to main content
Log in

Normal Form for the Fractional Nonlinear Schrödinger Equation with Cubic Nonlinearity

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We study the Birkhoff normal form for the cubic Fractional NLS

$$\begin{aligned} iu_t-(|\partial _x|+\sigma )^{\frac{1}{2}}u+|u|^2u=0,\quad x\in \mathbb {T},t\in \mathbb {R}. \end{aligned}$$

It is proved that there exists some interval \(\mathcal I\subset [0,1]\), such that for any \(\sigma \in \mathcal I\), the equation above admits a family of small-amplitude, linearly stable quasi-periodic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgain, J.: Quasi periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math. 148, 363–439 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berti, M.: KAM theory for partial differential equations. Anal. Theory Appl. 35(3), 235–267 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Craig, W., Sulem, C.: Mapping properties of normal forms transformations for water waves. Boll. Unione Mat. Ital. 9(2), 289–318 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Craig, W., Worfolk, P.A.: An integrable normal form for water waves in infnite depth. Physica D 84, 513–531 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Birkhoff, G.D.: Surface transformations and their dynamic applications. Acta Math. 4, 1–119 (1922)

    Article  Google Scholar 

  6. Eliasson, L.H., Kuksin, S.B.: KAM for the non-linear Schröinger equation. Ann. Math. 172, 371–435 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eliasson, L.H., Grébert, B., Kuksin, S.B.: KAM for the nonlinear beam equation. Geom. Funct. Anal. 26, 1588–1715 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142(6), 1237–1262 (2012)

    Article  MATH  Google Scholar 

  9. Feola, R., Giuliani, F.: Time quasi-periodic traveling gravity water waves in infinite depth. (to be appear in Mem. Am. Math. Soc.)

  10. Baldi, P., Berti, M., Haus, E., Montalto, R.: Time quasi-periodic gravity water waves in finite depth. Invent. math. 214, 739–911 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Geng, J., Xu, X., You, J.: An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv. Math. 226(6), 5361–5402 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Geng, J., You, J.: A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions. J. Differ. Eqs. 209, 1–56 (2005)

    Article  MATH  Google Scholar 

  13. Geng, J., You, J.: A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Commun. Math. Phys. 262, 343–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ionescu, A., Pusateri, F.: Nonlinear fractional Schröinger equations in one dimension. J. Funct. Anal. 266, 139–176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ionescu, A., Pusateri, F.: Global analysis of a model for capillary water waves in two dimensions. Commun. Pure Appl. Math. 69(11), 2015–2071 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liang, Z., You, J.: Qasi-periodic solutions for 1D Schrödinger equation with higher nonlinearity. SIAM J. Math. Anal. 36(2), 1965–1990 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Laskin, N.: Fractional Schrödinger Equation. Phys. Rev. E 66, 561–569 (2002)

    Article  MathSciNet  Google Scholar 

  18. Laskin, N.: Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liang, Z.: Quasi-periodic solutions for 1D Schrödinger equation with the nonlinearity \(|u|^{2p}u\). J. Differ. Equ. 244, 2185–2225 (2008)

    Article  MATH  Google Scholar 

  20. Kuksin, S.B., Pöschel, J.: Invariant Cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation. Ann. Math. 143, 149–179 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Naumkin, P.I.: Fractional nonlinear Schröinger equation of order \(\alpha \in (0,1)\). J. Differ. Equ. 269, 5701–5729 (2020)

    Article  MATH  Google Scholar 

  22. Pöschel, J.: Quasi-periodic solutions for a nonlinear wave equation. Comment. Math. Helvetici 71, 269–296 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pöschel, J.: A KAM Theorem for some nonlinear partial differential equations. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 23, 119–148 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Procesi, C., Procesi, M.: A KAM algorithm for the resonant non-linear Schrödinger equation. Adv. Math 272, 399–470 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Procesi, M., Xu, X.: Quasi-Töplitz Functions in KAM Theorem. SIAM J. Math. Anal. 45, 2148–2181 (2011)

    Article  MATH  Google Scholar 

  26. Sternberg, S.: On the structure of local homeomorphisms of Euclidean \(n\)-space. Am. J. Math. 80, 623–631 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, W.-M.: Energy supercritical nonlinear Schrödinger equations: quasiperiodic solutions. Duke Math. J. 165(6), 1129–1192 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, X.: Quasi-periodic solutions for fractional nonlinear Schrödinger equation. J. Dyn. Differ. Equ. 30, 1855–1871 (2018)

    Article  MATH  Google Scholar 

  29. Xu, X., Geng, J.: KAM tori for higher dimensional beam equation with a fixed constant potential. Sci. China Ser. A 52(9), 2007–2018 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yuan, X.: Quasi-periodic solutions of completely resonant nonlinear wave equations. J. Differ. Equ. 230, 213–274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of deep fluid. J. Appl. Mech. Tech. Phys. 2, 190–194 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Fuzheng Ma and Xindong Xu wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xindong Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by NSFC grant 12271091.

Appendix

Appendix

Lemma 4.1

For \(a\ge 0\), \(\rho >0\), The space \({\ell }^{a,\rho }\) is a Banach algebra with respect to convolution of sequences, and

$$\begin{aligned} \Vert q*p \Vert _{a,\rho }\le c \Vert q \Vert _{a,\rho }\Vert p \Vert _{a,\rho } \end{aligned}$$

with a constant c depending only on a.

For the proof of Lemma 4.1, see [12, 20, 22].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Xu, X. Normal Form for the Fractional Nonlinear Schrödinger Equation with Cubic Nonlinearity. Qual. Theory Dyn. Syst. 22, 100 (2023). https://doi.org/10.1007/s12346-023-00797-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00797-w

Keywords

Mathematics Subject Classification

Navigation